Lawrence Berkeley National Laboratory

Recent Work

Title
Visual Tsunami 2.0: a multi-physics, user-friendly, hydrodynamics design code

Permalink
https://escholarship.org/uc/item/1jn297t7

Authors
Debonnel, C.S.
Trubov, L.
Zeballos, C.A.
et al.

Publication Date
2006-03-15
Visual Tsunami 2.0: a multi-physics, user-friendly, hydrodynamics design code

C.S. Debonnel1,2, L. Trubov1, C.A. Zeballos1, S.S. Yu2, and P.F. Peterson1

(1) University of California
4118 Etcheverry Hall
Berkeley, CA 94720
USA

(2) Lawrence Berkeley National Laboratory
1 Cyclotron Road MS 47RO112
Berkeley, CA 94720

Since the early 1990s, the series of simulation code known as TSUNAMI has been the main tool employed to explore gas dynamics phenomena in thick-liquid protected inertial fusion target chambers. The applicability and user-friendliness of the code was recently extended through a set of MATLAB pre- and post-processing tools and a new core was written in Fortran 95. The code, Visual Tsunami 1.0, was documented in Ref. 1. The latest version of the code, Visual Tsunami 2.0, introduces a novel MATLAB core and makes use of the user-friendly pre- and post-processing tools developed for Visual Tsunami 1.0. An overview of the code models will be presented along with a few examples of its capabilities and applications.