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Respondent-Driven Sampling (RDS) is a network-based method for
sampling hard-to-reach populations that is widely used by public health
agencies and researchers worldwide. Estimation of population character-
istics from RDS data is challenging due to the unobserved population
network, and multiple point and variance estimators have been proposed.
Research evaluating these estimators has been limited and largely
focused on point estimation; this analysis is the first evaluation of
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multiple variance estimators currently in use. We evaluated the perform-
ance of RDS variance estimators via simulations of RDS on synthetic
networked populations constructed from 40 RDS surveys of injection
drug users in the United States. In these simulations, average design
effects (DEs) were lower and average 95% confidence interval (CI) cov-
erage percentages were higher than suggested in previous work: typical
DE range¼ 1–3; average 95% CI coverage¼ 93%. However, DE and
CI coverage vary across the 40 sets of simulations, suggesting that the
characteristics of a given study should be evaluated to assess estimator
performance. We also found that simulation results are sensitive to
whether sampling is conducted with replacement and the approach used
to create CIs. We conclude that CI coverage rates and DEs are often
acceptable but not perfect and that RDS estimates are usually reliable in
scenarios where RDS assumptions are met. While RDS estimation per-
formed reasonably well, we found strong evidence that the simple ran-
dom sample variance estimator and corresponding CIs significantly
underestimate variance and should not be used to analyze RDS data.

1. INTRODUCTION

Respondent-driven sampling (RDS) is a network-based method for sampling
populations for which a sampling frame is not available (Heckathorn 1997).
Information about these “hard-to-reach” or “hidden” populations is critical for
public health research with populations at high risk of acquiring HIV infection,
including persons who inject drugs (PWID), men who have sex with men, and
sex workers. RDS is widely used for public health surveillance of hidden popu-
lations by organizations such as the U.S. Centers for Disease Control and
Prevention (CDC) (Gallagher, Sullivan, Lansky, and Onorato 2007), the
Chinese Centers for Disease Control (Li, Lu, Cox, Zhao, Xia, et al. 2014), and
entities funded through the President’s Emergency Plan for AIDS Relief
(PEPFAR) (Hladik, Barker, Ssenkusu, Opio, Tappero, et al. 2012).

RDS is primarily used to estimate the prevalence of traits such as diseases
and risk factors. Design-based unbiased point and variance estimates of such
prevalence from survey samples require calculating each participant’s proba-
bility of being sampled (“inclusion probability”). Because a sampling frame is
not available, hidden population members’ inclusion probabilities cannot be
calculated using standard approaches. Therefore, statistical inference from
samples collected via RDS relies on models approximating the sampling pro-
cess that incorporate information about the sample members’ social networks
and information observed during the recruitment process.

Multiple current evaluations of RDS point estimators and violations of RDS
assumptions have been conducted, but significantly less work has examined
RDS variance estimators (Wejnert 2009; Gile and Handcock 2010; Goel and

24 Spiller et al.

Downloaded from https://academic.oup.com/jssam/article-abstract/6/1/23/4084543
by UCLA Biomedical Library Serials user
on 22 February 2018



Salganik 2010; Gile 2011; Tomas and Gile 2011; Lu, Bengtsson, Britton,
Camitz, Kim, et al. 2012; McCreesh, Frost, Seeley, Katongole, Tarsh, et al.
2012; Merli, Moody, Smith, Li, Weir, et al. 2014; Verdery, Mouw, Bauldry,
and Mucha 2015). Variance estimates are an essential complement to point es-
timates. Without good variance estimators, one cannot assess the amount of in-
formation contained in a sample and may draw invalid conclusions. In
particular, statistical significance tests and confidence intervals will be mislead-
ing when the variance is under- (or over-) estimated. Additionally, understand-
ing the variance of RDS point estimates in populations to which RDS is
typically applied is important for calculating appropriate sample sizes for fu-
ture studies.

Past research on RDS variance estimation suggested that RDS confidence
intervals provide unacceptably low coverage rates and that RDS may have ex-
tremely large design effects when applied to hidden populations of public
health interest (Goel and Salganik 2010; Lu et al. 2012; Verdery et al. 2015).
This study is the first systematic evaluation of the different RDS variance esti-
mators. Our results indicate that confidence interval coverage rates are often
acceptable although not perfect, and design effects are in the range of other
complex survey designs.

2. BACKGROUND

RDS begins with researchers choosing a small number (usually five to 10) of
“seed” population members. The seeds are interviewed and given a small num-
ber of uniquely numbered coupons with which they can recruit population
members they know into the sample (usually three to five). Recruited popula-
tion members are interviewed and given coupons, and the process is repeated
until the target sample size is reached. Participants are remunerated both for
completing the survey questionnaire and for each eligible population member
they recruit.

RDS survey questionnaires and associated biological tests provide data on
many characteristics of interest. For the purposes of this article, we represent these
variables of interest by a two-valued trait, with values “with trait” and “without
trait.” Populations sampled via RDS are connected via social network ties; we re-
fer to the set of persons, or “nodes,” and ties connecting them as the “population
network.” We refer to the number of ties each person has to other members of the
population as that person’s “degree.”

Most RDS point estimators are design-based, including the Salganik-
Heckathorn (SH) (Salganik and Heckathorn 2004), Volz-Heckathorn (VH)
(Volz and Heckathorn 2008), and Successive Sampling (SS) estimators (Gile
2011). The SH estimator models RDS as a Markov chain on the nodes in the
population network; it is based on equating the number of network ties be-
tween population groups with different trait statuses (Salganik and Heckathorn
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2004; Gile and Handcock 2010). The VH estimator uses the same Markov
chain approximation to RDS and applies a modified Hansen-Hurwitz estimator
calculated from respondent degrees and the trait statuses of sample members
(Volz and Heckathorn 2008). The SS estimator models RDS as sampling pop-
ulation members proportional to degree without replacement; it applies an al-
gorithm to estimate the mapping between a person’s degree and his sampling
probability and applies a form of the Horvitz-Thompson estimator (Gile 2011).
More details on these estimators is available in the supplementary materials.

Commonly used RDS variance estimators employ a bootstrap resampling ap-
proach that approximates the RDS design (Davison and Hinkley 1997). The var-
iance of the point estimates produced by these bootstrap resamples is computed
and used to estimate the RDS variance. Two approximations that are currently
used are the Salganik Bootstrap (“Sal-BS”) (Salganik 2006) and the Successive
Sampling Bootstrap (“SS-BS”) (Gile 2011). The Sal-BS is typically applied in
conjunction with the SH or VH RDS point estimators (Salganik 2006), and the
SS-BS is applied in conjunction with the SS point estimator (Gile 2011). We re-
fer to these point and variance estimator pairs as “SH/Sal-BS,” “VH/Sal-BS,”
and “SS/SS-BS,” respectively. Sal-BS is based on ordered with-replacement
resampling draws from the sample, such that each subsequent node is selected
from among the nodes whose recruiters have a trait status matching that of the
previous node (Salganik 2006). SS-BS takes a similar approach but considers
the without-replacement structure of RDS by adjusting the set of available nodes
at each resampling draw based on which nodes had been previously sampled
(Gile 2011). This analysis evaluates each of these point and variance estimate
pairs; for comparison, we also consider the case when the RDS data are naively
treated as a simple random sample (SRS) and the sample mean point estimator
is used. We refer to this estimator pair as “Mean/SRS.”

The variability of estimators is typically presented as a confidence interval
(CI). A properly calibrated method for computing level a CIs produces inter-
vals that capture the true population value for an estimand with probability of
at least 1 – a (e.g., an a of 0.05 corresponds to a CI that includes the true popu-
lation value in 95 percent of samples). CIs can be calculated from bootstrap
variance estimates using a number of methods; the percentile and studentized
bootstrap CI methods are most commonly used for RDS data (Efron and
Tibshirani 1986). The lower and upper bounds of the CI under the percentile
bootstrap method are the 100" a

2

! "
and 100" 1# a

2

! "
percentiles, respectively, of

the bootstrap resamples. In contrast, the studentized bootstrap CI method calcu-
lates the standard deviation (SD) of the bootstrap resample estimates and the t-
value (t) associated with the sample’s degrees of freedom; it then calculates the
CI as the point estimate plus or minus t"SD for the upper and lower bounds, re-
spectively. The percentile method can generate CIs that are asymmetric about
the point estimate, whereas the studentized method always produces symmetric
CIs. The SH/Sal-BS and VH/Sal-BS RDS estimator pairs have traditionally
calculated CIs using the percentile method (Salganik 2006), while the SS/SS-
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BS estimator pair has traditionally used the studentized bootstrap method (Gile
2011). The Mean/SRS estimator pair calculates a CI based on a normal approx-
imation to the sampling distribution.

3. FRAMEWORK FOR ASSESSING RDS

Evaluations of RDS point estimators have been conducted both with real RDS
samples from nonhidden populations and with simulated RDS samples, but the
accuracy of RDS variance estimators can only be evaluated via simulation.
This is because, while it is theoretically possible to know the true value of an
estimand in the target population to which to compare point estimators, it is
only possible to know the true variability of an estimator in a true population
by conducting a large number of independent studies in the same population
with the same structure, which is practically infeasible.

Evaluating RDS by simulation consists of three steps: (1) obtaining or creat-
ing a population network with certain characteristics, (2) simulating RDS on
that network, and (3) applying RDS estimators to the trait of interest in the re-
sulting samples. As these procedures are repeated many times, the resulting dis-
tribution of simulated estimates approaches the true sampling distribution of the
estimators under the simulation conditions.

Our primary results evaluate the performance of RDS uncertainty estimation
based on the performance of the CIs calculated from different point/variance
estimator pairs (e.g., SH/Sal-BS). An estimator pair’s CI coverage is the per-
centage of simulations in which its CIs capture the network’s true population
value, which is compared to the nominal coverage of 100" 1# að Þ% (e.g., a 95
percent CI should capture the true population value in 95 percent of
simulations).

In addition to evaluating variance estimators, for comparison with previous
research on RDS uncertainty estimation, we consider RDS design effects
(DEs), a relative measure of the variability of an estimator calculated from a
sample drawn with a complex sampling method (Goel and Salganik 2010;
Verdery et al. 2015). We calculate the DE as the ratio of the variance of an esti-
mator from a given sampling design to the hypothetical variance if the sample
had been collected using SRS on the same population. Specifically, the DE is
the ratio of the RDS estimate’s variance to that under an SRS design of the
same sample size. A method with a DE of 2 would require a sample size twice
as large as that required by SRS to achieve the same variability for the estimate
of a given trait.

Typical DEs for many complex surveys that did not use RDS are
between 1.5 and 2, but for some variables in some studies can range to 5
(Pettersson and Silva 2005; U.S. Census Bureau 2006). Previous research on
the variance of RDS estimators has suggested that RDS DEs may be signifi-
cantly larger than is typical in surveys conducted using complex sampling
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methods other than RDS (Goel and Salganik 2010; Lu et al. 2012; Verdery
et al. 2015).

While the DE of a given RDS study in the real world is unknown because it
cannot be calculated from the data, we can calculate the DEs for our simula-
tions numerically. We refer to these as the “actual DEs” below. In addition to
actual RDS DEs, which previous research has also calculated based on simula-
tions, the DEs estimated by RDS variance estimators (which can be calculated
from a real RDS study’s data) are also of interest. We refer to these as “esti-
mated DEs” below. Previous simulation studies have suggested that RDS vari-
ance estimators produce inaccurate estimated DEs when they compare the
estimated and actual DEs for a given simulation (Goel and Salganik 2010;
Verdery et al. 2015).

Table 1 summarizes the findings from three previous simulation studies of
RDS variance estimation and design effects. The two studies that evaluated 95
percent CI coverage reported mean or median 95 percent CI coverage rates be-
low 70 percent. The three studies found a wide range of design effects, with
mean or median design effects greater than 5 and ranging from 5 to 30.

4. METHODS

Evaluating RDS via simulation requires obtaining or creating a population net-
work from which to draw samples and simulating RDS on that network.
Previous studies have simulated RDS both on real and synthetic population
networks. RDS is used to study hidden populations, so an RDS simulation
study’s population network should be as similar to real hidden population net-
works as possible. Unfortunately, complete data for hidden population net-
works are extremely rare. Complete network data are difficult and expensive to
collect in any setting (Morris 2004), and these challenges are compounded
among populations whose members wish to remain hidden.

Hidden population network data are unavailable, so the real population net-
works in previous RDS simulation studies have come from a variety of sources
(table 1). Two of the studies used network data from a sample of United States
adolescents in the 7th through 12th grades (the “Add Health” study) (Harris,
Halpern, Whitsel, Hussey, Tabor, et al. 2009; Goel and Salganik 2010;
Verdery et al. 2015), and another used Facebook network data from college
students when Facebook only permitted college students to use the service
(Verdery et al. 2015). Notably, both of these population networks are embed-
ded within schools. In the United States, middle schools and high schools are
highly structured by grade, with students typically taking classes only with
others in the same grade. Colleges are less structured by grade, but they have
additional structure along academic disciplines. Students in these settings often
have friends outside their grades and disciplines, but their networks are
strongly shaped and constrained by those institutional structures.
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Such institutional structures are not present for the vast majority of the hid-
den population networks RDS is used to sample. RDS variance is known to be
strongly positively related to homophily, the extent to which networks are as-
sortative along characteristics of its members. These school networks demon-
strate strong homophily by grade, resulting in networks that may have
“bottlenecks” between population subgroups (Goodreau, Kitts, and Morris
2009). As noted earlier, a key element of RDS estimators is self-reported de-
gree. In Add Health, participants were asked to name up to five boy best friends
and five girl best friends (Harris et al. 2009). The degree for a given participant
was the sum of the number of persons she named and the number of times she
was named by participants she did not name. In contrast, RDS study partici-
pants are typically asked to state the number of persons they know in the target
population who also know them (Malekinejad, Johnston, Kendall, Kerr, Rifkin,
et al. 2008), which serves as a proxy for the number of people who might re-
cruit them into the study. Because of the difference in how degree is elicited be-
tween Add Health and RDS studies, the degree distribution for RDS studies
typically has a higher mean and higher variance than those in the Add Health
school networks (Malekinejad et al. 2008; Goodreau, Kitts, and Morris 2009).
In sum, these school networks are very unlike the hidden population networks
through which RDS coupons are typically passed, and some of their features
mean that the known a priori that RDS will perform poorly in simulations.

Given the differences between the available population network data and
the networks of hidden populations, we based both our simulated population
networks and our simulated RDS sampling process on real RDS studies. To
maximize the similarity of our simulations to RDS as it occurs in the field, our
simulations are designed to reflect RDS as it was used to sample PWID by the
CDC’S National HIV Behavioral Surveillance system (NHBS) in 2009 and
2012. NHBS sampled PWID in 20 U.S. cities in both 2009 and 2012 using a
standard protocol, resulting in 40 RDS samples (Centers for Disease Control
and Prevention 2012, 2015). A flowchart of our simulation methods is pre-
sented in the supplementary material.

To create the simulated population networks for our study (step 1 in the
three-step process described above), we first estimated four characteristics of
the PWID population in each NHBS city from each of the 40 NHBS samples:
the prevalence and homophily for a two-valued trait of public health interest;
the estimated mean degree of population members; and differential activity
(DA). Homophily is defined as the proportion of ties in the network between
two respondents who share a trait status relative to what would be expected by
chance. DA is a measure of one group’s gregariousness compared to another
and is defined as the ratio of the mean degrees of population members with
and without the trait. Summary statistics of these characteristics can be found
in table 2.1 Using each of the 40 sets of characteristics, we then simulated

1. De-identified characteristics for each sample may be found in the supplementary materials.

30 Spiller et al.

Downloaded from https://academic.oup.com/jssam/article-abstract/6/1/23/4084543
by UCLA Biomedical Library Serials user
on 22 February 2018



1,000 networks using exponential-family random graph models (ERGMs)
(Frank and Strauss 1986; Hunter and Handcock 2006; Hunter, Goodreau, and
Handcock 2008; Hunter, Handcock, Butts, Goodreau, and Morris 2008;
Handcock, Hunter, Butts, Goodreau, Krivitsky, et al. 2014), for a total of
40,000 networks. Each simulated network had a population size of 10,000
members.

We designed the RDS process (step #2 above) used in the simulations to
match those observed in the NHBS samples by first measuring the following
characteristics for each of the 40 NHBS samples: the sample size, the numbers
of seeds with and without the trait, and the distribution of number of recruit-
ments by sample members. Summary statistics of these characteristics can be
found in table 2.2

For each of the 1,000 networks corresponding to a given NHBS sample, we
simulated one RDS sample using the RDS package in the statistical software R
(step #3 above) (Handcock, Fellows, and Gile 2015; R Core Team 2015). The
simulated RDS process was implemented based on the RDS process character-
istics of the NHBS sample described above; for example, a given simulated

Table 2. Summary of 40 NHBS Samples Used to Create RDS Simulations

Characteristic Mean SD Median Minimum Maximum

Prevalence 0.104 0.0653 0.091 0.018 0.286
Mean degree 10.64 5.096 9.88 4.45 35.39
Homophily 1.226 0.2281 1.19 0.91 1.99
Differential activity 0.931 0.2098 0.92 0.53 1.44
Sample size 519.1 108.85 539.5 206 700
Number of Seeds 8 3.31 8 3 16
Number of seeds with trait 1.1 1.18 1 0 5
Number of seeds without trait 6.8 3.21 7 1 16
Number of seeds missing traita 0.13 0.404 0 0 2
% of coupons returned 30.60% 6.60% 33.20% 20.00% 49.80%
Number of recruits ¼ 0b 33.90% 7.01% 35.50% 21.40% 48.00%
Number of recruits ¼ 1b 21.80% 5.07% 22.10% 9.10% 32.10%
Number of recruits ¼ 2b 17.70% 3.54% 18.20% 10.00% 25.10%
Number of recruits ¼ 3b 10.50% 2.69% 10.00% 4.60% 16.00%
Number of recruits ¼ 4b,c 1.70% 2.00% 0.67% 0% 7.70%
Number of recruits ¼ 5b,c 0.54% 0.65% 0.30% 0% 2.40%

aAssigned to be without trait for purposes of sampling simulation.
bAmong sample members who were given coupons.
cThese numbers include six studies where a maximum of three coupons were distrib-
uted per subject; the counts for those studies are constrained to be 0.

2. De-identified characteristics for each sample may be found in the supplementary materials.
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RDS sample had the same number of seeds as its corresponding NHBS sam-
ple. Because RDS samples do not allow for repeated participation, our baseline
samples were without replacement. For each simulated RDS sample, we ap-
plied each of the four point/variance estimator pairs to the trait of interest. For
each of the three RDS estimator pairs, we calculated 95 percent CIs using both
the studentized and percentile bootstrap methods.

Our analysis compares the coverage rates of the 95 percent CIs for the four
point/variance estimator pairs and two bootstrap CI methods when sampling
was with and without replacement, where the coverage rates are calculated as
the proportion of the simulations in which the CI contained the true population
prevalence of the trait.

We calculate the actual DEs for our simulations numerically as ratio of the
variance of the distribution of point estimates across simulations to the SRS
variance, where the SRS variance includes a finite population adjustment based
on the proportion of the population that was sampled. We calculate the esti-
mated DEs for our simulations as the ratio of the estimated variance to the SRS
variance. Each actual DE is calculated as the variance of the 1,000 simulations
for each population network. Each estimated DE is calculated from a specific
estimator pair applied to a single sampling simulation. Because the actual DE
varies in magnitude across population networks, we summarize the estimated
DEs’ accuracy by calculating the ratio of each simulation’s estimated DE to
the actual DE for that population network. We compare the actual DEs for the
four point estimators and also compare the actual DEs to the DEs estimated by
the RDS variance estimators.

5. RESULTS

Figure 1 presents the 95 percent CI coverage rates for the four estimator pairs
for the 40 sets of RDS simulations conducted with the baseline condition of
sampling without replacement and estimating the CI via the studentized boot-
strap method. The horizontal axis of the figure is the nominal 95 percent CI
coverage rate, and the vertical axis is the 40 simulation sets ordered from top
to bottom by the SS coverage rate (the red line).3

The left panel of figure 1 displays the full range of coverage rates on the
horizontal axis. The sample mean performs poorly compared to the other esti-
mators. Hence, the right panel omits the sample mean and displays coverage
rates from 80 percent to 100 percent to allow more detailed comparison of the
coverages for estimator pairs other than the Mean/SRS. The right panel reveals
that the SH/Sal-BS and VH/Sal-BS estimates have similar performance to

3. Sample numbers are prefixed with “A” for samples from 2009 and “B” for samples from 2012.
Sample numbers were randomly assigned to cities and are consistent across the two survey years
(e.g., A-01 is the same city as B-01).
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SS/SS-BS estimators for a majority of simulation sets, but that they have con-
siderably worse coverage rates in at least four sets of simulations.

The SS/SS-BS estimator pair had higher overall coverage than the other two
RDS estimator pairs: It only had one instance of coverage below 90 percent,
whereas the SH/Sal-BS and VH/Sal-BS coverages were below 90 percent
in five instances. The NHBS sample corresponding to the instance with
SS/SS-BS coverage below 90 percent (86.8 percent) has trait prevalence of
0.034 and the smallest sample size (n¼ 210) of all the NHBS samples.

The SH/Sal-BS and VH/Sal-BS had considerably worse coverage rates in
four sets of simulations (figure 1, right panel: B-01, A-08, B-19, and A-01).
The NHBS samples corresponding to these extreme cases had lower differen-
tial activity and higher homophily for the trait of interest than did the other
samples.

Table 3 shows summary statistics across the 40 simulation sets for these
RDS estimator pair coverages along with results for the percentile bootstrap.

Figure 1. Ninety-Five Percent Confidence Interval (CI) Coverage Percentages for
40 Sets of RDS Simulations (Sampling without Replacement; Studentized
Bootstrap CI Method). The horizontal axis is the nominal 95 percent CI coverage per-
centage, and the vertical axis is the 40 simulation sets ordered from top to bottom by
the SS coverage percentage (the red line). The left panel’s horizontal axis ranges from
0 to 100 percent; the right panel’s horizontal axis ranges from 80 percent to 100 per-
cent for detail. The coverage percentages for the sample mean do not appear in the
right panel.
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For the SH/Sal-BS and VH/Sal-BS estimators, the studentized bootstrap per-
forms better, with mean coverage rates 6 and 5.9 percentage points higher and
median coverage rates 2 and 2.1 percentage points higher, respectively. For the
SS/SS-BS, the results are very similar, with the studentized mean coverage rate
0.3 and median coverage rate 0.4 percentage points lower.

Given that the conditions varied considerably across the 40 simulation sets,
summary statistics such as the mean may mask meaningful variation in the
coverages. Therefore, we calculated a summary measure of “acceptable
coverage.”4

The Mean/SRS estimator had acceptable coverage in 5 percent of CIs. The
SH/Sal-BS and VH/Sal-BS with studentized bootstrap estimator pairs pro-
duced acceptable coverage for 67.5 percent of CIs, and the SS/SS-BS with per-
centile and studentized bootstrap CI methods produced acceptable coverages
for 80 percent and 75 percent of CIs, respectively.

We conducted additional simulations to investigate the 95 percent CI
coverage rates for the VH/Sal-BS in our analysis (all greater than 80 percent,
see figure 1, which were higher than the VH/Sal-BS coverage rates reported
in the seminal Goel and Salganik paper (medians of 52 percent and 62 per-
cent coverage for the two samples analyzed) and the paper by Verdery and
colleagues (means of 68 percent and 65 percent for the two samples ana-
lyzed) (Goel and Salganik 2010; Verdery et al. 2015). We hypothesized that
the simulation of RDS sampling with replacement or the use of the percen-
tile bootstrap CI method impacted the coverage findings in those papers.
Figure 2 presents the coverage rates for the VH/Sal-BS estimator pair under
four conditions: sampling with replacement with percentile bootstrap CIs,
sampling with replacement with studentized bootstrap CIs, sampling without
replacement with percentile bootstrap CIs, and sampling without replacement
with studentized bootstrap CIs. This figure shows that the estimator applied
to simulations using without-replacement sampling and the studentized boot-
strap method (purple line and triangles) consistently outperform simulations
using with-replacement sampling and the percentile bootstrap (red line and
circles).

Table 4 summarizes the DEs from our RDS simulations. The first four
rows of table 4 show the actual DEs for samples drawn without replacement
for the sample mean, SH, VH, and SS estimators. The median DEs for the
SH, VH, and SS point estimators (table 4, rows 2–4) were approximately
1.7, which is similar to the DEs observed for other complex sampling meth-
ods (Pettersson and Silva 2005; U.S. Census Bureau 2006). For both the
VH and SS estimators, the maximum DE was between 6 and 6.2; the maxi-
mum DE for SH was 95.5. In addition to its maximum DE of 95.5, the SH

4. Acceptable coverage percent is calculated as the percentage of confidence intervals (CIs) with
coverage between 93 percent and 97 percent, inclusive, for a given estimator pair and bootstrap
CI method.
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Figure 2. Ninety-Five Percent Confidence Interval (CI) Coverage Percentages for
40 Sets of RDS Simulations (VH/Sal-BS Estimator Pair) by Bootstrap CI Method
and Sampling with and without Replacement. The horizontal axis is the nominal
95% CI coverage percentage, and the vertical axis is the 40 simulation sets ordered
from top to bottom by the without replacement, studentized bootstrap condition (the
purple line and triangles).
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had three additional DEs that were much higher than expected. The DEs in
these four scenarios were caused by the SH estimator failing for between
two and six of the 1,000 simulation runs. Specifically, in these cases the SH
produced a trait prevalence of 1 when the true prevalence was less than
0.08.5 The last row of table 4 shows the DEs of the VH estimator for sam-
pling with replacement, which was the RDS simulation process used in the
papers by Goel and Salganik and Verdery and colleagues (Goel and
Salganik 2010; Verdery et al. 2015). Note that for every summary statistic,
the DEs are higher for the VH sampling with replacement condition than for
the VH sampling without replacement condition.

Table 5 compares the estimated and actual DEs by estimator pair and sam-
pling method. It summarizes the performance of the DEs estimated by a given
estimator pair and sampling method by comparing the distribution of estimated
DE to actual DE ratios across the 40,000 simulations to a benchmark. It pre-
sents three benchmarks: estimated DEs within a factor of 1.5 (i.e., 60 percent
to 150 percent) of the actual DE, a factor of 2 (i.e., 50 percent to 200 percent)
of the actual DE, and a factor of 3 (i.e., 33 percent to 300 percent) of the actual
DE. For each benchmark, it presents the percent of estimated DEs that were
within that factor and the percent of those that were within the factor that were
too low. For example, 78.1 percent of the SH/Sal-BS without replacement esti-
mated DEs were within a factor of 1.5 of the actual DE; of that 78.1 percent,
45.8 percent were too low.

Table 5 shows that for without-replacement sampling, the pattern of esti-
mated DE performance for the estimators is consistent for all three bench-
marks: the SS/SS-BS estimator pair had the highest percentage within the
factor, the VH/Sal-BS had the second-highest percentage, and the SH/Sal-BS

Table 4. Design Effects for Four RDS Point Estimators by Sampling with or with-
out Replacement

Point estimator (sampling method) Range Median Mean SD

Sample mean (without replacement) [0.75, 2.64] 1.34 1.42 0.49
Salganik-Heckathorn (without replacement) [0.83, 95.51] 1.72 7.47 19.96
Volz-Heckathorn (without replacement) [0.81, 6.19] 1.69 1.91 0.96
Successive Sampling (without replacement) [0.83, 6.03] 1.66 1.89 0.93
Volz-Heckathorn (with replacement)a [1.01, 7.97] 2.34 2.77 1.48

aPoint estimator and sampling method used in Goel and Salganik 2010.

5. We have also observed this pattern of SH estimator behavior in its implementation in the
Respondent-Driven Sampling Analysis Tool v. 7.1 software (Volz, Wejnert, Cameron, Spiller,
Barash, et al. 2012). It typically, but not always, occurs when “0” cells are present in the recruit-
ment matrix (e.g., when two population subgroups do not recruit one another).
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had the lowest percentage. This ordering was the same for the percentage of es-
timates within the benchmark that were too low, with the SS/SS-BS pair hav-
ing the most even distribution (percentages closest to 50 percent). This pattern
reflects the SH/Sal-BS and VH/Sal-BS pairs having less accurate estimated
DEs that are biased upward and the SS/SS-BS pair having more accurate esti-
mated DEs that are approximately unbiased.

For with-replacement sampling, the VH/Sal-BS estimator pair shows much
lower accuracy than all three without replacement estimators for the most
stringent benchmark factor. It also has a high proportion of estimated DEs that
are too low, with more than 79 percent of estimated DEs lower than the actual
DE.

6. DISCUSSION

Our simulations suggest that the coverage of 95 percent CIs for RDS samples
is usually above 90 percent (with no coverage rates above 97 percent). This is
better than past work has suggested, demonstrating that reasonably accurate
RDS variance estimation is feasible and that conclusions drawn from past anal-
yses of RDS data that applied one of these estimators may well be reasonable
in scenarios where RDS assumptions are met.

While the RDS estimators performed better than expected, the SRS variance
estimator significantly underestimates the variability of RDS samples and pro-
vides very low coverage. Because of the complexity of RDS, it may be tempt-
ing to dispense with complicated inferential approaches and use the sample
mean and SRS variance approximation. Our results show that this approach is
likely to cause significant underestimation of uncertainty and lead to mislead-
ing conclusions.

We found that the SS/SS-BS estimator pair had overall higher coverage
than the other two estimator pairs. The SS/SS-BS exhibited its lowest coverage
when applied to a sample with lower prevalence and a smaller sample size
than the other samples. In contrast, the SH/Sal-BS and VH/Sal-BS had lower
coverage for samples, with levels of differential activity much lower than those
of the other samples in combination with higher levels of homophily than those
of the other samples.

Note that the difference between the SS and VH estimators is a finite popu-
lation adjustment that requires knowing the true size of the population, which
is typically unavailable. The impact of error in the population size specified for
the SS estimator in a given sample is a function of the true size of the popula-
tion. The impact is relative, so the impact of a given absolute error in the speci-
fied population size will be larger for smaller population sizes (e.g., an error of
500 in the specified population size will have more impact when the true popu-
lation size is 1,000 than when it is 10,000). For large population sizes, the SS
estimator approaches the VH estimator because the finite population
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adjustment has little impact, so using the SS estimator with an overestimated
population size will pull it toward the VH estimate. Therefore, the SS will per-
form at least as well as the VH unless the population size is dramatically
underestimated.

The relationship between a population’s characteristics and RDS CI cover-
age is complex, so the specific relationships between prevalence, sample size,
and homophily and the performance of RDS estimator pairs require further in-
vestigation. More generally, a large number of population characteristics must
be systematically varied in a simulation to disentangle the combinations of fac-
tors that influence RDS CI coverage.

While other work has suggested RDS variance estimators perform poorly,
our analysis suggests those results can, at least partially, be attributed to the
choice of bootstrap method and unrealistic use of with-replacement sampling
in prior studies. For the SH and VH estimators, we found that using the studen-
tized bootstrap, as compared to the percentile bootstrap, significantly increased
the percentage of CIs with good coverage from 40 to 67.5 and 42.5 to 67.5, re-
spectively (table 2). Goel and Salganik’s findings of low CI coverage were
likely at least partially due to their use of with-replacement sampling and the
percentile bootstrap CI method (see figure 2). Chernick and LaBudde (2014)
studied the relative performance of studentized and percentile bootstrap CI
estimates and found that in most scenarios the studentized approach is more
accurate.

We also found significantly smaller DEs than Goel and Salganik, with evi-
dence that sampling with replacement increases the DE. For example, for with-
out-replacement sampling, both SS/SS and VH/Sal-BS produced actual DEs
less than 3 in 92.5 percent of our conditions (37/40) and 62.5 percent less than
2, whereas for with-replacement sampling the VH/Sal-BS estimator pair DE
was less than 3 in only 67.5 percent of our conditions, with only 30 percent
less than 2. This echoes findings by Lu and colleagues and Gile and Handcock
that sampling without replacement may reduce the DEs for RDS (Gile and
Handcock 2010; Lu et al. 2012).

The estimated DEs were more accurate for sampling without replacement
than for sampling with replacement. For example, for the VH/Sal-BS estimator
pair sampling without replacement produced estimated DEs within a factor of
2 of the actual DEs 91.8 percent of the time, with slightly less than half (47.3
percent) being lower than the actual DE (the anticonservative direction). In
contrast, for with-replacement sampling, the estimated DEs were within a fac-
tor of 2 of the actual DEs only 79.9 percent of the time, with a significant ma-
jority (82.8 percent) being lower than the actual DE. Overall, the estimated
DEs for the SS/SS estimator pair were the most accurate: 92.9 percent within a
factor of 1.5, with fewer large outliers (see the technical supplementary mate-
rial for more detail).

The RDS sampling process is highly complex and only partially observed in
real RDS studies, so many choices about simulation design and specification
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must be made without reference to empirical data. Because the ultimate goal of
RDS simulation studies is to understand how RDS performs in the real world,
we recommend conducting RDS simulations without replacement and with pa-
rameters informed by real RDS samples to the extent possible.

This study’s simulations find that RDS DEs are in the range suggested
in other methodological work that did not use simulation studies (Wejnert,
Pham, Krishna, Le, and DiNenno 2012). We found that simulated RDS
DEs in cases chosen to approximate the NHBS are usually between 1 and
3, in contrast with suggestions in past simulation work that DEs may often
be greater than 10 (Goel and Salganik 2010; Verdery et al. 2015). This
means that, in instances where RDS assumptions are met, RDS provides
samples with statistical precision similar to that of other complex sampling
methods (although with significantly less precision than simple random
samples of the same populations).

We used data from a large number of real RDS studies to parameterize
our simulated networks and RDS sampling process. These RDS samples
were of PWID in large U.S. urban areas, so the results are likely most ap-
plicable to RDS samples drawn from large cities. Most of the largest RDS
studies in the world occur in such places, such as studies conducted in
China and Brazil (Szwarcwald, de Souza Junior, Damacena, Junior, and
Kendall 2011; Li et al. 2014). However, many RDS samples are drawn
from smaller populations in less urban areas, which may have population
networks with significantly different structures than those in NHBS cities
(Malekinejad et al. 2008). Sampling fractions may be substantial in studies
of small populations, making it important to use variance estimators that
reflect sampling without replacement (which the SH and VH estimators do
not). McCreesh and colleagues conducted an RDS methodological study in
Uganda that is more similar to such small populations than NHBS samples
(McCreesh et al. 2012). They found that some subpopulations underrepre-
sented in the sample did not have correspondingly lower mean degree,
which led the RDS estimators to perform poorly. However, the poor perfor-
mance of RDS estimators was also partially due to some recruiters’ misun-
derstanding of which population members were eligible for the study (and
should be considered for recruitment) due to differences between the re-
searchers’ and the local population’s interpretation of the language used to
communicate the eligibility criteria (McCreesh et al. 2012). This misunder-
standing led to systematically biased recruitment by some sample partici-
pants. With all sampling methods, but especially in peer-driven methods
such as RDS, it is critical that researchers understand and account for the
cultural norms and context of the communities they are sampling. These
differences in population structure, RDS execution, and RDS estimation
highlight the importance of context in understanding the applicability of
RDS methodological study findings.
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Our results are subject to a number of limitations. First, although the net-
works created for our simulations were designed with some structural charac-
teristics similar to those of PWID networks in NHBS cities, the true structure
and complexity of hidden population networks is unknown. Almost all social
networks contain structure that is not observed in RDS data. For example, an
outcome might vary across a city’s neighborhoods, and the PWID networks in
some neighborhoods may have few connections to those in other neighbor-
hoods. The ERGM used to create our simulated networks did not directly spec-
ify such complex network structure as it is unclear what the correct levels of
such structure should be. Note that for such network structure to strongly influ-
ence RDS estimation, it must be strongly related to the outcome (e.g., quite dif-
ferent prevalences of the trait across the weakly connected subgroups).

Second, the characteristics we used to create the networks for our simula-
tions were estimated from NHBS samples using RDS estimators. Therefore,
the simulations are not replicates of the 40 samples collected by NHBS but are,
instead, examples of networks and RDS processes similar to those observed in
the NHBS samples. The results may be sensitive to our use of large networks
and small sampling fractions as in the NHBS samples. The stability of NHBS
samples of PWID over time suggests that our findings are applicable to future
NHBS studies of PWID.

Third, our simulations implemented RDS with only a few statistical assump-
tions not met. Both the SH and VH point estimators assume that recruitment
trees do not branch (i.e., each sample member makes exactly one recruitment)
and that sampling is with replacement, neither of which was true in our simula-
tions. Other RDS statistical assumptions such as participants recruiting ran-
domly from their set of contacts and, for the SS estimator, that the population
size is known, were met. It is known that violations of RDS point estimator as-
sumptions decrease the accuracy of RDS point estimates (Gile and Handcock
2010; Tomas and Gile 2011; Lu et al. 2012). This is likely true for RDS vari-
ance estimators as well. Future work will examine the effects of violations of
assumptions on the performance of RDS variance estimators.

Fourth, our analysis did not evaluate all RDS variance estimators. Some
work has proposed new point estimators that were accompanied by minor
modifications to an existing variance estimator to incorporate the new point es-
timator (Lu 2013; Lu, Malmros, Liljeros, and Britton 2013). Gile and
Handcock introduced an estimator that simulates RDS on a synthetic network
created from characteristics of the sample data (Gile and Handcock 2015).
Yamanis and colleagues proposed a modification to the Salganik bootstrap that
reflects the branching structure of RDS samples (Yamanis, Merli, Neely, Tian,
Moody, et al. 2013). Baraff and colleagues recently proposed a tree bootstrap
in which each resample replicates recruitment trees’ structures by sampling
with replacement from each recruiter’s set of recruits (Baraff, McCormick, and
Raftery 2016).
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7. CONCLUSION

Sampling hidden populations is critical for public health surveillance and plan-
ning around the world. RDS is effective at reaching members of hidden popu-
lations that other sampling methods cannot and is inexpensive enough to be
used in low-resource settings. These strengths have led to its wide use around
the world for many different applications.

Past research on RDS variance estimation suggested that RDS variance esti-
mator CIs provide very low coverage rates and that RDS has higher DEs than
has been assumed in the public health literature (Goel and Salganik 2010;
Verdery et al. 2015). Our results indicate instead that both CI coverage rates
and DEs are often acceptable but not perfect. However, researchers should
evaluate whether a given study has characteristics similar to those found in our
simulations that produced good (or poor) coverage. Additionally, deviations
from the assumed RDS sampling process or population network structures not
examined in this paper may impact the CI coverage rates and DE magnitudes
for a given study.

RDS is used around the world to sample hidden populations that suffer from
high rates of infection by HIV and other diseases. It is critical that researchers
draw correct conclusions from RDS data by applying appropriate statistical
techniques. We look forward to an improved understanding of RDS estimation
that will better inform the policies critical to preventing and reducing the bur-
den of disease borne by hidden populations worldwide.

Supplementary Materials

Supplementary materials are available online at http://www.oxfordjournals.
org/our_journals/jssam/.
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