Title
THE BERKELEY HIGH-RESOLUTION BALL

Permalink
https://escholarship.org/uc/item/1gt7w8cp

Author
Diamond, R.M.

Publication Date
1984-10-01
Presented at the Conference on Instrumentation for Heavy Ion Nuclear Research, ORNL, Oak Ridge, TN, October 22-24, 1984

THE BERKELEY HIGH-RESOLUTION BALL

R.M. Diamond

October 1984

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE BERKELEY HIGH-RESOLUTION BALL*

R.M. DIAMOND
Nuclear Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

For the Conference on Instrumentation for Heavy Ion
Nuclear Research, Oak Ridge National Laboratory

*This work was supported by the Director, Office of Energy
Research, Division of Nuclear Physics of the Office of High
Energy and Nuclear Physics of the U.S. Department of Energy
under Contract DE-AC03-76SF0098.
THE BERKELEY HIGH-RESOLUTION BALL*

R.M. DIAMOND
Nuclear Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shields for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single-particle states (possibly oblate) near spin 30 h, and has other interesting features.

*This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098.
Four or more years ago Frank Stephens and I became interested in developing a high-resolution γ-ray system, both to extend discrete-line spectroscopy and to study continuum γ-rays. If it were possible to push discrete transition work 10-15 spin units higher, all the detailed studies possible at lower spins could be carried out and much more could be learned about how nuclei carry angular momentum and how they change with spin. Questions to be answered are how rapidly do the pairing correlations quench, do alignments and backbends continue to high spin, and what are the changes in shape and in collective motion with increase in spin? To achieve this goal appeared to require both the "looking down" technique of the NaI balls then being constructed, namely, to select a limited population of initial states by cuts on the fold distribution and on the total-energy response of the ball, and a "looking up" scheme in which a gate is set on a discrete line of moderately high spin and the transitions above it are looked for in coincidence. But the highest spin lines observed might represent at most a few percent of the total population at that spin, and to learn about the majority of the states and their properties, one would also have to study the continuum spectrum. We had already observed, by comparing NaI and Ge γ-γ correlation spectra, that there were structures in the continuum region that required 5-10 KeV resolution to be seen. This is better than can be done with NaI detectors, but, as explained below, a good response function is also very important in coincidence studies and Ge detectors are poor in that regard.

So at that time we were able to convince C. Gruhn to undertake a feasibility study of liquid Xe detectors as modules for a 4π high-resolution ball. In theory such a
THE BERKELEY HIGH-RESOLUTION BALL

system would have an intrinsic resolution only a factor of two worse than solid-state Ge detectors, and it has a number of attractive properties including a much better response function. But this undertaking proved to be an ongoing developmental problem, principally because of very low-level (ppb) impurities, and appeared that it might take years to bring to fruition. So after a year we decided to base our multidetector system on already existing Ge detectors. However, you have already heard at this Conference from Dr. Lindblad on the progress they have made in Stockholm during the last three years with liquid Ar and Xe counters, including the operation of a liquid Xe detector with about 8 KeV resolution for ~1 MeV γ rays. So such counters still may live up to their theoretical promise.

TABLE I Criteria for optimum γ-ray system.

1. High energy resolution
2. Good response function
3. Good efficiency
4. Total-energy spectrometer
5. Multiplicity filter
6. Prompt initial timing signal

In Table I are listed three primary criteria important for a high-resolution array, and three secondary features we wanted. As mentioned, Ge detectors provide the highest resolution possible today with reasonable efficiency for γ-ray energies in the range of 50 KeV to a few MeV (~2 KeV resolution at 1 MeV). Can we do better? With a single detector, no. In this case the average resolution can be defined as the reciprocal of the number of resolvable points in the energy range of interest. Consider a range
FIGURE 1 The overlapping lines in the singles spectrum, \(\cdots \), are resolvable in the doubles spectrum by their different cascade partners.

of 0-1 MeV and a constant resolution of 2 KeV; this gives 500 resolvable points. If two \(\gamma \) rays fall on the same point, they cannot be resolved. But the \(\gamma \) rays we are interested in are usually not single events but members of a cascade and are correlated with the other members. If two (or more) detectors are used, the coincidence relationships between the two overlapping \(\gamma \) rays and the other members of their individual cascades may serve to resolve them, as illustrated in Fig. 1. The 500 resolvable points
THE BERKELEY HIGH-RESOLUTION BALL

of the single detector have become 500^2 points in the
two-dimensional array of the two coincident detectors, and
it is much less probable that the two pairs of γ rays
coincide than the original single lines. Still higher
order coincidences give still higher effective resolution
for coincident cascades of γ rays by enormously increasing
the number of possible resolvable points; a triple coinci-
dence would have 500^3 possible resolvable points. Thus,
a desirable feature for our array is to have as many detec-
tors as close as is reasonably possible (see below) to the
target, in order to favor high-order coincidences.

A second criterion is to have a good response func-
tion, i.e., every γ ray that strikes the detector should
result in a voltage pulse proportional to the original
γ-ray energy. A Ge counter does not fulfill this require-
ment very well. It is a relatively low Z, moderately dense
material that interacts with γ rays in the energy range of
interest principally by Compton scattering. With a 5×5
cm Ge detector (approximately 20% the efficiency of a $7.6 \times$
7.6 cm NaI detector for 1.33 MeV γ rays) a 1.33 MeV γ ray
has an absorption probability of $\sim 3/4$ and a peak to total
(P/T) ratio of 15-20%. This means that $\sim 1/4$ of such γ rays
do not interact at all with the detector, and that of those
that do, only 15-20% give useful full-energy peaks. In a
doubles coincidence measurement, only 2-4% of the events
obtained are good peak-peak values; the remaining 96-98%
are unwanted garbage. This is a very undesirable situa-
tion, and the solution has been known for some time; put
Compton-suppression shields around the Ge detectors. The
preceding talk by Dr. Twin on TESSA illustrated how this
was done at Daresbury2; large 20 x 25 cm NaI shields were
placed on six Ge detectors arranged around the target,
giving a markedly improved peak/total ratio and resulting in the beautiful spectra you have just seen. Not having such NaI shields on hand, we decided to try for bismuth germanate (BGO) shields, for, if successful, they offered a great advantage. The material is considerably denser than NaI (7.13 to 3.67 g/cm3) and of higher average Z, so that it has a γ-ray absorption length 2-1/2 times smaller than NaI. This means more compact shields, so that more Compton-suppressed detectors can be placed near the target to give the higher order coincidences discussed in the previous paragraph. But bismuth germanate also has a serious handicap; the light output is only 10-15% that of NaI. In addition, at that time (1981) the companies that marketed it had not made BGO crystals large enough to serve this purpose, as shields of the order of 13 cm or more in diameter and length were needed.

It took a year to obtain a prototype version of the BGO shield. The unit was not quite large enough, and it had broken in two during machining and had been cemented back together. Indeed it looked as if it might be a long, hard period before single crystals of BGO of sufficient size could be processed into suitable shields. But upon testing the broken prototype, the cemented fracture did not seem to cause any problem, and the taper at the front of the shield appeared to reflect light so well that the phototubes at the back gave a bigger signal when the source was placed on the front piece (whose light had to pass through the fracture) than when it was put on the back piece. So the problem was solved by making the shield in six longitudinal pieces that were put together to form the detector shell of suitable size. I believe that all of the Compton suppression shields that have been made from BGO
FIGURE 2 Outline of BGO Compton-suppression shield showing 5 x 5 cm Ge detector inside, two of six photomultiplier tubes on back surface, and NaI "cap" on front taper.

have been produced in this way. In our design a 1-1/2" photomultiplier tube was placed on the back of each of the six sections to gather the light as efficiently as possible. A schematic drawing of our BGO shield showing two of the tubes is given in Fig. 2. It is a coaxial design, so that there is no shield material at the front opening where the γ rays come in to the Ge detector, nor at the rear where the snout of the Ge detector enters. Lack of coverage at the latter position means that Compton-scattered γ rays in the angular range of 0°–25° (multiple Compton scattering in the Ge crystal and primary interactions throughout the whole volume of the Ge smear these angles out) will not be caught by the shield, leaving the complementary non-full-energy transition in the resulting
spectrum. We do not believe these low-energy transitions pose a serious problem, although there are attempts being made to reduce its magnitude by reducing the snout behind the Ge detector to a minimum diameter and then surrounding it with additional shield material. (Of course the transverse shields do not have this hole, but they have one at the side instead.) But the opening at the front is more disturbing, as the (low energy) γ rays Compton-scattered through about 135°–180° correspond to leaving in the spectrum the Compton edges just below the full energy peaks. The edges appear just where we are interested in having a clean, low-background region. Figure 3 shows two spectra of 60Co taken with one of our Ge detectors, a Compton-suppressed one taken with the BGO shield and an unsuppressed one normalized to the same full-energy peak heights. (In the former, the Compton-edge peaks just mentioned can be clearly seen.) The peak/total ratio for 60Co above a 300 KeV threshold improves from ~20% to 50%. But for coincidence experiments there is the even more marked improvement shown in Table II. Note, for example, that with bare Ge detectors full-energy triple coincidences are only 0.8% of the events, so that triple coincidences have not been used in in-beam spectroscopy. But with a 50% P/T ratio, 12.5% are good events making them

<table>
<thead>
<tr>
<th>Ge detector</th>
<th>Ge1</th>
<th>Ge2</th>
<th>Ge3</th>
<th>Ge4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak/Total</td>
<td>0.2</td>
<td>0.04</td>
<td>0.008</td>
<td>0.0016</td>
</tr>
<tr>
<td>Compton-suppressed Peak/Total</td>
<td>0.5</td>
<td>0.25</td>
<td>0.13</td>
<td>0.06</td>
</tr>
<tr>
<td>Improvement Factor</td>
<td>2.5</td>
<td>6</td>
<td>16</td>
<td>39</td>
</tr>
</tbody>
</table>
FIGURE 3 Spectra of 60Co taken with bare 20% Ge detector and with Compton-suppressed detector (no NaI cap).

quite useable. And still higher ratios are possible. By the addition of a NaI "cap" to the front of the BGO shield, as shown schematically in Fig. 2, we have obtained a P/T ratio of 55% for the 60Co peaks (300 KeV threshold) and,
most importantly, have almost completely wiped out the
Compton-edge peaks. Other designs using larger BGO shields
can give P/T ratios of 60-65% for 60Co, so tremendous
improvement in the Ge response function is possible.

The system efficiency involves the questions of how
many Ge detectors at what distance from the target. With
the design shown in Fig. 2 involving 13.5 x 13.5 cm
shields, some units will touch at their tapered cones when
13-14 cm from the target. If we take 15 cm as the distance
from the target to the face of the 5 x 5 cm Ge detector in­
side the BGO shield, we find we can place 21 detectors at
this distance and still leave the top and bottom above the
target clear. This will be necessary to accommodate the
photomultiplier tubes for a small, central BGO ball between
the target and the Ge modules. Of course, the number of
detectors is a matter of choice and depends somewhat on the
geometrical arrangement selected. Too small a number hurts
the higher order coincidences and the statistics; too large
a number is costly, and after a moderately large number one
does not gain very rapidly, as additional detectors require
an expansion in the radial distance from the target. Ano­
ther consideration on the distance from the target involves
the amount of summing to be tolerated in an individual
detector. At 15 cm from the target, the geometric solid
angle of our detectors, diminished by the Ge transparency,
is -5×10^{-3}. Sixty percent (or more) of such γ rays
interacting with the Ge detector are rejected by the shield
(plus NaI cap) so the overall efficiency is $\leq 2 \times 10^{-3}$.
If the γ-ray cascades have an average multiplicity of 20,
this gives -4% summing, on average. This is probably O.K.
for most purposes; if not the geometric efficiency must be
reduced.
Lastly, but not least, Doppler effects must be considered. The usual method of producing nuclei in high-spin states is with (H.I.,xn) reactions. In a typical case, -180 MeV 40Ar on 124Sn, the recoiling compound nucleus has a velocity -2.5% that of light. The Doppler shift for a γ ray emitted by such a moving source is

$$\frac{E - E_0}{E_0} = \frac{v}{c} \cos \theta$$ \hspace{1cm} (1)$$

where θ is the angle between the detector and the recoiling nucleus. So near 0° or 180° the Doppler shift is quite large, -25 KeV for a 1 MeV γ ray. But the broadening due to the finite opening-half-angle ϕ of the detector

$$\frac{\Delta E}{E_0} \approx 2 \frac{v}{c} \sin \theta \sin \phi$$ \hspace{1cm} (2)$$

is quite small, < 1/2 KeV for θ near 0° or 180° and ϕ = 9.5°. By using a thin target or multiple thin targets, the full Doppler shift is obtained, but since this corresponds to a change in gain it can be corrected for in the amplifier or ADC or in the analysis program with no loss in resolution. On the other hand, for angles of θ near 90°, the Doppler shift becomes small, but the broadening becomes a maximum. For the 180 MeV 40Ar + 124Sn example, $\Delta E/E_0 \approx 0.8\%$ or 8 KeV broadening for a 1 MeV transition. Such a smearing of the energy ruins the resolution of the detector, but can be reduced or avoided altogether under certain conditions. For example, if such a product nucleus recoils out of the target into a lead or gold backing, it will stop in the order of picoseconds. If the transitions are emitted after stopping, there will be no Doppler shift or broadening. Thus, nuclei that do not have fast, col-
FIGURE 4 Vertical cut through the High-Resolution Ball system, showing one Ge detector in each ring. Not shown are photomultiplier tubes and NaI caps on BGO shields.

Selective transitions in their de-excitation cascades can, and do, take picoseconds to de-excite and do not present a problem. But if the γ rays are fast, something has to be done to alleviate the Doppler broadening; the detectors must be pulled back further or collimated or both in order to decrease the detector opening angle, and thus the broadening.

With these considerations in mind we have designed the High-Resolution Ball to consist of 21 BGO-shielded Ge detectors arranged (in three rings of seven detectors) around a small, central "ball" or "castle" of 40 BGO sectors. Some of the latter have holes through which the Ge detectors see the target, and the 40 together form a sum spectrometer and multiplicity filter around the target, as well as giving the angular pattern of the γ rays emitted. A sideview of the arrangement is given in Fig. 4, which shows one detector from each ring. Not shown are the NaI caps on the BGO shields, nor are the photomultiplier tubes drawn in on either the shields or the central ball sectors. For the BGO sectors in the upper half of the central
FIGURE 5 Perspective view of ~1/2 the system.

ball, the photomultiplier tubes go up from the top faces of the sectors, and for those in the lower half, the tubes go downwards from the bottom faces. A cut-away perspective drawing of the system is shown in Fig. 5.

With 21 of our detectors at 15 cm from the target, an event rate of 10^5/second (the order of our usual rate in a (40Ar, xn) reaction), and an average γ-ray multiplicity of 20, we estimate the double-, triple-, and quadruple-coincidence rates to be 11 K/s, 2.2 K/s and 280/s, respectively. We have already performed experiments with 9, 12, and 15 Compton-suppressed Ge detectors (but without the
FIGURE 6 Photograph of 12 Compton-suppressed Ge modules in place around a small target chamber.

central BGO ball), and do get the corresponding calculated rates.

Where we were 3-4 months ago (Summer, 1984) is shown in Fig. 6, a photograph of 12 Compton-suppressed Ge modules in place around the target inside a small chamber. The beam-line to the chamber passes between the two middle modules in the horizontal plane. The Ge detectors are out of sight inside the BGO shields, but their small liquid-nitrogen dewars are visible, as are the pre-amps for the shields. We now have all 21 Ge detectors and 16 of the BGO shields; the last of the latter are due by February, 1985. We shall go out to bid for the NaI caps for the BGO shields before the end of this year. By the beginning of 1985 we
THE BERKELEY HIGH-RESOLUTION BALL

should have a new system of fast 8-channel multiplexers and of ADC's and a fast CAMAC crate in operation for acquiring data. All that will remain to build is the central BGO ball, and its design has been completed.

One of the goals of the High-Resolution Ball is to push the limits of discrete γ-ray spectrometry to higher spin into the bottom of the present continuum region, in order to gain the much more detailed information possible with discrete-line studies. This will be accomplished by cutting down the number of de-excitation pathways being observed both by cuts on the total energy and multiplicity measured with the central ball, and by simultaneously gating on single, high-spin discrete lines (and "looking up" in coincidence above the last known discrete lines). Since we do not have a central ball yet, we can only do the latter at present, and for our first experiments we have chosen to look at the region around $Z = 64$ and $N > 82$. We have taken data on some eleven nuclei. This choice was made for three reasons. First of all, most nuclei in this region are expected to have long enough feeding times (picoseconds) into the range of high-spin states which we want to study that they will be stopped in lead-backed targets before they emit their de-excitation γ rays. Thus, there will be no problem with Doppler broadening. Secondly, the level schemes are apt to be quite complex, as these are not good collective rotors having bands with approximately rotational spacings, but involve mainly single-particle states with possibly weakly collective interactions. For this reason many of them have not yet been studied to high spin and they represent a challenge, though a difficult one. Thirdly, they are in a region where the physics appears to be varied and interesting, involving
shape changes, and possibly the theoretically predicted transformation to superdeformed shapes (2:1 axis ratio) at relatively low spins and also band terminations.

I shall show you some data on ^{156}Er which are being analyzed by Frank Stephens. They were taken with 9 Compton-suppressed Ge detectors in two days running at the 88" cyclotron with a -1 pna beam of 175 MeV $^{40}\text{Ar}^{8+}$ on a lead-backed -1 mg/cm2 ^{120}Sn target. The data consist of -1.5×10^8 double- and -10^7 triple-coincidence events. A spectrum in coincidence with the 452 KeV, $4^+ \rightarrow 2^+$ transition of the ground band shows the number of lines observed in ^{156}Er, essentially clean of $^{157,159}\text{Er}$ (Fig. 7). Actually, the total $\gamma-\gamma$ projection spectrum is clean enough so that the small peak at 884 KeV, the $28^+ \rightarrow 26^+$ transition that has only -3% the strength of the ground-band $4^+ \rightarrow 2^+$ transition, can be used as a gate to provide the very nice
FIGURE 8 Spectrum of 156Er in coincidence with the 884 KeV, 28$^+$ \rightarrow 26$^+$ transition.

spectrum shown in Fig. 8. The γ $i_{13/2}^+$ backbend at spin 12 h shows clearly, as does the discontinuity at spin 26 h, but also one at 30 h. This part of this cascade is no longer rotational, but appears to be made of single-particle states. It would be interesting to determine the transition lifetimes here. Note that in this positive-parity yrast band there are two lines that are double and one that is triple. In fact, of the more than 100 lines Frank has assigned to the decay scheme, more than half are double, triple, or higher fold, and there are six transitions at 766 \pm 1 KeV. A spectrum brought back as the result of a double gate on 344 KeV is shown in Fig. 9. That is, the $2^+ \rightarrow 0^+$ transition of the ground band is weakly coincident with another γ ray of the same energy, and the result-
FIGURE 9 Triple coincidence spectrum of 156Er with a double gate set on two 344 KeV transitions. The spectrum has been smoothed once using a simple three-channel algorithm.

ing triple-coincidence spectrum is shown. The ground band is observed through the first backbend, and then there are a number of transitions in the energy range of $550-600$ KeV which must involve the other 344 KeV transition, but they have not all been placed in the scheme yet.

The preliminary level scheme for 156Er is given in Fig. 10. Positive-parity levels above spin $26 \hbar$ and negative-parity levels above $-23 \hbar$ are mostly new; a few lower levels have been changed from previous work.4,5 The number of transitions and levels have been doubled over those in earlier schemes. Spin assignments for the new states are tentative and based solely on the angular correlations of the cascade transitions. The new spin and parity assign-
FIGURE 10 Preliminary level scheme for 156Er.

The elements for the right-hand band in the figure are also tentative and will have to be checked by conversion-electron measurements. A plot of energy vs. $I(I + 1)$ for the levels is shown in Fig. 11. The lines are drawn only
Plot of excitation energy E vs. $I(I+1)$ for the three main bands of 156Er. Corresponding to Fig. 10, they are: the left-most (positive-parity) band, including the non-collective region at the highest spins, circles; the right-most (negative-parity, even-spin) sequence, triangles; and the center (negative-parity, odd-spin) band, squares.

to guide the eye, but the points do seem to group into three different regions with different slopes. First comes the ground band below spin $10 \hbar$ (0 quasiparticles) then all bands between spins $12 \hbar$ and $25 \hbar$ (2 quasiparticles), and finally all levels above spin $25 \hbar$ (4 or more quasiparti-
THE BERKELEY HIGH-RESOLUTION BALL

cles). The increasing moment of inertia given by the three slopes is probably the result of decreasing pairing and increasing particle alignment as the number of quasiparticles increases. Although \(\frac{1}{\hbar^2} \) is an integral quantity and so not very sensitive to local structural changes, it is somewhat surprising that all the points seem to lie so well on the three straight-line segments. The right-hand band in Fig. 10 has been reassigned as a negative-parity band, probably the unfavored even-spin partner of the already assigned negative-parity odd-spin band. Both of these start out with an aligned spin of 7-8 \(\hbar \) relative to the ground band and show the "blocked" \(\nu = \frac{13}{2} \) backbend at \(\hbar \omega \approx 0.35 \) MeV with an additional alignment of 7-8 \(\hbar \), as expected for the lowest negative-parity bands in this region. Above the backbend the odd-spin band splits into two very similar branches (which was not expected) and the even-spin band continues, possibly as a still-collective one. This scheme can be compared with Cranked-Shell-Model calculations, and the agreement is reasonably good, especially for the predicted onset of non-collective or single-particle behavior (oblate shape) taking over from collective rotation (prolate shape) in the neighborhood of spin 30 \(\hbar \). A low-lying calculated state of spin 42 \(\hbar \) is interesting and probably corresponds to the highest spin state observed experimentally and tentatively given that spin. It is possible that the observation of the high-spin positive-parity states even depends upon this state, as it may be the source of the lifetime (>1 picosecond) necessary to hold up the following cascade long enough for the recoiling nucleus to stop first in the lead backing. Otherwise the lines would not be sharp, particularly in the detectors near 90° to the beam. It
will be interesting to compare this decay scheme with those of the neighboring nuclei that we are also studying in order to observe the systematics of the changes in nuclear structure and shape in this region of the Periodic Table and see how well they agree with theoretical predictions.

It has become quite clear that the use of Compton-suppressed Ge detectors is an exciting step forward in nuclear γ-ray spectroscopy. The beautiful spectra taken by the Daresbury and Copenhagen groups during the past 1-2 years give eloquent testimony. Their work was done with six large NaI suppressors. The use of bismuth germanate permits much more compact shields, and so allows more Ge detectors to be grouped closer to the target or radioactive source than is possible with NaI. As a result, higher-order coincidences can be obtained which correspond in favorable cases to effectively higher resolution. In addition, adequate statistics can be obtained in a much shorter time. In this talk I have discussed our design of a high-resolution Ge array, where it is now in construction, and some first results from a partial array whose spectra do show the superior qualities we had hoped for. In closing I would like to point out that although I have only shown results of discrete γ-ray studies, we intend to use the array for continuum work also, as the shielded Ge detector response function is about as good as that of the large NaI detectors usually used in continuum studies. To learn about the properties of the highest spin states we shall have to study their average behavior as given by continuum γ-ray measurements; this will require significant improvements in our continuum techniques. But we can look forward to great increases in our knowledge of nuclear structure at high spin and at high temperature from a combination of the
THE BERKELEY HIGH-RESOLUTION BALL

detailed measurements of discrete y-ray studies and of the average behavior exemplified in continuum work.

Acknowledgements: Many people have helped on this project and deserve thanks. I can only mention a few: A. Dancosse for the design and construction of the holder, M.K. Lee for the LN filling system, M.K. Lee, D. Landis, and F. Gin for the electronics, and R. Belshe for software development. And the project owes most to the thought and care of Frank Stephens.

REFERENCES

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.