Lawrence Berkeley National Laboratory

Recent Work

Title
HELIUM TRANSFER LINE TESTS

Permalink
https://escholarship.org/uc/item/1kg2p24c

Author
Warren, R.

Publication Date
1977-11-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
SUMMARY

Test results obtained with two prototype sections of the ESCAR 2-inch helium transfer line are reported. One of these sections was 10 feet long and the other 20 feet. The results indicate that approximately 0.04 W/m can be expected to the ESCAR helium transfer line.

TEST ITEMS

The test lines consist of an inner 2 inch OD x 0.035 wall, stainless steel tube insulated with 40 layers of 1/4 mil aluminized mylar and an outer vacuum jacket of 3.5 inch OD (3 inch schedule 5) aluminum pipe. The 10 foot section was tested first without supports between the inner and outer lines and then subsequently two types of supports were tested. The first support tested consisted of an intermediate collar outside of the insulation with tapered stainless steel pins which were screwed radially inward from the collar so as to locally compress and bear on the mylar insulation. (In some cases the small diameter end of the pin would cut thru the mylar). Six round head nylon machine screws spaced the collar from the vacuum jacket. This support is shown on Drawing 18K4672. The stainless steel pins tested differed from those shown on 18K4672. Rather than the short taper shown there the B-32 Allen head set screws were tapered over the entire cantilever length...
of 0.34 inch from 0.125, at the large end to approx.
0.025 inch at the small end. The support rings were
located at four positions: 15, 45, 76 and 107 cm
from the closed end of the test section.

The second design tested utilized tapered
fiberglass (NEMAG10) pins which extend radially
from a NEMA G10 collar which is glued to
the inner tube. These parts are shown on Fig. 1.
Circular cut outs were made in the mylar
insulation to allow the fiberglass pins to extend
thru to the vacuum jacket. Specification MS19
describes the installation of these supports.

The 10 foot test section is shown on fig. 2.
The 20 foot test section which was located approx.
horizontally was closed on one end and connected
thru a right angle bend and short vertical section to the bottom
of a 8.25 inch diameter x 4 foot high dewar. A test
assembly, with the exception of the inner line supports
is shown on 18 K5084. Three inner line supports
which were the same as the second design tested
in conjunction with the 10 foot transfer line were
used on the horizontal section at the locations
indicated on 18 K5084. A similar design which uses
a larger diameter pin was used at one location on
the short vertical section. The larger diameter pin
was 5/16 diameter and was tapered over a length
Fig. 1

Title: Helium Transfer Line Support

```
3/16 REAM, 3 PLACES
```

```
120°
```

```
1\frac{3}{16}
```

```
.050
```

```
D \pm 0.000
```

Material: NEMA G10
1. Electrical leads to be thermally anchored to lower two radiation shields.
of 0.33 inch to a hemispherical end with radius of 0.1 inch. Since the 20-foot test section corresponded closely in length and support spacing to the modules contemplated for the ESCAR transfer line and incorporated an insulated elbow, its heat leak should be representative of the prototype transfer line.

The aluminized mylar insulation was perforated with 1/4 inch diameter holes on approximately 4 inch centers and applied per specification M 497 to the straight sections of each test section. Following application of the mylar insulation to the straight sections of the 20-foot test section the elbow was wrapped as follows. The insulation on the straight sections at the ends adjacent to the elbow was slit for a length of about 3 inches parallel to the tube axis at two locations 180 degrees apart and folded back. With the insulation folded back the length of the bare section of tube at the elbow was now in the order of 6 inches. This section was then wrapped with aluminized mylar of about this same width and the straight section insulation interleaved by folding in the portions which were previously folded back. The excess material at the inside of the elbow was simply gathered up.
Test Procedure

The 10 foot section was oriented vertically for the initial tests without inner line supports and for those with the first support design. The second support design was tested with the 10 ft. test section inclined approximately 30° from the horizontal. The superconducting liquid level gage functioned only very erratically so that liquid level ultimately had to be inferred from the integrated vent flow following termination of liquid transfer. This is entirely satisfactory for data reduction, however, one does not have any information on liquid levels until the liquid is completely evaporated. Both integrated flow readings (from a wet test meter) and flow rate readings (from a rotometer type meter) were obtained.

The 20 foot section was raised about one foot at the dewar end to enhance filling. Flow instrumentation was as above.

Test Results

Total heat rate to the 10 foot test specimen (computed from the vent rate) is plotted as a function of liquid level on fig 3 for the three test configurations. During the initial testing with no inner line support attempts were made to "strike" the superconducting level gage by electrical heating
at the upper end. This intermittent heating greatly affected the total boil off rate which results in some roughness to the data. Attempts to use the level gage were discontinued in subsequent testing. From the results from the unsupported line, the slope of the heat leak vs depth curve is about 0.22 W/m. Considering the heat rate at a liquid depth of 120 cm, approximately 1.8 W were observed with four supports of the first design vs 0.25 W with no supports. The heat leak per support is

\[
\frac{1.8 - 0.25}{4} = 0.4 \text{ W}
\]

With the second support design at 150 cm liquid depth, 0.78 W are observed vs 0.34 W with no supports. The heat leak per support is then

\[
\frac{0.78 - 0.34}{4} = 0.1 \text{ W}
\]

The total vent rate from the 20 foot test section with dewar was approximately 600 cm³/s of gas at 18°C which is equivalent to a liquid loss rate of 2.9 l/hr. The dewar has a loss rate of about 1.1 l/hr. So that the net liquid loss rate attributable to the line is 1.9 l/hr which is equivalent to about 1.6 W or 0.24 W/m.
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.