Lawrence Berkeley National Laboratory
Recent Work

Title
THE SPECIFIC HEAT OF SUPERCONDUCTING TRANSITION METALS

Permalink
https://escholarship.org/uc/item/1hp50874

Authors
Sung, C.C.
Shen, Lawrence Yun Lung.

Publication Date
1965-07-01
THE SPECIFIC HEAT OF SUPERCONDUCTING TRANSITION METALS

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California
AEC Contract No. W-7405-eng-48

THE SPECIFIC HEAT OF SUPERCONDUCTING TRANSITION METALS
C. C. Sung and Lawrence Yun Lung Shen
July 1965
The experimental data on the transition metals of niobium, tantalum, and vanadium show marked deviation from the BCS theory for low reduced temperatures \(t < 0.2 \), where \(t = T/T_c \) and \(T_c \) is the transition temperature.\(^1\)

A two-energy-gap model that was proposed by Suhl, Matthias, and Walker\(^2\) is used to obtain an expression for the specific heat of pure and impure superconductors. We are able to fit the data to the expression and determine the following parameters of the two-gap model: the small energy gap \(\Delta_s \), \(N_s/N_d \), \((N_s'(d) \) is the density of states of s-(d-) band) and the magnitude of inter-band interaction \(J \).

The Hamiltonian of a pure two-gap superconductor

\[
H = \sum_{k,\sigma} \varepsilon_{ks} S^+_{k\sigma} S_{k\sigma} + \sum_{k,\sigma} \varepsilon_{kd} d^+_{k\sigma} d_{k\sigma} + J_s \sum_{k,k'} S^+_{k\downarrow} S^-_{k\uparrow} S^+_{k'\uparrow} S^-_{k'\downarrow} + J_d \sum_{k,k'} d^+_{k\downarrow} d^-_{k\uparrow} d^+_{k'\uparrow} d^-_{k'\downarrow} + J \sum_{k,k'} (S^+_{k\uparrow} S^-_{k\downarrow} d^+_{k'\downarrow} d^-_{k'\uparrow} + H.C.) \quad (1)
\]

where \(\varepsilon_{ks}(d) \) is s-(d-) band kinetic energy measured from the Fermi surface and \(S^+_{k\sigma}(d^+_{k\sigma}) \) \(S^-_{k\sigma}(d^-_{k\sigma}) \) are the corresponding creation and annihilation operators. \(J_s, J_d, \) and \(J \) are the coupling constants of s-s, d-d and s-d bands. In Eq. (1), the summations of \(k \) are extended over values corresponding to the Debye cut off frequency \(\Theta = 0.024 \) ev, which is chosen to be the same for both bands. The numerical results of the specific heat are not sensitive to whether different cut off \(\Theta \) are used for different bands.

After the Bogoliubov transformation, the Hamiltonian is reduced to a system of two types of quasi-particles (s-type and d-type) with energies \(E^s_{k\sigma} \) and \(E^d_{k\sigma} \).
\[E_s(d) = \left[E_{ks}(d) + \Delta_s^2(d) \right]^{1/2} \]
(2)

\[\frac{E_s(d)}{k_s} = \frac{1}{e^{E_s(d)/T} + 1} \]
(3)

The equations to determine \(\Delta_s, \Delta_d \) and \(T_c \) are:

\[J_d - J \frac{\Delta_d(T)}{\Delta_s(T)} / N_s (J_s J_d - J^2) = \ln \frac{\Delta_s(T)}{\Delta_d(T)} - 2 \sum_{n=0}^{\infty} (\epsilon - 1)^n K_n[(n+1) \frac{\Delta_s(T)}{T}] \]
(4)

\[J_s - J \frac{\Delta_s(T)}{\Delta_d(T)} / N_d (J_s J_d - J^2) = \ln \frac{\Delta_d(T)}{\Delta_s(T)} - 2 \sum_{n=0}^{\infty} (\epsilon - 1)^n K_n[(n+1) \frac{\Delta_d(T)}{T}] \]
(5)

\[\omega^2 (J_s J_d - J^2) N_s N_d + (J_s N_d + J_d N_s) \omega + 1 = 0 \]
(6)

where \(\omega = \ln \left(\frac{0.88 T_c}{\theta} \right) \) and \(K_n \) is the modified Bessel function of \(n \)-th order. We neglect the interactions between the quasi-particles in our model, and write total entropy as the sum of the entropies of \(s \)- and \(d \)-quasi-particles. It follows that the electronic specific heat contains two terms:

\[C_{es} = \frac{N_d}{N_s + N_d} C_{es}^d + \frac{N_s}{N_s + N_d} C_{es}^s \]
(7)

where

\[C_{es}^d / \gamma T_c = \frac{N_d}{N_s + N_d} \frac{3}{(2\pi)^2} \left(\frac{\Delta_d(T)}{T} \right)^3 \frac{T^2}{T_c} [\sum (\epsilon - 1)^n K_2(u_d(n)) + 2K_1(u_d(n))] \]

\[+ 4 \frac{\Delta_d(T)}{T} \frac{\Delta_d(T)}{T} \frac{1}{T} K_1(u_d(n)) \]
(8)

\[u_d(n) = (n+1) \frac{\Delta_d(T)}{T} \]
and \(\gamma = \frac{2}{3} \pi^2 (N_s + N_d) \times \text{(Boltzmann Constant)}^2 \)
By exchanging the label (s) and (d) in Eq. (8) we obtain \(C^s_{es} \). Which energy gap, \(\Delta_s \) or \(\Delta_d \), is larger is determined as follows: since

\[
N \frac{N_d}{N_s + N_d} \approx 1 \quad \text{and} \quad N_s \frac{N_d}{N_s + N_d} \ll 1, \quad \Delta_d \text{ has to be assigned as the larger gap so that at high reduced temperature Eq. (7) gives } C^s_{es} = C^d_{es} \text{ which fits the experimental data.}^{5} \]

\(\frac{N_s}{N_s + N_d} C^s_{es} \) becomes dominant in the low temperature region where

\[
T \ll \Delta_d
\]

Let \(x(T) = \frac{\Delta_s(0)}{\Delta_s(T)} \) and \(\alpha = -\frac{\Delta_d(0)}{\Delta_s(0)} \cdot \frac{J}{(N_s/N_d - J^2)} \).

Equation (4) becomes

\[
2\Sigma (-1)^n K_o [u_s(n)] = \ln x(T) - \alpha(1-x)
\]

(8)

and

\[
\frac{d\Delta_s(T)}{d(\frac{1}{T})} \frac{1}{\Delta_s(T)} = \frac{2u_s(0) \sum_{n=0}^{\infty} (-1)^n(n+1) K_i(u_s(n))}{1+\alpha x^2 - 2u_s(0) \sum_{n=0}^{\infty} (-1)^n(n+1) K_i(u_s(n))}
\]

(9)

Parameters used in determining \(C^s_{es} \) are \(N_s/N_d \), \(\alpha \), and \(\Delta_s \). Eq.(8) is solved numerically for \(x \) and substituted in Eq. (9) to obtain \(C^s_{es} \). \(\Delta_s(0) \) is related to the limiting slope of the electronic specific heat at a low temperature limit. The best fit is given by \(\Delta_s = 0.16T_c \) as shown in Fig. 1. In the temperature region from 0.14 to 0.1, the peculiar temperature dependence of \(\Delta_s \) accounts for the nearly constant specific heat. See Fig. 3. As shown in Fig. 2, \(\alpha \), which is related to interband coupling constant \(J \), is an important parameter in this region. Finally, using \(N_s/N_d = 1.5 \times 10^{-2} \) and adding \(C^s_{es} \) to \(C^d_{es} \) we obtain the solid curve shown in Fig. 2.
We note that the parameter to measure the strength of interband coupling

\[\frac{J(N_s N_d)^{1/2}}{J_s N_s J_d N_d} = c \left(\frac{N_s}{N_d} \right)^{1/2} \approx 0.06. \]

From the parameters \(\Delta_s, \Delta_d \) and \(N_s/N_d \), which are determined by fitting the data and Eqs. (46), we can calculate \(J_d, J_s \) and \(J \). However, because of the small values of \(N_s/N_d \) and \(\Delta_s/\Delta_d \) and the large experimental uncertainty of \(T_c \) and \(\Delta_d \) we are unable to obtain reliable values of \(J_d, J_s \) and \(J \).

The above model gives a reasonable specific heat of pure niobium over the whole measured temperature range. Even though detailed band structure calculations are lacking in niobium, we get \(N_s/N_d \) from specific heat alone. The discrepancy between experimental value and calculation may be due to (1) the pure sample is not 100% pure as it is assumed in the calculation and (2) the simplification of the used model. No effort was made to fit tantalum data because they are not available over a wide enough reduced temperature range.

In our calculation of the effect of impurities on the specific heat, we take the impurities to be non-magnetic. The only effect of the impurities taken into account is the transition between s-quasi-particle and d-quasi-particle states.

The effective Hamiltonian is

\[H_{\text{eff}} = \sum_{k, \sigma} E^d_{k\sigma} \gamma^d_{k\sigma} \gamma^d_{k\sigma} + \sum_{k, \sigma} E^s_{k\sigma} \gamma^s_{k\sigma} \gamma^s_{k\sigma} + J' \sum_{k, \sigma} (\gamma^d_{k\sigma} \gamma^s_{k\sigma} + H. C.) \] (10)

where \(\gamma^d_{k\sigma} (\gamma^s_{k\sigma}) \) is the creation operator of d-(s-) quasi particles and \(J' \) is proportional to the density of impurities.
In Eq. (10), the scattering of the s- and d- quasi-particles with the impurities into the same energy band is neglected, since this effect of the scattering is to smear the Fermi surface in each band and is presumably small. We can ignore the difficult problem of finding the eigenstates of the quasi-particles in the presence of impurities, because of the small amount of impurities which cause no observable effect for \(T_c > 0.2 \).

\(H_{\text{eff}} \) is easily diagonalized with the new quasi-particles energies \(E^1_{k\sigma} \) and \(E^2_{k\sigma} \). Here

\[
E^1_{k\sigma} = \cos^2 \theta_k E^d_{k\sigma} + \sin^2 \theta_k E^s_{k\sigma}
\]

\[
E^2_{k\sigma} = \sin^2 \theta_k E^s_{k\sigma} + \cos^2 \theta_k E^d_{k\sigma}
\]

and

\[
\tan 2\theta_k = \frac{j^1}{E^d_{k\sigma} - E^s_{k\sigma}}
\]

Because \(E^s_{k\sigma}/E^d_{k\sigma} \ll 1 \), \(E^1_{k\sigma} = E^d_{k\sigma} \). \(E^2_{k\sigma} \) is approximately equal to

\[
E^s_{k\sigma} + \frac{1}{4} \frac{j^1}{E^d_{k\sigma} - E^s_{k\sigma}} \approx E^s_{k\sigma} + \frac{1}{4} \frac{j^1}{\Delta_d}
\]

(11)

in the region where \(E_{ks} < \Delta_d \). In computing \(C \) the contribution of this region dominates, and Eq. (11) is a good approximation.

\[
c_{\text{impure}}^{\text{s}} = \frac{N^d_d}{N^d_d + N^s_s} c_{\text{es}}^{\text{s}} + \frac{N^s_s}{N^d_d + N^s_s} c_{\text{es}}^{\text{s}}
\]

(12)

Here

\[
c_{\text{es}}^{\text{s}}/\gamma T_c = \frac{N^s_s}{N^s_s + N^d_d} \frac{3}{(2\pi)^2} \left(\frac{\Delta_s(T)}{T} \right)^3 \frac{T}{\Delta_d} \left(\sum_n (-1)^n \right)^2 e^{-\Delta_s(T)/T} - (n+1)C/T
\]
\[[(n+1) \cdot K_2(u_s(n)) + 3K_1(u_s(n)) + g + 4 \cdot \frac{d\Delta_s(T)}{d(n_{1/3})} \cdot \frac{1}{\Delta_s(T)} \cdot f] \]

\[g = [(n+1) \cdot \frac{c^2}{\Delta_s^2} \cdot \frac{2c}{\Delta_s u}] \cdot K_1(u_s(n)), \]

\[f = (n+1) \cdot K_2(u_s(n)) \]

\[c = \frac{J^2}{\Delta_d} \]

It is impossible to use Eq. (12) to fit the experimental data without introducing an additional parameter, \(Z \), which is multiplied to the \(C_{es} \) of Eq. (12) to obtain the curves in Fig. 1. Since \(Z \) is much less than one, the simple calculation shows that the electronic structure of impurities in transition metals has to be taken into account to explain the experimental data.

ACKNOWLEDGEMENT

It is a pleasure to thank Dr. P. Fulde for helpful discussions and Dr. N. E. Phillips for his interests in this work.

This work was done under the auspices of the U.S. Atomic Energy Commission.

C. C. Song is with the Department of Physics, University of California, Berkeley.
References

2. T, is the product of temperature and the Boltzmann constant.
Figure Captions

Fig. 1 The calculated C_{es} for different α's. The points denote the experimental data. The upper dashed curve and the lower dashed curve are obtained from Eq. (12) with $C = \frac{T_e}{\delta}$ and $\frac{T_c}{\delta}$, $Z = 0.30$ and 0.43, respectively.

Fig. 2 The calculated C_{es} for various value of $\Delta s(0)$.

Fig. 3 The second energy gap $\Delta s(1)$ for various α.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.