Title
Degradation of LiNi_{0.8}Co_{0.2}O_{2} cathode surfaces in high-power lithium-ion batteries

Permalink
https://escholarship.org/uc/item/1kc5z37r

Journal
Electrochemical and Solid-State Letters, 5(7)

Authors
Kostecki, Robert
McLarnon, Frank

Publication Date
2002
Degradation of LiNi_{0.8}Co_{0.2}O_2 Cathode Surfaces in High-Power Lithium-Ion Batteries

Robert Kostecki* and Frank McLarrenb, x

Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory,
University of California, Berkeley, California 94720, USA

High-power Li-ion cells stored or cycled at elevated temperatures showed a significant impedance rise and power loss associated primarily with the LiNi_{0.8}Co_{0.2}O_2 cathode (positive electrode). The processes which led to this impedance rise were assessed by investigating the cathode surface electronic conductance, surface structure, and composition at the microscopic level with local probe techniques. Current-sensing atomic force microscopy imaging revealed that the cathode surface electronic conductance diminished significantly in the tested cells, and that the rate of change of the electronic conductance increased with cell test temperature. Raman microscopy measurements provided evidence that surface phase segregation of nickel oxides is at least partially responsible for the observed cathode impedance rise.

The U.S. Department of Energy’s Advanced Technology Development (ATD) program supports the development of high-power Li-ion batteries for hybrid electric vehicle applications. Included in the ATD program are diagnostic evaluations of Li-ion cells that were aged and/or cycled under various conditions. A primary goal of these diagnostic tests is to determine the mechanisms responsible for the cell power loss that accompanies life tests at elevated temperatures. Impedance measurements of the cell components indicated that the LiNi_{0.8}Co_{0.2}O_2 cathode is primarily responsible for the observed cell power loss at elevated temperatures. Among the possible causes of cathode impedance rise is formation of an electronic and/or ionic barrier at the cathode surface. However, studies of the mechanism of the LiNi_{1-y}Co_{0.2}O_2 degradation in high-power Li-ion cells have not been reported in the literature.

Partial substitution of Co for Ni in LiNi_{1-y}Co_yO_2 cathodes suppresses the Jahn-Teller distortion associated with the low-spin Ni^{2+}:3d^7 ion, and this substitution leads to good capacity retention and improved thermal stability when compared to the layered LiNiO_2 cathode.3-5 However, LiNi_{1-y}Co_yO_2 cathodes still experience an inherent structural instability during long-term cycling at moderate temperatures.6 Although LiNiO_2 is isostructural with LiCoO_2, and the Co and Ni atoms in LiNi_{1-y}Co_yO_2 lattice occupy equivalent sites in the R3m lattice, the electronic and coordination structures around them vary. Nakai and Nakagome7 reported that in Li_{1-y}Ni_{0.8}Co_{0.2}O_2 the oxidation of Ni ions occurs immediately upon charging and halts at about x = 0.5, whereas the oxidation of Co ions continues to x = 0.8.

In this study, we investigated possible failure modes of the LiNi_{0.8}Co_{0.2}O_2 cathode upon storage or cycling in high-power Li-ion cells. Because X-ray diffraction spectroscopy1 failed to detect noticeable changes in the bulk structure of the tested cathodes, we focused our attention on cathode surface processes. We demonstrated that the innovative use of noninvasive local probe techniques, such as current-sensing atomic force microscopy (AFM) and Raman microscopy, can provide unique information on surface phenomena at practical battery electrodes. These phenomena can have a dominant effect on LiNi_{0.8}Co_{0.2}O_2 cathode impedance behavior.

Experimental

Nine 18650 Li-ion cells were fabricated by PolyStor, Inc. for the ATD Program according to a design provided by Argonne National Laboratory (ANL) and tested at the Idaho National Engineering and Environmental Laboratory, ANL, and Sandia National Laboratories. A summary of the cell chemistry and test conditions for these cells was reported in Ref. 1 and 2. A so-called fresh cell was subjected only to formation cycles. Four cells were subjected to life-cycle testing with 3% and 9% swings in their state of charge (SOC) at 60% and 80% SOC, respectively. Calendar-life tests were performed on four other cells by storing them at temperatures between 20 and 70°C.

We used current-sensing atomic force microscopy (CSAFM) to image the surface of the LiNi_{0.8}Co_{0.2}O_2 cathodes under a controlled N_2 atmosphere. The microscope consisted of a Molecular Imaging (MI) scanning probe microscope coupled with a Park Scientific Instruments (PSI) AutoProbe Electronic Module. The Si atomic force microscopy (AFM) tips were coated with a thin conductive layer of W_C. All CSAFM experiments were performed in constant-force mode with controlled oxide-tip voltage difference. A single scan of the tip over the cathode surface simultaneously produced two images: a topographic image and a conductance image. The latter represents oxide-tip current variations during scanning at a given oxide-tip voltage difference.

An integrated Raman microscope system “Labram” made by ISA Groupe Horiba was used to analyze the structure and composition of the LiNi_{0.8}Co_{0.2}O_2 cathodes. The excitation wavelength was supplied by an internal He-Ne (632 nm) 10 mW laser. The power of the laser beam was adjusted to 0.1 mW with neutral filters of various optical densities. The size of the laser beam at the sample was ~1.6 μm.

Results

Figure 1 shows CSAFM images of a representative 5 × 5 μm area of the LiNi_{0.8}Co_{0.2}O_2 cathodes from (A) a fresh cell, (B) a cell cycled at 40°C, 60% SOC, and 9% ΔSOC, and (C) a cell cycled at 70°C, 60% SOC, and 3% ΔSOC. The surface morphology of the fresh cathode (left) reveals well-pronounced crystal planes and edges of individual grains of the active material. Examination of the topographic AFM images of the cycled cathodes shows a significant change in the surface morphology. Considerable amounts of nanocrystalline deposit accumulated in the intergranular spaces and across the crystal planes of the active material. In our previous study we determined that the amount of deposit and the extent of morphology modification depended on the test temperatures.2

The right-hand panel of Fig. 1 is the oxide-tip current response (conductance image) of the same area as shown the left-hand panel at a 1.0 V voltage difference, i.e., the cathode sample was poised at a positive potential vs. the CSAFM tip. In the conductance image, a dark color represents high electronic conductance, whereas a white color represents areas of low or zero electronic conductance. Taking into account that the tip is in physical contact with the oxide, the magnitude of the current is determined by the local electronic properties of the electrode and the tip, the tip-sample voltage difference,
The finite dimensions of the tip and the specific geometries of the CSAFM tip and the local cathode surface. The finite dimensions of the tip (radius of curvature <30 nm) and the finite response time of the scanner electronic feedback loop may in some cases give rise to slight current variations at grain boundaries and along surface irregularities. Because the tip-to-sample current observed during imaging of the cathodes tends to switch from zero to the upper limit of the I/V converter, i.e., 10 nA, depending on the location, we think that geometry factors are negligible in the conductance images presented in Fig. 1.

The surface conductance image of the cathode from the fresh cell exhibits areas of mostly excellent electronic conductance and only few insulating regions. Highly conductive graphite and acetylene black, which are present in the composite cathode, form conductive paths on the cathode surface and bulk, and are primarily responsible for the observed high tip current. The LiNi0.8Co0.2O2 may also contribute to the tip current, but its electronic conductance is significantly lower than that of carbon. The insulating areas on the cathode surface are most likely associated with the presence of PVDF binder and/or a solid electrolyte interphase (SEI).

The conductance images of cathodes which were cycled at elevated temperatures show a dramatic increase of surface resistance. The conductance images of cathodes which were cycled at elevated temperatures show a dramatic increase of surface resistance. The results are normalized vs. temperature. The results are normalized vs. temperature. The results are normalized vs. the fresh cell at 20°C. It is clear from Fig. 2 that surface electronic conductance decreases monotonically with increasing cell test temperature. Interestingly, the reduction of electronic conductance was nearly identical in calendar-life cells and cycled cells. The cells tested at 70°C exhibit only 5% of their original surface electronic conductance.

The surface conductance of the cathode from the cell cycled at 70°C, 60% SOC, and 3% ΔSOC was determined. Figure 2 shows the surface-average conductance expressed vs. temperature. The results are normalized vs. the fresh cell at 20°C. It is clear from Fig. 2 that surface electronic conductance decreases monotonically with increasing cell test temperature. Interestingly, the reduction of electronic conductance was nearly identical in calendar-life cells and cycled cells. The cells tested at 70°C exhibit only 5% of their original surface electronic conductance.

The conductance images of cathodes which were cycled at elevated temperatures show a dramatic increase of surface resistance. The conductance images of cathodes which were cycled at elevated temperatures show a dramatic increase of surface resistance. The results are normalized vs. temperature. The results are normalized vs. the fresh cell at 20°C. It is clear from Fig. 2 that surface electronic conductance decreases monotonically with increasing cell test temperature. Interestingly, the reduction of electronic conductance was nearly identical in calendar-life cells and cycled cells. The cells tested at 70°C exhibit only 5% of their original surface electronic conductance.

The surface conductance of the cathode from the cell cycled at 70°C, 60% SOC, and 3% ΔSOC was determined. Figure 2 shows the surface-average conductance expressed vs. temperature. The results are normalized vs. the fresh cell at 20°C. It is clear from Fig. 2 that surface electronic conductance decreases monotonically with increasing cell test temperature. Interestingly, the reduction of electronic conductance was nearly identical in calendar-life cells and cycled cells. The cells tested at 70°C exhibit only 5% of their original surface electronic conductance.

The surface conductance of the cathode from the cell cycled at 70°C, 60% SOC, and 3% ΔSOC was determined. Figure 2 shows the surface-average conductance expressed vs. temperature. The results are normalized vs. the fresh cell at 20°C. It is clear from Fig. 2 that surface electronic conductance decreases monotonically with increasing cell test temperature. Interestingly, the reduction of electronic conductance was nearly identical in calendar-life cells and cycled cells. The cells tested at 70°C exhibit only 5% of their original surface electronic conductance.

The surface conductance of the cathode from the cell cycled at 70°C, 60% SOC, and 3% ΔSOC was determined. Figure 2 shows the surface-average conductance expressed vs. temperature. The results are normalized vs. the fresh cell at 20°C. It is clear from Fig. 2 that surface electronic conductance decreases monotonically with increasing cell test temperature. Interestingly, the reduction of electronic conductance was nearly identical in calendar-life cells and cycled cells. The cells tested at 70°C exhibit only 5% of their original surface electronic conductance.

The surface conductance of the cathode from the cell cycled at 70°C, 60% SOC, and 3% ΔSOC was determined. Figure 2 shows the surface-average conductance expressed vs. temperature. The results are normalized vs. the fresh cell at 20°C. It is clear from Fig. 2 that surface electronic conductance decreases monotonically with increasing cell test temperature. Interestingly, the reduction of electronic conductance was nearly identical in calendar-life cells and cycled cells. The cells tested at 70°C exhibit only 5% of their original surface electronic conductance.

The surface conductance of the cathode from the cell cycled at 70°C, 60% SOC, and 3% ΔSOC was determined. Figure 2 shows the surface-average conductance expressed vs. temperature. The results are normalized vs. the fresh cell at 20°C. It is clear from Fig. 2 that surface electronic conductance decreases monotonically with increasing cell test temperature. Interestingly, the reduction of electronic conductance was nearly identical in calendar-life cells and cycled cells. The cells tested at 70°C exhibit only 5% of their original surface electronic conductance.

The surface conductance of the cathode from the cell cycled at 70°C, 60% SOC, and 3% ΔSOC was determined. Figure 2 shows the surface-average conductance expressed vs. temperature. The results are normalized vs. the fresh cell at 20°C. It is clear from Fig. 2 that surface electronic conductance decreases monotonically with increasing cell test temperature. Interestingly, the reduction of electronic conductance was nearly identical in calendar-life cells and cycled cells. The cells tested at 70°C exhibit only 5% of their original surface electronic conductance.

The surface conductance of the cathode from the cell cycled at 70°C, 60% SOC, and 3% ΔSOC was determined. Figure 2 shows the surface-average conductance expressed vs. temperature. The results are normalized vs. the fresh cell at 20°C. It is clear from Fig. 2 that surface electronic conductance decreases monotonically with increasing cell test temperature. Interestingly, the reduction of electronic conductance was nearly identical in calendar-life cells and cycled cells. The cells tested at 70°C exhibit only 5% of their original surface electronic conductance.

The surface conductance of the cathode from the cell cycled at 70°C, 60% SOC, and 3% ΔSOC was determined. Figure 2 shows the surface-average conductance expressed vs. temperature. The results are normalized vs. the fresh cell at 20°C. It is clear from Fig. 2 that surface electronic conductance decreases monotonically with increasing cell test temperature. Interestingly, the reduction of electronic conductance was nearly identical in calendar-life cells and cycled cells. The cells tested at 70°C exhibit only 5% of their original surface electronic conductance.

The surface conductance of the cathode from the cell cycled at 70°C, 60% SOC, and 3% ΔSOC was determined. Figure 2 shows the surface-average conductance expressed vs. temperature. The results are normalized vs. the fresh cell at 20°C. It is clear from Fig. 2 that surface electronic conductance decreases monotonically with increasing cell test temperature. Interestingly, the reduction of electronic conductance was nearly identical in calendar-life cells and cycled cells. The cells tested at 70°C exhibit only 5% of their original surface electronic conductance.

The surface conductance of the cathode from the cell cycled at 70°C, 60% SOC, and 3% ΔSOC was determined. Figure 2 shows the surface-average conductance expressed vs. temperature. The results are normalized vs. the fresh cell at 20°C. It is clear from Fig. 2 that surface electronic conductance decreases monotonically with increasing cell test temperature. Interestingly, the reduction of electronic conductance was nearly identical in calendar-life cells and cycled cells. The cells tested at 70°C exhibit only 5% of their original surface electronic conductance.

The surface conductance of the cathode from the cell cycled at 70°C, 60% SOC, and 3% ΔSOC was determined. Figure 2 shows the surface-average conductance expressed vs. temperature. The results are normalized vs. the fresh cell at 20°C. It is clear from Fig. 2 that surface electronic conductance decreases monotonically with increasing cell test temperature. Interestingly, the reduction of electronic conductance was nearly identical in calendar-life cells and cycled cells. The cells tested at 70°C exhibit only 5% of their original surface electronic conductance.
Nearly ideal substitution of Ni by either Co or Li is expressed in the Raman spectra by a slight shift of the characteristic peaks and/or their intensities. A solid solution of Li-substituted transition metal oxides can be thermodynamically unstable, particularly if one transition metal ion is preferentially oxidized. In such a case, a two-phase mixture can develop or, in the extreme case, new crystal structures can form. The lattice parameters of the Li$_{1-x}$Ni$_{1-y}$Co$_y$O$_2$ system increase with increasing y and decrease with increasing Li content. The development of sharp Raman peaks at positions slightly shifted from their original locations is characteristic for separate nickel oxide phases with different Co and Li contents.

A plausible explanation for the observed phenomena is Co and Ni oxide phase segregation, which was discussed in Ref. 2. It is clear that such surface processes can affect the surface electronic conductance. The Ni and Co oxide phase separation may create an additional electronic barrier at the cathode surface and thereby lead to increased electronic impedance. However, the presence of charged material at the cathode surface may also indicate that some particles of LiNi$_{1-x}$Co$_x$O$_2$ became electrically disconnected from the remaining part of the cathode due to mechanical stress, carbon additive loss, or formation of a very thin SEI layer in the cathode during testing at elevated temperatures. Ostrowskii et al.8 suggested the formation of a relatively thick layer of Li$_2$Co$_3$ and P-, O-, and F-containing compounds upon storage of LiNi$_{1-x}$Co$_x$O$_2$ in LiPF$_6$-containing electrolyte at 80-90°C. Our Raman measurements as well as Midinfrared spectral (wave number range 600-4000 cm$^{-1}$) data revealed no observable SEI layer on the cathode surface.2 Although we do not expect such surface processes to decrease the bulk electrode capacity to a significant extent at low cell charge and discharge rates, they may account for the substantial loss of the power observed in these cells when charged and discharged at high rates.

Acknowledgment

This research was funded by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Advanced Automotive Technologies, U.S. Department of Energy, under contract No. DE-AC03-76SF00098. The authors gratefully acknowledge the tested cells, help, and advice provided by the ATD Program participants. Lawrence Berkeley National Laboratory assisted in meeting the publication costs of this article.

References

Figure 3. Microraman spectrum of the cathode from a fresh cell (upper curve), and microraman spectra from different locations on the cathode from a cell which was stored at 70°C (lower curves).