Title
Near-IR photodissociation of peroxy acetyl nitrate

Permalink
https://escholarship.org/uc/item/1j021315

Journal
Atmospheric Chemistry and Physics, 5(2)

ISSN
1680-7324

Authors
Nizkorodov, S. A.
Crounse, J. D.
Fry, J. L.
et al.

Publication Date
2005-02-10

License
CC BY 4.0

Peer reviewed
Near-IR photodissociation of peroxy acetyl nitrate

S. A. Nizkorodov1, J. D. Crounse2, J. L. Fry2, C. M. Roehl3, and P. O. Wennberg3

1Department of Chemistry, University of California at Irvine, Irvine, CA 92697, USA
2Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
3Division of Geological and Planetary Sciences and Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA

Received: 4 February 2004 – Accepted: 22 February 2004 – Published: 1 March 2004

Correspondence to: S. A. Nizkorodov (nizkorod@uci.edu)

Abstract

Measurements of the C-H overtone transition strengths combined with estimates of the photodissociation cross sections for these transitions suggest that near-IR photodissociation of peroxy acetyl nitrate (PAN) is less significant ($J_{\text{near-IR}} \approx 3 \times 10^{-8}$ s\(^{-1}\) at noon) in the lower atmosphere than competing sinks resulting from unimolecular decomposition and ultraviolet photolysis. This is in contrast to the photochemical behavior of a related peroxy nitrate, pernitric acid (PNA), that undergoes rapid near-IR photolysis in the atmosphere with $J_{\text{near-IR}} \approx 10^{-5}$ s\(^{-1}\) at noon (Roehl et al., 2002). This difference is attributed to the larger binding energy and larger number of vibrational degrees of freedom in PAN, which make $4\nu_{\text{OH}}$ the lowest overtone excitation with a high photodissociation yield (as opposed to $2\nu_{\text{OH}}$ in PNA).

1 Introduction

Atmospheric photochemistry is normally driven by electronic state excitations in the ultraviolet range of the solar spectrum. However, photodissociation processes resulting from near-IR direct overtone excitations within the ground electronic state can also be significant in special cases. Donaldson et al. (1997) examined several atmospheric molecules featuring small binding energies and strong overtone transitions, and identified HO\textsubscript{2}NO\textsubscript{2} (pernitric acid or PNA) as the most likely candidate for an efficient overtone photodissociation. They argued that the dissociation energy threshold for PNA, $D_0(\text{HO}_2\text{NO}_2) = 7970 \pm 280$ cm\(^{-1}\) (Zabel, 1995), is sufficiently low to permit its overtone photolysis via the second OH stretching overtone transition at $E(3\nu_{\text{OH}}) = 10090$ cm\(^{-1}\). Subsequent experimental study of near-IR photodissociation cross sections of PNA by Roehl et al. (2002) showed that PNA overtone dissociation is even more important than Donaldson et al. (1997) initially surmised. Roehl et al. (2002) found that PNA can photolyze with a substantial yield not only upon $3\nu_{\text{OH}}$ but also upon $2\nu_{\text{OH}}$ excitation at 6900 cm\(^{-1}\), which lies as much as 1070 cm\(^{-1}\) below the PNA formal dis-
sociation energy threshold. These striking results have recently been independently confirmed by Sinha’s research group (Matthews et al., 2004). Such efficient under-threshold photolysis can be attributed to the collisional activation and internal energy contributions to the dissociation process, just as in the well-known cases of ultraviolet photodissociation of NO₂ (Pitts et al., 1964; Roehl et al., 1994) and O₃ (Finlayson-Pitts and Pitts, 2000). The combined 2νOH and 3νOH PAN atmospheric photodissociation rate amounts to ≈10⁻⁶ s⁻¹, making near-IR photolysis the dominant sink process for PAN in the upper troposphere and lower stratosphere (Roehl et al., 2002).

This letter examines possible atmospheric significance of near-IR photolysis for another important peroxy nitrate, CH₃C(O)ONO₂ (peroxy acetyl nitrate or PAN). PAN is a key odd-nitrogen component of photochemical smog (Finlayson-Pitts and Pitts, 2000), and it serves both as a temporary reservoir and as a global transporter for NO₂. PAN often accounts for the largest fraction of all odd-nitrogen compounds (NOₓ) in the atmosphere, especially at high latitudes (Ridley et al., 2003; Stroud et al., 2003). The primary known sinks for PAN include unimolecular decomposition, which is the dominant channel in the lower atmosphere, and ultraviolet photolysis, which becomes prevalent in the colder upper tropospheric layers. Reaction of PAN with OH is too slow to be of relevance (DeMore et al., 1997). Similar to other peroxy nitrates (Kirchner et al., 1999; Zabel, 1995), PAN has a low dissociation energy, D₀(CH₃C(O)OO–NO₂) = 9820±240 cm⁻¹ (Bridier et al., 1991; Zabel, 1995), which falls between the 3νCH (E=8550 cm⁻¹) and 4νCH (E=11 100 cm⁻¹) vibrational states of the molecule. To evaluate the efficiency of near-IR photochemistry of PAN, knowledge of both the intensity of the CH stretching overtones and photodissociation quantum yields are required. Although the strength of CH stretching overtone transitions are well-known for many hydrocarbons (Hanazaki et al., 1985; Kjaergaard et al., 1991; Nakagaki and Hanazaki, 1986), no information on the cross sections and photodissociation quantum yields for PAN is presently available. In what follows, we show that these quantities can be estimated from statistical models and comparisons with experimental data on related molecules, and we use them to predict the near-IR photodissociation rates for PAN under typical atmospheric conditions.

2 Results and discussion

2.1 Definitions and units

Subject to the approximations described below, band-specific atmospheric photodissociation rates, J_banded. Can be calculated in the following way:

\[J_{\text{band}} = \int_{\text{band}} F(\nu)\sigma(\nu)\phi(\nu)d\nu \approx \langle F(\nu) \rangle \times S_{\text{band}} \times \phi_{\text{band}} \] \hspace{1cm} (1)

F(\nu) is the frequency-dependent solar flux measured in photons cm⁻² s⁻¹ cm⁻¹, \langle F(\nu) \rangle is the average value of F(\nu) over the absorption band, \sigma(\nu) is base-e molecular absorption cross section in cm²/molecule, \phi(\nu) is photodissociation quantum yield, \nu is wave number in cm⁻¹, and \(S_{\text{band}} = \int \sigma(\nu)d\nu \) is the integrated absorption cross section (in cm/molecule) for the band in question. The last equality applies only if F(\nu) varies weakly with frequency, which is usually a good approximation for the narrow near-IR bands unless they are close to strong water or carbon dioxide absorptions. The quantity \phi_{\text{band}} is best interpreted as the ratio between the integrated photodissociation and absorption cross sections for the band. The paragraphs below deal with estimation of S and \phi for the CH stretching overtone transitions of PAN.

2.2 PAN overtone absorption cross-sections

Integrated absorption cross sections for PAN fundamentals have been reported by Gaffney et al. (1984). However, their analysis has subsequently been questioned and corrected by Tsalkani and Toupane (1989) for the four strongest infrared bands of PAN below 2000 cm⁻¹. To resolve the resulting ambiguity of the intensity data for
the remaining bands not considered by Tsalkani and Toupane (1989), we have measured relative intensities of the CH stretching fundamental and overtone transitions and determined absolute transition intensities by relation to Tsalkani and Toupane (1989) data for NO stretching vibrations of PAN. Pure gaseous PAN samples were synthesized as described by Gaffney et al. (1984), and gas-phase spectra of PAN were recorded with an FTIR spectrometer at 1 cm$^{-1}$ resolution (Fig. 1). Depending on the examined spectral range, we used either a single-pass 20 cm cell containing 0.1–1 Torr partial pressure of PAN, or a multipass cell with an effective path length of 360 cm containing the equilibrium vapor pressure of PAN at room temperature (about 4.5 Torr). The multipass configuration was required to observe the second CH stretching overtone with an acceptable signal-to-noise ratio (Fig. 1).

The ratios of PAN band strengths were obtained from multiple spectra. The absorbances ($A = \sigma(\nu) \cdot [\text{PAN}] \cdot \text{pathlength}$) for the bands in question were always kept small to avoid deviations from Beer-Lambert law. The value of $S(\nu_{CH})$ was measured relative to the band strengths of NO$_2$ stretches reported by Tsalkani and Toupane (1989). Our value, $S(\nu_{CH}) = 1.57 \times 10^{-18}$ cm/molecule, is 40% lower than that reported by Gaffney et al. (1984). This agrees with the conclusions of Tsalkani and Toupane (1989), who showed that data from Gaffney et al. (1984) underestimated band intensities of PAN by 5 to 35%. The CH stretching overtone band strengths were always measured relative to the closest available CH stretching transition at lower frequency. Our results $S(2\nu_{CH})/S(\nu_{CH}) = 0.096 \pm 0.015$ and $S(3\nu_{CH})/S(2\nu_{CH}) = 0.085 \pm 0.030$ are consistent with the generally observed trend of the 10-fold drop of overtone intensity per vibrational quantum (we define $S(2\nu_{CH})$ and $S(3\nu_{CH})$ as the total integrated absorption cross section for the 5600–6300 cm$^{-1}$ and 8300–9000 cm$^{-1}$ ranges, respectively).

Integrated intensity for the 4ν_{CH} overtone of PAN could not be reliably determined from our FTIR spectra, but it can be deduced from comparison with spectra of other molecules bearing an acetyl group. Indeed, the observed spectra of the first and second CH overtones of PAN (Fig. 1) closely resemble the spectra of acetone and acetaldehyde (Hanazaki et al., 1985). The orientational site splitting pattern arising from the inequivalence of CH bonds in the methyl group (Hanazaki et al., 1985; Kjaergaard et al., 1991) is similar for all three molecules. The integrated intensities (per methyl group) for the ν_{CH} fundamental, $2\nu_{CH}$ first overtone, and $3\nu_{CH}$ second overtone bands are also quite similar (Table 1). Assuming that the PAN overtone intensity decreases with vibrational quantum number by the same factors as the average of the corresponding acetone and acetaldehyde values, $S(4\nu_{CH})/S(3\nu_{CH}) = 0.059$, we can estimate $S_{PAN}(4\nu_{CH})$ as 7.6×10^{-22} cm/molecule. Based on the good uniformity of the experimentally available band strength ratios for these three molecules, we do not expect the estimated value of $S_{PAN}(4\nu_{CH})$ to deviate from the true band strength by more than a factor of two.

2.3 Photodissociation quantum yields

Photodissociation quantum yields for CH overtone excitations of PAN have been calculated with the Multiwell suite (Barker, 2001) using a statistical approach. The calculation involves shifting the Boltzmann internal energy distribution of the molecule upward by the photon energy, and solving the coupled master equations for discretized internal energy states. Excited molecules can undergo either a unimolecular decomposition with the microcanonical rate constant $k_{uni}(E)$ or collision-induced internal energy change with the rate that depends on pressure and internal energy. The fraction of molecules that end up decomposing by the time internal energy in the surviving molecules is nearly thermalized ($\sim 10^5$ collisions) is taken as the photodissociation yield.

The exponential collision model built into the Multiwell was used, with the probability of downward collisions taken as $e^{E_{final}-E_{initial}}/\Delta$, where $\Delta = 45$ cm$^{-1} + 0.005 E_{initial}$, a weak collision model (Barker, 2001). Vibrational frequencies for PAN were taken from Miller et al. (1999). Lennard-Jones collision parameters were the same as used by Bridier et al. (1991). The NO$_2$ and –C–O–O moieties were treated as hindered rotors in the transition state. The CH$_2$ group was treated as a free rotor for both reactant and
transition state. The initially-selected RRKM parameters were fine-tuned to reproduce
i) high pressure limit of the experimental unimolecular decomposition rate (Bridier et al.,
1991; Zabel, 1995); ii) the equilibrium constant for PAN decomposition (Bridier et al.,
1991) at all experimentally available temperatures. The final choice of parameters
for the calculation could reproduce both experimental data sets within 30%.

The predictive power of the calculation was first tested on PNA because photodis-
sociation quantum yields have already been measured for this molecule (Roehl et al.,
2002). Figure 2 compares the experimental results with our statistical calculations for
the $2\nu_{\text{OH}} + 2\nu_{\text{OOH}}$ combination band, $2\nu_{\text{OH}}$ overtone, and $2\nu_{\text{OH}} + \nu_{\text{OOH}}$
combination band
of PAN (listed here in the order of increasing excitation energy). Required RRKM pa-
rameters for PAN were taken from experiment and from Chen and Hamilton (1996)
and Zabel (1995). The simulation reproduces both the magnitude and the temperature
dependence of the photodissociation quantum yields with good accuracy. To achieve
this level of agreement, we had to reduce the dissociation energy threshold of PNA by
200 cm$^{-1}$ from the accepted experimental value, which is well within the error bars for
$D_0(\text{HO}_2\text{-NO}_2) = 7970\pm280$ cm$^{-1}$ (Zabel, 1995).

A curious side result of this simulation is the prediction of unity quantum yield for the
$2\nu_{\text{OH}} + \nu_{\text{OOH}}$ excitation of PNA. The experimental data suggest a yield that is slightly
below unity for this transition. This discrepancy may be a reflection of not entirely sta-
tistical behavior of PAN at these excitation energies. It may also reflect deficiencies of
the chosen weak collision model. However, the experimental data for $2\nu_{\text{OH}} + \nu_{\text{OOH}}$
and $\nu_{\text{OH}} + 2\nu_{\text{OOH}}$ bands are relatively noisy (Fig. 2) making it difficult to draw more definite
conclusions. Matthews et al. (2004) assumed a photodissociation quantum yield of
one for the $2\nu_{\text{OH}} + \nu_{\text{OOH}}$ band in their work.

The predicted dissociation yields for PAN excitation at 8700 cm$^{-1}$ (i.e. within the
blue wing of the $3\nu_{\text{CH}}$ band) are shown in Fig. 3 for several atmospherically relevant
temperatures. The most interesting observation is that the photodissociation yields
for PAN display a remarkably broad pressure dependence. In contrast, the photodis-
sociation yield for the $2\nu_{\text{OH}}$ overtone transition of PNA is fairly constant below $P =
1$ atm. This important difference can be attributed to the substantially larger number
of vibrational degrees of freedom and larger binding energy in PAN resulting in lower
microcanonical decompositions. The collisional deactivation and excitation rates
can, therefore, easily compete with unimolecular decomposition even when the sys-

2.4 Near-IR photodissociation rates for atmospheric PAN

Simulated PAN photodissociation yields for a standardized atmosphere are given in
Table 2. The effective photodissociation yield for $3\nu_{\text{CH}}$ band (estimated as an average of
yields calculated for 8450, 8550, and 8650 cm$^{-1}$ excitations) is very small compared to
the $4\nu_{\text{CH}}$ yield (corresponding to 11 100 cm$^{-1}$ excitation). Using the transition strength
data from Table 1 and a typical near-IR solar flux of 5×10^{14} photons cm$^{-2}$ s$^{-1}$ nm$^{-1}$
(Finlayson-Pitts and Pitts, 2000), we estimate the total near-IR photodissociation rate
for PAN as $J_{\text{near-IR}} = 3 \times 10^{-8}$ s$^{-1}$ with a fairly weak altitude dependence (Table 2).

Because of the very low contribution of the $3\nu_{\text{CH}}$ band of PAN to the total near-IR
photolysis rate (<5% above 6 km), the predicted rate is relatively insensitive to the
calculated photodissociation yields. For example, an order of magnitude increase in
$\phi(3\nu_{\text{CH}})$ would translate to less than 50% increase in the total photolysis rate. The
$\phi(4\nu_{\text{CH}})$ values are already above 0.8; adjusting them to the maximal value of unity
would only produce a marginal increase in the rate. The confidence in the predicted
rate is, therefore, dominated by the uncertainty in $S(4\nu_{\text{CH}})$ believed to be accurate to
within a factor of two (Table 1). Given these uncertainties, a very conservative upper
limit for the near-IR PAN photodissociation rate under typical atmospheric conditions
can be set at $J_{\text{near-IR}}(\text{PAN}) < 10^{-7}$ s$^{-1}$. Using similar reasoning, one can also show that
$J_{\text{near-IR}}$ is insensitive to poor atmospheric transmittance at wavelengths corresponding to $3\nu_{\text{CH}}$ transition (the $4\nu_{\text{CH}}$ spectral range is clean).

This limit is to be contrasted with a characteristic near-IR photolysis rate for PNA, $J_{\text{near-IR}}(\text{PNA})=10^{-5}$ s$^{-1}$, which is higher by two orders of magnitude. The large difference in the photodissociation rates for PAN and PNA reflects the disparity in absorption cross sections for the overtone excitations responsible for their near-IR photodissociation activity. Whereas the under-threshold $2\nu_{\text{CH}}$ excitation accounts for the major fraction of $J_{\text{near-IR}}(\text{PNA})$, the $3\nu_{\text{CH}}$ band of PAN is but a minor contributor ($<5\%$ above 6 km) to $J_{\text{near-IR}}(\text{PAN})$. Because the overtone absorption strengths go down by roughly one order of magnitude with each vibrational quantum, the jump in two vibrational quanta between the primary photolytic excitations in PAN($4\nu_{\text{CH}}$) and PNA($2\nu_{\text{CH}}$) can be held responsible for the observed difference in the $J_{\text{near-IR}}$ values. In addition, CH$_3$ overtones intensities in acetyl groups are known to be systematically lower than those of other kinds of CH$_3$ groups (Nakagaki and Hanazaki, 1986). They are also considerably lower than intensities of typical OH stretching overtones (e.g. compare $S_{\text{PNA}}(2\nu_{\text{CH}})=9.5\pm1.9 \times 10^{-13}$ cm/# (Roehl et al., 2002) with $S_{\text{PAN}}(2\nu_{\text{CH}})=1.51\times10^{-19}$ cm/#).

Although the predicted near-IR photodissociation rate of PAN is quite low (the 24-hour average of 1.5×10^{-8} s$^{-1}$ translates into an atmospheric lifetime of 770 days), it becomes strongly competitive with the thermal decomposition rate (Zabel, 1995) above 6 km (Table 2 and Fig. 5). It is also higher than the upper limit for the rate of OH + PAN reaction ($k_{\text{OCH+PAN[OH]}}<10^{-8}$ s$^{-1}$ for the troposphere (DeMore et al., 1997)). Comparison with the UV photolysis rate of PAN is less straightforward because UV radiation is attenuated by the atmosphere to a much greater extent than near-IR at high solar zenith angle (SZA). For example, at 15 km altitude, $J_{\text{UV}}(\text{PAN})\approx6\times10^{-7}$ s$^{-1}$ at SZA = 0° but it drops to $\approx6\times10^{-8}$ s$^{-1}$ at SZA = 86° (solar fluxes for this calculation are taken from Finlayson-Pitts and Pitts, 2000 and PAN absorption cross sections are from DeMore et al., 1997). On the contrary, the estimated near-IR photolysis rate ($\approx3\times10^{-8}$ s$^{-1}$) is reduced by only 35% upon this SZA change. Consequently, the near-IR photolysis of PAN can potentially become comparable to the UV photolysis rate at very high SZA, providing a small contribution to the twilight production of HO$_x$ radicals at high altitudes (Wennberg et al., 1999).

Figure 5 displays 24-hour averaged rates of UV photolysis, near-IR photolysis, and thermal decomposition for PAN. The UV photolysis rates correspond to conditions found at high and middle latitudes near equinox as described in Salawitch et al. (2002) (8 May 1997 with latitudes between 65° N and 70° N and 25 September 1993 at 35° N). Near-IR rates are estimated by assuming day lengths of 18 h and 12 h, respectively, and a near-IR solar flux of 5×10^{14} photons cm$^{-2}$ s$^{-1}$ nm$^{-1}$. The thermal decomposition rate for PAN is calculated from data of Zabel (1995). Figure 5 shows that $<J_{\text{near-IR}}(\text{PAN})>$ is approximately 5–10% of $<J_{\text{UV}}(\text{PAN})>$ at high tropospheric altitudes. At lower altitudes, both photolysis channels are dwarfed by the thermal decomposition. We conclude that near-IR photolysis is not likely to significantly affect the average atmospheric lifetime of PAN. Given that it is hard to quantify the uncertainties of the predicted photodissociation yields and absorption cross sections of PAN, however, the near-IR photolysis of PAN in the atmosphere cannot be completely discounted at this stage. More experimental research in this area is clearly needed.

2.5 Experiments on near-IR photolysis of PAN

We have attempted to measure photodissociation cross sections of PAN in the $3\nu_{\text{CH}}$–$4\nu_{\text{CH}}$ range using the action spectroscopy approach similar to that used for PNA by Roehl et al. (2002). PAN/N$_2$ mixture at 1–5 Torr and 250–300 K was irradiated with a tunable pulsed near-IR laser in the presence of a small amount of NO and O$_2$. A dye laser was employed in a fluorescence scheme to monitor the OH produced in the mixture following the photolysis laser pulse. If the near-IR laser were to photolyze PAN molecules in the gas flow, a momentary increase in the OH fluorescence signal would be observed assuming that the following reaction sequence runs to completion:

$$\text{PAN} + h\nu(\text{near-IR}) \rightarrow \text{CH}_3\text{C(O)O}_2 + \text{NO}_2$$

$$\text{CH}_3\text{C(O)O}_2 + \text{NO} \rightarrow \text{CH}_3 + \text{CO}_2 + \text{NO}_2$$
\[\text{CH}_3 + \text{O}_2 \rightarrow \text{CH}_3\text{O}_2 \]
\[\text{CH}_3\text{O}_2 + \text{NO} \rightarrow \text{CH}_3\text{O} + \text{NO}_2 \]
\[\text{CH}_3\text{O} + \text{O}_2 \rightarrow \text{CH}_2\text{O} + \text{HO}_2 \]
\[\text{HO}_2 + \text{NO} \rightarrow \text{OH} + \text{NO}_2. \]

Despite numerous attempts under various reaction conditions, we have not been able to observe any near-IR laser induced increase in the OH signal. Detailed kinetic simulations of our experimental conditions predict a signal-to-noise ratio reduction of \(\approx 10^2 \) for \(3\nu_{\text{CH}} \) band of PAN compared to \(3\nu_{\text{OH}} \) band of PNA (which could be successfully observed in this apparatus, Roehl et al., 2002) assuming unity photodissociation yield in both cases. This large penalty is comprised of i) a factor of 2 reduction in the integrated absorption cross section; ii) factor of 5 increase in the effective band width for the \(\text{CH}_3 \) vs. OH second overtone; iii) a factor of \(\approx 10 \) reduction in the efficiency of conversion of \(\text{CH}_3\text{C(0)O}_2 \) into OH in the chemical sequence above, as opposed to that of \(\text{HO}_2 \) into OH in the case of PNA photodissociation. The signal-to-noise ratio in our best \(3\nu_{\text{OH}} \) photodissociation spectrum of PNA (\(\approx 10^3 \), Roehl et al., 2002) allows us to place an upper limit of 10% on the photodissociation yield of the \(3\nu_{\text{CH}} \) state of PAN at 1–5 Torr and 250–300 K, which is in rough agreement with simulations presented here. The predicted signal-to-noise ratio for the \(4\nu_{\text{CH}} \) band of PAN is \(< 0.5 \), consistent with the failure to experimentally detect it.

We are currently designing an experiment that will allow us to measure \(\text{CH}_3\text{C(0)O}_2 \) following pulsed near IR laser excitation of PAN/N\(_2\) mixtures using a CIMS (Chemical Ionization Mass Spectrometry) technique. Preliminary tests show positive results using UV photons to dissociate PAN. The results of this work will be published elsewhere.

3 Conclusions

Due to its unique combination of binding energy and molecular size, PNA may well turn out to be the only peroxy nitrate that is controlled by near-IR photolysis (Roehl et al., 2002) in the atmosphere. The larger binding energies and higher degrees of molecular complexity make peroxy acetyl nitrates, like PAN, considerably more resistant to direct overtone photolysis in the near-IR range of the solar spectrum. Specifically, our analysis predicts a near-infrared photodissociation rate of \(\approx 3 \times 10^{-8} \text{ s}^{-1} \) for PAN at noon, largely independent of altitude. The near-IR photolysis of PAN can become competitive with UV photolysis under twilight illumination conditions, but even in the coldest upper tropospheric layers it is calculated to contribute only 5–10% to the 24-hour averaged removal rate of PAN.

Acknowledgements. This work was funded in part by NASA’s Atmospheric Effects of Aviation Program and the Atmospheric Chemistry program of the National Science Foundation. SAN thanks the Camille and Henry Dreyfus Foundation for financial support during his postdoctoral research at Caltech. The authors thank R. Salawitch (JPL) for providing 24-averaged UV photolysis rates of PAN used in Fig. 5 and A. Sinha (UCSD) for a preprint of Ref. (Matthews et al., 2004).

Edited by: J. Abbatt

References

Bridier, I., Caralp, F., Loirat, H., Lesclaux, R., Veyret, B., Becker, K.H., Reimer, A. and Zabel, F.: Kinetic and theoretical studies of the reactions \(\text{CH}_3\text{C(0)O}_2 + \text{NO}_2 + \text{M} \leftrightarrow \text{CH}_3\text{C(0)O}_2\text{NO}_2 + \text{M} \) between 248 K and 393 K and between 30 Torr and 760 Torr, J. Phys. Chem., 95, 9, 3594–3600, 1991.
Table 1. Experimental integrated absorption cross sections (base e) for the CH-stretching overtones of acetone, acetaldehyde, and PAN. The units of S(band) are cm2/molecule cm$^{-1}$ (1 cm$^{-2}$ atm$^{-1}$ at 298 K = 4.063 \times 10$^{-20}$ cm/mol). The integrated absorption cross sections are given per CH$_3$ group; i.e. the acetone values have been divided by 2.

<table>
<thead>
<tr>
<th>Band</th>
<th>Acetone/2a</th>
<th>Acetaldehydea</th>
<th>PAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_{CH}</td>
<td>3.04E-18</td>
<td>2.02E-18</td>
<td>1.57E-18</td>
</tr>
<tr>
<td>2ν_{CH}</td>
<td>1.28E-19</td>
<td>1.51E-19</td>
<td>1.51E-19d</td>
</tr>
<tr>
<td>3ν_{CH}</td>
<td>1.60E-20</td>
<td>1.63E-20</td>
<td>1.28E-20c</td>
</tr>
<tr>
<td>4ν_{CH}</td>
<td>1.09E-21</td>
<td>8.21E-22</td>
<td>7.56E-22d</td>
</tr>
</tbody>
</table>

a From Hanazaki et al. (1985).
b Measured to be 9.6% of $S(\nu_{CH})$ in this work.
c Measured to be 8.5% of $S(2\nu_{CH})$ in this work.
d Assumed value based on comparison with acetone and acetaldehyde (5.9% of $S(3\nu_{CH})$).

Table 2. Calculated photodissociation quantum yields for PAN overtone transitions under representative atmospheric conditions. The $J_{\text{near-IR}}$ column lists the total near-IR photodissociation rates ($J_{3\nu_{CH}} + J_{4\nu_{CH}}$) calculated from the integrated absorption cross sections from Table 1 and a solar flux of 5 \times 1014 photons cm$^{-2}$ s$^{-1}$ nm$^{-1}$. The last column is the fractional contribution of under-threshold dissociation via $3\nu_{CH}$ to the total rate (i.e. $J_{3\nu_{CH}}/J_{\text{near-IR}}$).

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>T (K)</th>
<th>P (Torr)</th>
<th>$\phi(3\nu_{CH})$</th>
<th>$\phi(4\nu_{CH})$</th>
<th>$J_{\text{near-IR}}$ (s$^{-1}$)</th>
<th>3ν_{CH} contribution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>288</td>
<td>760</td>
<td>0.0041</td>
<td>0.80</td>
<td>2.8E-8</td>
<td>14.8</td>
</tr>
<tr>
<td>3</td>
<td>269</td>
<td>526</td>
<td>0.0027</td>
<td>0.82</td>
<td>2.8E-8</td>
<td>9.3</td>
</tr>
<tr>
<td>6</td>
<td>249</td>
<td>354</td>
<td>0.0016</td>
<td>0.85</td>
<td>2.7E-8</td>
<td>5.5</td>
</tr>
<tr>
<td>9</td>
<td>230</td>
<td>230</td>
<td>0.0009</td>
<td>0.88</td>
<td>2.8E-8</td>
<td>3.0</td>
</tr>
<tr>
<td>12</td>
<td>217</td>
<td>143</td>
<td>0.0007</td>
<td>0.92</td>
<td>2.9E-8</td>
<td>2.2</td>
</tr>
<tr>
<td>15</td>
<td>217</td>
<td>90</td>
<td>0.0011</td>
<td>0.97</td>
<td>3.1E-8</td>
<td>3.1</td>
</tr>
</tbody>
</table>
Fig. 1. IR spectrum of PAN recorded in this work: (a) fundamental range displaying well-known PAN bands; (b) CH stretching fundamental range; (c) first CH stretching overtone range; (d) second CH stretching overtone range. The CH-stretching overtones have a complicated band structure resulting from the inequivalence of CH bonds in the methyl group. Experimentally measured ratios between integrated absorption cross sections are $S(\nu_{\text{CH}}):S(2\nu_{\text{CH}}):S(3\nu_{\text{CH}}) = 1:0.096:0.0082$. $S(\nu_{\text{CH}})$ is measured to be 1.57×10^{-18} cm/molecule (base e) in this work.

Fig. 2. Experimental photodissociation quantum yields for different vibrational overtone excitations of PNA measured by Roehl et al. (2002) (filled circles) compared to the statistical simulation results (open squares) of this work. Both simulations and data correspond to $P = 5$ Torr. The open circle point in the $2\nu_1$ panel comes from Matthews et al. (2004) and it corresponds to $T = 298$ K, $P = 0.1$ Torr. Parameters for our statistical simulation were chosen to reproduce the $2\nu_1$ photodissociation yields.
Fig. 3. Pressure dependence of the predicted photodissociation quantum yields for 8700 cm$^{-1}$ excitation of PAN (representative of the $3\nu_{\text{CH}}$ excitation) at different temperatures. Calculated photodissociation yields for $2\nu_{\text{OH}}$ band of PNA at 273 K are also shown for comparison. In contrast to the PNA case, photodissociation quantum yields for PAN photolysis at 8700 cm$^{-1}$ strongly depend on pressure under typical atmospheric conditions.

Fig. 4. Pressure dependence of the predicted photodissociation quantum yields of PAN at 298K at different excitation frequencies. The frequencies cover the range 8400 cm$^{-1}$ (bottom curve) to 11 700 cm$^{-1}$ (top curve) in 300 cm$^{-1}$ increments. Even at the highest excitation energy, the yield is still noticeably different from unity at typical atmospheric pressures.
Fig. 5. Dependence of the predicted 24 hour-averaged near IR photodissociation rates (thick solid lines), UV photolysis rates (dashed lines), and unimolecular decomposition rate (thin solid line) on altitude. The UV photolysis rates were calculated for actual conditions of 8 May, 67° N (short dash) and 25 September, 35° N (long dash). Two near IR photolysis curves correspond to 18-hour (8 May) and 12-hour (25 September) day lengths with an average solar flux of 5×10^{14} photons cm$^{-2}$ s$^{-1}$ nm$^{-1}$. The near IR channel is seen to play a minor role ($<10\%$) at all altitudes.