UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
A Simple Solution to Scale-Free Internet Host Mobility

Permalink
https://escholarship.org/uc/item/1m03j7sd

Authors

Garcia-Luna-Aceves, J.).
Sevilla, Spencer

Publication Date
2017-07-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/1m03j7sc
https://escholarship.org
http://www.cdlib.org/

A Simple Solution to
Scale-Free Internet Host Mobility

J.J. Garcia-Luna-Aceves and Spencer Sevilla
{ ji> spencer }@soe.ucsc.edu

UC Santa Cruz,

Abstract—We introduce a simple solution for the support
of host mobility in the Internet called DIME (Dynamic In-
ternet Mobility for End-Systems). DIME is based on dynamic
address translation between the transport and network layers
of end hosts, combined with a new out-of-band protocol that
updates host-address bindings between communicating hosts
opportunistically. It does not require modifications to the end-host
operating systems, end-user applications, existing communication
protocols or hardware, or the domain name system and any host-
identifier namespace. A number of experiments based on a Linux
daemon implementation of DIME are used to show that DIME is
deployable on a wide range of hardware, and that it outperforms
existing mobility proposals such as MIPv6 and HIP across a wide
range of performance metrics.

I. INTRODUCTION

The development of the Internet architecture [1] was mo-
tivated by the advent of local-area networks (LAN), satellite-
based networks, and packet-radio networks that required in-
terconnection with one another. Although mobility has always
been an inherent aspect of packet-radio networks, mobility
was assumed to take place within a single packet-switching
subnet, and to date the basic Internet does not support host
mobility seamlessly. Connections at the transport layer must
be restarted when a host changes network attachment points,
and cannot take advantage of multiple network paths simul-
taneously. Within the specific context of the Internet protocol
stack, this limitation is the result of transport-level protocols
(e.g., TCP and UDP) using IP (Internet Protocol) addresses
to consistently identify communicating processes in remote
hosts, while the network layer uses IP addresses to locate host
endpoints in the network. For communication between two
communicating hosts to persist across address changes, these
two functions must be separated. Surprisingly, no efficient
solutions have been proposed to date to solve what is called
the identifier-locator split problem.

Supporting host mobility in the Internet and solving the
identifier-locator split problem has become critical for the
future of the Internet. The number of mobile-only users has
already overtaken the number of desktop-only users [2], and
smartphone subscriptions are predicted to hit an expected total
of 26 billion mobile devices [3] in 2020. Section II summarizes
the prior work on Internet mobility support, and the attempts
that have been made to solve or eliminate the identifier-locator
split problem of the Internet architecture. The solutions to date
range from using network-level mechanisms that cope with
mobility in the forwarding plane to doing away with addresses

Santa Cruz, CA

altogether and using names as identifiers that denote “what”
rather than “where.” The common characteristic in all of
this prior work, including information-centric network (ICN)
architectures that attempt to replace the current IP Internet, is
that the identifiers used in the data plane of communication
protocols are the same as those used within the protocol stacks
of communicating entities.

The contribution of this paper is the description of a simple
approach for the support of Internet host mobility that is
completely seamless with respect to applications, the Internet
routing infrastructure, the domain name system (DNS), and the
data plane of existing communication protocols. Accordingly,
it can be deployed in an incremental manner on top of an
unmodified operating system without requiring any changes
to intermediate network devices, applications, or the system
kernel. We call this new approach Dynamic Internet Mobility
for End-Systems (DIME).

Section III describes DIME, which consists of two main
architectural components. A modified form of network address
translation (NAT) that we call StackTrans is inserted between
the transport and network layers of the protocol stack, such
that the transport layers and above see unmodified network
addresses (i.e., identifiers), and yet datagrams are addressed
to the current network address of a host (i.e., locators). The
address bindings used by StackTrans as hosts gain and lose
network addresses are updated by a simple out-of-band end-to-
end signaling protocol that we call the Internet Host Mobility
Protocol (IHMP).

Section IV describes a concrete Linux implementation of
DIME and presents detailed comparisons with Mobile IP [4]
and the Host Identity Protocol [5]. Our results show that
DIME is much more lightweight and deployable, runs on a
wider range of hardware and software, and is significantly
more scalable across a wide range of performance metrics.
Section V concludes the paper.

II. RELATED WORK

There exists a vast body of work addressing host mobility
in the Internet [6], [7], [8], [9], [10], [11], [4], [12], [13].
The many solutions that have been proposed in the past either
require modifications to the protocols used in the data plane
at the network, transport, or application layers of the existing
Internet architecture, or advocate replacing the Internet archi-
tecture altogether.

A. Network-Layer Support

The first proposals to address host mobility in the Internet,
including Mobile IP [14], [15], [16], [17], do so entirely within
the network layer. The intended benefit of this approach is
that by restricting all alterations to the network layer, higher-
layer protocols (i.e., TCP and application-layer protocols) can
take full advantage of any such mobility solutions without
modification. Unfortunately, all network-layer approaches to
host-mobility support have two major limitations.

In the Internet architecture, processes at the transport and
application layers bind IP addresses to identify the hosts where
the intended communicating process are located; it follows
that this binding between a host and its IP address must be
preserved to avoid disrupting communication. Solutions pro-
posed to date maintain this binding either by updating routing
tables as a host moves through the Internet [16], [17], or by
dividing the network address or address-space into identifiers
and locators [14], [15]. Unfortunately, updating routing tables
as hosts move incurs an untenable amount of network control
signaling and increases the size of routing tables, and using
special addresses as identifiers significantly fragments the
identifier address-space. In addition, network-layer mobility
support requires significant coordination, standardization, and
infrastructure investment, because the proposed schemes nec-
essarily alter network-layer protocols in the control plane and
data plane. Such an effort is impractical, because it requires
replacing large portions of the routing infrastructure within the
deployment domain, and also requires a globally-coordinated
time for migration.

B. Transport-Layer Support

A number of approaches [6], [18], [19], [20], [21], [22],
[23], [24], [25] support mobility at end-hosts, typically en-
acted as a part of the transport layer. The transport protocol
uses additional signaling or options to update the IP address
bound to a connection as a host experiences network-address
mobility.

Even though existing proposals for mobility support at the
transport layer do not require changes to the routing infrastruc-
ture, they alter transport protocols (e.g., TCP) and introduce
incompatibilities with NAT boxes. Furthermore, because IP
address migration is instantiated on a per-connection basis, in
the proposed schemes, these schemes suffer from scalability
problems.

Another concern with these approaches is that the transport
layer is required to assume a specific mobility model (e.g., “al-
ways/sometimes/never migrate this connection across hosts”)
and apply the same model to every single application running
in the system. This limits the usefulness of the approach.

C. Application-Layer Support

The main goals of supporting host mobility at the applica-
tion layer are to eliminate the need for changes in the routing
infrastructure and to provide applications the flexibility to
handle mobility differently from other applications.

A number of proposals [26], [27], [28], [29] use the Session
Initiation Protocol (SIP) to enable applications to uniquely
identify, join, and leave communication sessions using a
“user@host” [27] identifier. The limitations of these proposals
are that they require a new API to be presented to applications,
focus their efforts on the real-time session abstraction, and
generally do not support the reliable data-stream paradigm
leveraged by all TCP-based applications.

From an architectural point of view, SIP-based solutions are
essentially mobile IP at the application-layer, given that they
rely on application-layer home agents to provide redirection
when users or end-hosts are mobile. SAMP [30] addresses the
last point by maintaining session information in an overlay
network; however, SAMP incurs the same costs associated
with distributed hash tables (DHTs), such as latency and
control message churn.

Many other works [31], [32], [25], [33], [34] propose new
application interfaces to better support host mobility. However,
none of these works change the binding or socket abstractions
presented to applications. They simply provide a shim library
wherein applications identify connections by the originally
bound {IP, port} tuple, and the library responds to mobility
events by opening a new socket to the new identifying tuple.

D. New Internet Architectures

Several proposals have been advanced to redesign the cur-
rent Internet architecture to address such issues as information-
centric usage patterns, privacy and security, evolvability, and
of course mobility. All these proposals attempt to solve the
early-binding problem of the IP Internet, and include identifier
mobility as an integral aspect of their designs.

Many of these architectures [35], [36], [5], [37], [38], [39],
[40], [41] introduce one or more new identifying layers into the
existing protocol stack in the Internet as a way to resolve the
naming and addressing issues of the IP Internet. These layers
typically include a host- or endpoint-identity layer based on
either the DNS [42], [25] or cryptographic host identifiers [5],
[35], [37], [41], [33], and can also include a layer used to
identify individual application services [38], [40], [39], [35].

A few information-centric networking (ICN) architectures
(e.g., NDN [43]) advocate a clean-slate redesign of the entire
control and data planes of the Internet focusing on name-based
content forwarding and caching. regarding mobility, the goal
is to eliminate the identifier-locator split problem altogether by
eliminating addresses. However, this requires the introduction
of a new global namespace and forwarding information bases
that are much larger than traditional forwarding tables, and
does not result in more efficient packet forwarding than using
addresses [44].

E. Limitations of Prior Solutions

All the proposed alternatives to the Internet architecture
suffer from two main drawbacks. First, they require intro-
ducing a new identifying layer that requires the redesign
of network applications, operating systems, communication
protocols in the data plane, the directory services used in

networks, middleboxes, or routers. Second, if adopted, any
of these proposals would essentially “lock in” a new set of
identifiers for content, services or devices as part of the new
Internet architecture, which is a major drawback. Just as the
original design by Cerf and Kahn [1] could not predict the
constraints and challenges of today’s networks, we argue that
current proposals cannot accurately envision all the naming
challenges of the future Internet.

The fact that so many proposals addressing the Internet host
mobility problem have failed to provide a simple solution that
does not require any changes to end-user applications, the
communication protocols operating in the data plane, the DNS,
or the routing infrastructure may appear to indicate that no
such as solution is possible. Indeed, part of the justification of
recent ICN architectures is the argument that using addresses
is inherently limiting in supporting the mobility of services or
content. However, as we have argued recently [45], [46], [47],
the limitations of prior proposals stem from the assumption
that the identifiers used in the communication protocols op-
erating in the data plane must be the same as the identifiers
used within the protocol stack of a host or a router to pass
information across layers of the stack. We have demonstrated
that this does not have to be the case and that indirection within
the protocol stack can be done efficiently to allow names and
addresses used in communication protocols to differ from the
identifiers used inside hosts and router to refer to resources,
connections, or remote processes.

In addition, a review of the prior work also reveals that
most if not all prior proposals on the resolution of names to
addresses assume that either: (a) a directory service maintains
the mappings from a name to a set of addresses and that a host
must obtain all the mapping from the directory service directly
or be assisted by the routing infrastructure for redirection; or
(b) the routing infrastructure operates directly on names and
hence maps names to routes directly.

Our design of DIME, which we present in the next section,
is motivated by two simple observations. First, our prior work
on “hidden identifiers” in the protocol stack [45], [46], [47]
demonstrates that hosts and routers can denote resources,
connections and remote processes with identifiers that need not
be the same as those used as part of communication protocols.
Second, updating the mappings from names to addresses need
not be done solely through a common directory service, and
indeed communicating hosts or routers can update one another
directly if done properly.

I1I. DIME

Figure 1 illustrates the functional architecture of DIME,
which is comprised of two independent components. DIME
introduces an address redirection module in the data plane
that we call StackTrans, and uses a lightweight out-of-band
signaling protocol called the Internet Host Mobility Protocol
(IHMP) in the control plane to update the identifiers used by
StackTrans.

A. StackTrans and Redirection in The Data Plane

The goal of StackTrans is to dynamically readdress data-
grams as they pass between the transport and network layers
of the stack, such that the application and transport layers use
an unchanging IP address for a host (i.e., an identifier) and
the network layer uses the current network address for a host
(i.e., a locator). StackTrans achieves this split through the two-
step address translation process illustrated in Figure 2. The IP
address is first bound by a socket to an entity called a Host
Identifier (HID), and then the HID is mapped to its current
network address.

[Network Application] | DIME |
___________ S_tac_kTr_ans _“_IHI_AP_)
| Transport Layer |Readdressing Signaling

[Network Layer |
v 7

Fig. 1. DIME System Architecture

|Transport | 1: tcp_sendmsg(msg, sock, 17.4.1.1)
2: map {sock, 17.4.1.1}—=hid_2
[StaddTrans 113" imap hid 2 —17.4.13.50

| Network "l 4:ip_sendmsg(msg, 17.4.13.59)

Fig. 2. StackTrans Packet Readdressing

The benefit of this design is that it is the only way to achieve
a true identifier-locator split without requiring any changes
to transport-layer protocols or inserting a new layer in the
protocol stack. The first translation (Steps 1 and 2 of Figure 2)
enables the use of an unmodified host kernel by allowing
application and transport protocols to bind an unchanging IP
address across the course of a connection, just as they do
today. Once multiplexed to a HID, the HID table provides
a unifying location in the system to store and maintain all
address information for a specific host: similar to the design
of routing tables today, any modifications need only be entered
into the HID table to immediately impact every connection in
the system. The second translation (Steps 3 and 4 of Figure 2)
enables the use of an unmodified routing infrastructure by
ensuring that datagrams are addressed to the correct network
address for a host before even reaching the host’s network
layer for forwarding.

StackTrans manages the first translation via a Socket Table,
illustrated in Figure 3(a), which maps locally-bound foreign
addresses to HIDs. When a socket sends data to a new foreign
address via connect or sendto, the address is looked up
in the HID Table and translated to an existing HID; if no such
HID exists, a new one is created. Once the HID is obtained or
generated, the {socket, daddr, hid} tuple is stored in the socket
table, and used to ensure that (1) all communication from
the socket to the destination address is mapped to the correct
HID and (2) all communication from the HID to the socket is
mapped back to its initial address. Socket Table mappings must
be kept separately for each socket because it is possible for
multiple sockets to use different network addresses to refer to

the same HID if the foreign host experiences multiple address-
changes (e.g., socket s1 opens a connection to address al,
the host moves to address a2, and then socket s2 opens a
connection to address a?2).

Socket | Bound Address | HID
sl 174.1.1 hid_2
@) 192.168.54.1 hid_1
s2 |192.168.52.10 hid_1
17.4.1.1 hid_2
HID Active Unreachable Local Key
m| N1 (15535024 NULL [192.168.54.8 key1
hid_2[17.4.13.59 10.0.0.8 17.4.13.3 [NULL

Fig. 3. Socket and Host Identifier Tables of StackTrans

A HID is an internally-kept value that semantically refers
to a foreign host. Host identifiers are not new, but prior works
implement these identifiers using a new global namespace and
layer in the network stack. This is a crucial limitation of prior
work, because it requires major changes to the network stack
and transport layers. By contrast, the HIDs used in DIME
are simply indices into the HID Table: HIDs have no external
value, are not bound by higher layers, and are never propagated
over the network.

Using HIDs in DIME provides a unifying location to inte-
grate mobility signaling into the data plane. By multiplexing
{socket, daddr} tuples to a HID, rather than directly to an
address, DIME achieves an abstract split that enables multiple
addresses to be kept for a host. Additionally, given that
multiple {socket, daddr} tuples can be multiplexed to the
same HID, DIME enables a single control message exchange
(indicating an address handoff, for example) to be immediately
reflected at every connection to the HID at once. Finally,
since the only function of a HID in the data plane is to be
multiplexed to an address, we achieve these benefits without
altering transport protocols, adding a layer to the stack, or even
defining a new namespace for host identifiers.

Figure 3(b) illustrates that each entry in the HID Table stores
three separate sets of addresses: active addresses, unreachable
addresses, and local addresses. Active addresses are addresses
currently owned by a foreign host that are reachable by
the local host. Unreachable addresses are addresses currently
owned by the foreign host that the local host is currently
unable to contact, but may become reachable later on. Local
addresses are those addresses owned by the local host that are
reachable by the foreign host; this set is identical to the set of
active addresses in the foreign host’s HID table. The HID of
a host is also optionally bound to a host key for the host.

The reason for storing the active addresses for a host is
obvious. The other fields in the HID table support the signaling
of the proposed IHMP. Local addresses are stored so that
when a host sends IHMP messages, it is able to identify itself
with an address that is ensured to be in the HID table of
the foreign host. Unreachable addresses for a host are stored
to optimize IHMP signaling around address up, down, and
handoff events. Finally, the host key is used for authenticating

IHMP messages from the host, and is explicitly not used for
data-plane communication.

An important decision in the design of DIME was to make
it independent of the directory services used in the Internet
today or in the future, i.e., the domain name system (DNS) as
of today. Accordingly, end-user applications resolve domain
names to addresses through their name resolvers without
any modifications. StackTrans essentially “eavesdrops” on
transport-level traffic (TCP connections or UDP transactions)
by using the socket table to record the IP address bound by
a specific socket and ensure that all communication to and
from that socket is multiplexed to the original IP address.
Hence, when the first packet for a UDP or TCP flow is
sent, StackTrans creates an entry in the Socket and Host
Identifier tables stating the active IP address and HID for the
socket. In turn, the creation of new entries in the StackTrans
tables prompts the IHMP daemon to start sending messages
to the remote host associated with the new HID and active IP
address.

B. IHMP and Updating Addresses in The Control Plane

The address indirection provided by StackTrans allows
remote processes and connections to be readdressed at end
hosts without any modifications to the data plane of the
protocol stack. This enables the signaling needed to update
host addresses as hosts move to be taken out of the data plane
and enact it as a simple end-to-end signaling protocol, which
we call IHMP.

IHMP listens for network address events at the local host
(e.g., a network interface going up or down) and communicates
these changes to foreign hosts via UDP messages. IHMP
messages are sent over UDP to limit the overhead they incur
and to allow IHMP daemons to interpret dropped messages as
a sign that a path may not be sufficiently reliable. Using UDP
instead of ICMP enables NAT detection and traversal. When
an IHMP daemon receives a message from a foreign host, it
updates the HID Table to reflect the changes, at which point
StackTrans immediately incorporates them into the data path.

Figure 4 illustrates the IHMP message format. The control
field states the message type, which can be a HELLO, a path
probe, an address event (e.g., new address, address unreach-
able, address lost), a handoff, or an acknowledgment from a
host or router. The Sequence Number is a randomly-seeded
16-bit value incremented with each message and echoed by
every responding ACK. The sender may elect to append a
digital signature to the message, but must identify itself to
the receiver via a local IP address in the Host ID field.

I 32 bits
Control | Options | Message Segno
Digital Signature (Optional)
Host ID
Address Payload
L3
H
Options:
OU [ND [NS [NF {(Undefined)
I 8 bits {

Fig. 4. IHMP message format

The Host ID field in IHMP messages differs from all
other proposals [14], [15], [5], [42], [25] that use end-to-end
updates. Whereas all prior proposals rely on a separate host
identifier namespace (e.g., a DNS hostname) to consistently
identify a host across network address changes, IHMP is
specifically designed not to rely on or assume any such
namespace. This makes IHMP much more flexible, modular,
lightweight, and deployable. However, it also means that the
only method by which a receiving host can identify the source
of an IHMP message is by its IP address, which is stored in the
Host ID field. A sender populates the Host ID field with an IP
address that will multiplex to the sender’s HID at the receiver.
This multiplexing is ensured by choosing an IP address from
the set of local addresses bound to the receiver’s HID, and
is the reason for storing the local addresses reachable by a

foreign host.
3: PATH_PROBE
10.0.0.0/8 10.0.0.0/8

Fig. 5. HELLO message exchange

Public Internet

192.168.0.0/16

1) Hello Exchange: When StackTrans at an active host
creates a new HID table entry, it prompts IHMP to query
the foreign host for the presence of other network addresses,
and advertise its set of local addresses to the foreign host.
This is done via a simple two-way HELLO message exchange,
illustrated in Steps 1 and 2 of Figure 5. The first HELLO
message contains all the network addresses the active host
wishes to advertise to the foreign host, including the source
network address used to transmit the HELLO message.

When the foreign host receives a HELLO message, it creates
an entry in its HID table for the active host, adds the source
address of the message to the HID’s set of active addresses,
the destination address of the message to the set of local
addresses, and every other address in the HELLO message to
the set of unreachable addresses. Finally, it replies with an
ACK to the address used by the active host to send the HELLO
message. Similar to the HELLO from the active host, this ACK
contains all addresses the passive host wishes to advertise to
the active host. Upon receipt of the ACK, the active host adds
the destination address to the set of local addresses of the HID,
and all other advertised addresses to the set of unreachable
addresses of the HID.

From the perspective of the foreign host, the other addresses
included in the HELLO message from th active host are
either: (a) reachable by the host (e.g., a publicly reachable IP
address); (b) unreachable by the host (e.g., in a private network
the host does not have an address in); or (c) potentially reach-
able (e.g., in a private network that the host has an address in,
but is not necessarily the same private network). The passive
host is responsible for discovering which advertised addresses

are actually reachable, and accomplishes this by iterating
through the set of addresses provided by the active host and
sending a PATH_PROBE message to each address that falls
under case (c); this process is illustrated in Step 3 of Figure 5.
Note that the active host initially reaches the passive host over
the public Internet, and indicates (via the HELLO message)
that it also has addresses in the 192.168.0.0/16 and 10.0.0.0/8
networks. As a result, the passive host sends PATH_PROBE
messages out over the 192.168.0.0/16 and 10.0.0.0/8 networks
to which it is connected, but does not send a PATH_PROBE
message over the 169.254.0.0/16 network.

When the active host receives a PATH_PROBE message,
it moves the source address to the set of active addresses
of the HID, adds the destination address to the set of local
addresses of the HID, and replies with an ACK bound to the
same address set (Step 4 of Figure 5). Upon receiving the ACK,
the passive host performs the same operation. This exchange
ensures that after completion, both hosts have a symmetric
HID table in terms of local and active addresses.

2) Address-Up Events: When a host obtains a new network
address, it is responsible for communicating this new network
address to all foreign hosts in its HID table. Just as with
path probing, the IHMP signaling takes one of three forms,
depending on whether the foreign host is known reachable,
known unreachable, or potentially reachable.

If a foreign host is known reachable, the active host sends an
ADDR_UP message to the foreign host. The active host sends
the message from its new address, and also explicitly encodes
this address in the IHMP message.! The Host ID field of an
ADDR_UP message is populated by any of the local addresses
that have successfully been advertised to the passive host

If a foreign host is known unreachable, the active host
sends an ADDR_UP_UNREACHABLE message to the foreign
host. As above, the message’s Host ID field is populated by a
local address advertised to the passive host, and the message
explicitly encodes the new network address in the message
payload. However, since it has already been determined that
the foreign host is not reachable by the new network address,
the active host transmits the message over any network address
of the foreign host available to it.

If a foreign host is potentially reachable, the active host
must determine whether the foreign host is reachable by this
new interface. To accomplish this, the active host creates an
ADDR_UP message as if the foreign host is known reachable,
but effectively uses it similarly to the PATH_PROBE message:
after sending the message, it waits for an ACK. If the active
host does not receive an ACK in an appropriate amount of
time, it determines that the foreign host is not reachable over
this interface, and reverts to the ADDR_UP_UNREACHABLE
exchange described for the case when a foreign host is known
unreachable.

In all of these cases, when the foreign host receives an
ADDR_UP or ADDR_UP_UNREACHABLE message, it adds
the corresponding address to the active or unreachable set

I'This explicit address encoding allows us to detect and mitigate NATS.

of addresses for the HID, updates its local address set if
appropriate, and replies to the active host with an ACK.

3) Address-Down Event: When a host loses a network
interface and address, it checks the local address set for each
HID and partitions its set of foreign hosts into hosts that are
still reachable and hosts that are no longer reachable.

If a foreign host is no longer reachable (i.e., the lost network
address was the only network address that could reach the
foreign host), then the HID table entry is removed and an error
message is sent to any network application that had bound the
corresponding HID.

For all hosts that are still reachable, the active host inspects
the HID’s set of local addresses to determine if the foreign
host was able to communicate with the lost network address or
not. If the foreign host was reachable by the lost address, then
the active host removes the lost address from the set of local
addresses and sends an ADDR_DOWN message to the foreign
host. If the host was not reachable by the lost address, then
the active host simply sends an ADDR_DOWN_UNREACHABLE
message. In both cases, the Host ID field contains an address
that the active host is still reachable on, and the payload
of the message contains the lost address. When the passive
host receives the message, it updates its own address-sets
accordingly and responds with an ACK.

4) Handoff Event: A handoff event occurs when a host
loses one network address and gains another network address.
These network addresses do not have to be bound to the
same network interface, because there is no difference from
the perspective of the network layer and above - either way,
reachability may have changed, and the address-change must
be discovered and synchronized between end hosts.

As with address-up events, an active host starts the handoff
process by classifying all foreign hosts as known reachable,
known unreachable, or potentially reachable with respect to the
new network address. The active host sends HANDOFF mes-
sages to known-reachable hosts, HANDOFF_UNREACHABLE
messages to hosts known to be unreachable, and uses
HANDOFF messages to probe network reachability when it is
unknown. In all cases, the active host sends the message from
the new network address, encodes both new and old network
addresses in the payload, and selects any address from the
set of local addresses for the Host ID. When the passive host
receives such a message, it updates its HID table accordingly
and replies with an ACK.

The handoff process must incorporate a small amount of
extra logic compared to the address-up event, because the host
is also losing a network address. This address loss means that
the active host might be completely disconnected from some
foreign hosts, and this lost address must be communicated to
all foreign hosts.

For clarity, the handoff message uses the bit OU
(OLDADDR_UNREACHABLE) in the options field to indicate
whether the old address was reachable by the passive host or
not; this bit effectively represents the difference between the
ADDR_DOWN and ADDR_DOWN_UNREACHABLE messages in
Section III-B3.

C. Security of IHMP

Spoofed IHMP messages have the potential to disrupt and
redirect communication. Accordingly, IHMP must provide a
mechanism for ensuring message integrity. Given that IHMP
messages are self-contained, transmitted out-of-band, and not
bound to any one existing communication session, we elect to
use a public/private key digital signature model as opposed to
ensuring the confidentiality of the message via an encrypted
end-to-end channel.

IHMP validates incoming messages by obtaining a public
key in various ways, binding this public key to a HID, and
using this key to verify the digital signature of any messages
subsequently received from this HID. If the public key is
bound to a host identifier (and therefore stored in an identifier
namespace), then it can be resolved when the identifier is
mapped to a set of locators. Additionally, the public key
could also be obtained by alternate out-of-band processes, the
HELLO message exchange, or a priori key information - for
example, a network administrator may simply install a set of
public keys onto client laptops and specify that a certain key
is always used for a specific IP address.

For outgoing messages, [IHMP enables a private key to be
bound to either all addresses (*) or a specific list of addresses
or subnets with the command set_local_key. The IHMP
daemon stores this key and signs outgoing IHMP messages as
appropriate. While host-key bindings are generally expected
to be long-lived [5], [48], these private keys used to sign
messages may be changed or updated with subsequent calls
to set_local_key. It is then considered the responsibility
of the administrator or entity changing the key-pair to publish
the public key as appropriate.

D. NAT Traversal for IHMP

Despite the fact that network address translators (NATS)
are the primary violators of the end-to-end argument [49]
today, NATs are generally expected to be “here to stay”
for the foreseeable future [50], [51]. IHMP flags NAT
addresses separately, and stores them for a HID as a
nat_addr:host_addr tuple.

IHMP-aware NATs indicate their presence by setting a NS
(NAT_SUPPORTED) bit in all IHMP messages that traverse
the NAT, and send a NAT_ENTRY message to the non-NATed
host as they create new port-mappings for each connection as
illustrated in Figure 6. This mapping is stored at the end-host
and used to map the NATed port back to the original source
port for delivery.

IHMP detects IHMP-unaware NATS by checking the source
IP address of the message against the IP address en-
coded in the message payload, and indicates this via a ND
(NAT_DETECTED) flag in the ACK. Since IHMP cannot
migrate connections into IHMP-unaware NATS, it stores them
as unreachable addresses unless a connection must be initiated
behind a NAT. This case is indicated via a NF (NAT_FORCED)
flag in the initial HELLO exchange, at which point the HID
is created separately as a one-to-one mapping and no further
IHMP signaling occurs.

Client NAT Server

{ 1) E} L UP(p) > [C
CIp, sip}: ADDR UP(ci n Pk ADDR UP| (o] N:
{nip, sip}: (cip, Pts: NS) >

{sip, nip/cipk: ACK(cip, opts: NS, ND)

Address Event

o
H

: {cip:p1, sip:p2}: datagrarn 3

<« ouwn

{nip, sip}: NAT_ENTRY(cip; 1
{sip, nip}: ACK

{nip:p3, Sip:p2}: datagram >

Fig. 6. Mobility signaling with NAT

3

Data-Path

R1 7
/ R »
—a_7

CN > R MH

Fig. 7. Testbed topology

IV. IMPLEMENTATION AND EVALUATION

We implemented DIME as a user-space daemon and Load-
able Kernel Module (LKM), deployed our code on two laptops
running Ubuntu, the Mobile Host (MH) and the Corresponding
Host (CH), and connected them with a switch and two routers
to create the topology shown in Figure 7. In the topology, each
node has a globally-reachable address, each router advertises
a different subnet, and we used the netem utility to introduce
60ms of latency on all traffic that flows across the switch [52],
[53].

To provide more consistent results and remove variance, we
induced address up and down events programmatically via the
ip command, with a five-second gap between each event; we
also conducted each experiment ten times and provide mean
values.

We present the results obtained with DIME and compare
it with Mobile IP (MIPv6) and the Host Identity Protocol
(HIP), which we chose as “flagship” examples of mobility
support for Internet hosts. The performance metrics we use are
the data-plane throughout, the size of socket tables, and the
size of the implementation.We conducted a standard mobility
experiment in which the Mobile Host moves from R1 to R2
while conducting a throughput test to the Corresponding Host.
We compare DIME against MIPv6, HIP, and multipoint TCP
elsewhere [54], where we also discuss signaling latencies and
the number of signaling packets sent after handoffs.

A. Deployment and Configuration

Table I provides a summary of the effort required to config-
ure each protocol even for the basic testbed in Figure 7. MIPv6
stands out by far as the most fragile and ossified approach.
MIPv6’s reliance on deep kernel integration requires a custom
kernel and a user-space daemon at the end hosts. However,
both codebases have been abandoned for several years, do
not support 64-bit architectures, and are no longer compatible
with any current Linux distribution. Additionally, MIPv6 was

[Requirement [MIPv6 [HIP [DIME |
Daemons 4 1 1
Config. Files 3 2 1
App Mods. v
System Configs | v
Custom Kernel v
Router Mods. v

TABLE I
DEPLOYMENT REQUIREMENTS

the only protocol to require a purely IPv6 testbed as well as
multiple daemons (mip6d, radvd, and hostapd) running
on routers R1 and R2 and the end-hosts.

Configuring HIP relies heavily on manually encoding static,
preconfigured bindings at both end hosts,> and HIP’s use of
the 1.0.0.0/8 block for LSI bindings raised questions about
support for users that do not want to memorize IP addresses
or applications that insert the address into the protocol itself
(e.g., FTP).

By contrast, DIME “simply works” and exists as a single,
standalone user-space daemon, requiring no configurations or
modifications to application binaries or the underlying OS.
DIME’s leverage of existing IP address bindings enables it
to work without the need for specific namespace bindings or
“pseudo” IP addresses, and DIME’s use of translation instead
of encapsulation makes it the only approach that dynamically
supports preexisting connections that were established before
the DIME daemon was operational.

B. Data Plane Throughput

Since a mobility solution must not negatively impact the
data-plane, Figure 8 provides the TCP goodput seen over
a fifteen second throughput test, over both a soft handoff
(the new address-up event happens five seconds before the
address-down event) and hard handoff (the reverse order of
operations). We examine goodput instead of throughput to
provide a single unifying metric that accurately reflects the
performance seen by network applications, and present TCP
results. UDP goodput results collected for DIME, MIPv6, and
HIP were all similar to the shown results shown for TCP.

60
@ Soft Handoff
@» Hard Handoff

w
<]

MBit/sec

DIME MIPv6 HIP

Fig. 8. TCP Handoff Goodput

Figure 8 shows that each protocol provides almost identical
results over a soft handoff. This is because despite the different
architectures and handoff signaling needed, each protocol has
enough time to compete the handover signaling and maintain

2HIP architects have advocated using the DNS to dynamically resolve HIT
bindings; the lack of such support highlights the importance of R3.

a constant data-rate (bound by the physical links) when the
first address is lost.

Since the disconnection lasts five seconds and the total
transfer lasts fifteen, it is intuitive that the maximum possible
goodput for the hard handoff scenario will be approximately
2/3 of the soft handoff. Figure 8 shows that DIME achieves
this value almost exactly, and noticeably outperforms all other
proposals; we attribute this to a combination of DIME’s faster
control message exchange and transparency with respect to
TCP. MIPv6 migrates the existing TCP connection without
triggering any congestion-control backoff, but suffers from a
noticeably longer handoff procedure. HIP’s large decrease in
goodput appears to be the result of “buffer bloat” at the HIP
daemon during the disconnection, which in turn created erratic
and unfavorable interactions with TCP’s congestion control
algorithms for the remainder of the connection.

C. Socket-Table Scalability

One of the defining characteristics of StackTrans is its use
of two translation tables, instead of one. This raises questions
of scalability at end-hosts, since the socket table scales CPU
usage with the number of open sockets in the system. We
explored how the size of the socket table affects data-plane
throughput by clearing the socket table, adding n “fake”
socket-table entries at the mobile host, and then starting a
UDP throughput test from the mobile host to the corresponding
host. In the interest of evaluating performance on a resource-
constrained platform most likely to be bottlenecked by CPU
usage, we ran this test on a RaspberryPi Model B+.

Figure 9 provides our results, which show that throughput is
completely unaffected by socket-table size until approximately
1500 open entries, at which point it starts degrading almost
linearly. Though these results show that a large socket table
eventually does degrade performance, they still reflect exceed-
ingly well on StackTrans when considered in a greater context.
Specifically, the target hardware platform is not intended for
large-scale serving, and is likely to hit other performance bot-
tlenecks if it were to actually support this many simultaneous
open network connections.

=)
8

®
8

MBit/sec
L 2

n
5}

0 500 1000 1500 2000 2500
Socket Table Entries

Fig. 9. Socket-Table Scalability

D. Lines of Code

Table II provides the lines-of-code (LOC) of each of the
different mobility solutions. While LOC is not a conclusive
metric in and of itself, it enables a quantitative comparison
between mobility solutions in terms of relative complexity. The

results highlight the simplicity of DIME, both in terms of total
LOC and DIME’s avoidance of kernel-level modifications.

Protocol | Kernel LOC | User LOC | Total LOC
MIPv6 XXX XXX XXX
HIP 0 28,770 28,770
DIME 200 2,400 2,600
TABLE II
LINES OF CODE
Other Features MIPv6 | HIP | DIME
IPv4 Support v v
UDP Support v v v
1Pv4/v6 Handover v v
Private/Link Addrs v
Simultaneous Mob. | v v
Preexisting Conns. v
NAT Traversal v *
Micro-mobility *
Multipath v
ARM Architecture v
*with middlebox support

TABLE III
FEATURESET COMPARISON

E. Featureset Comparison

Though our evaluations thus far have focused on per-
formance metrics, an equally important consideration is its
qualitative featureset. We tested DIME, MIPv6 and HIP for
support across a wide range of features, use-cases, and network
environments that fall outside of standard mobility testbeds.
Table III contains our results, and shows that while different
proposals support different features, DIME is clearly the most
adaptable and flexible proposal.

While some of these features (e.g., private IP addressing)
may be simple implementation issues, others represent fun-
damental architectural limitations. Specifically, we highlight
the inability of any other proposal to support ARM-based
architectures (i.e., Raspberry Pis) as an important, and surpris-
ingly fundamental, limitation of all other proposals. The high
cost of porting a complex, deeply-integrated codebase prevents
implementations of MIPv6 from making their way to the
specialized system architectures used by resource-constrained
devices, yet HIP’s heavy reliance on cryptographic operations
renders it completely unusable for such environments. In
contrast, DIME avoids both problems and is completely out-
of-the-box deployable on a stock Raspbian distribution.

V. CONCLUSIONS AND FUTURE WORK

We described DIME, the first solution for the seamless
support of host mobility in the Internet. DIME is based on two
main components, StackTrans in the data plane and IHMP in
the control plane, which work together to create a lightweight,
flexible, scale-free, and deployable approach to Internet host
mobility.

StackTrans enables IP datagrams to be dynamically read-
dressed as a host moves throughout the Internet without
requiring changes to applications, the DNS, transport-layer
protocols, the network stack, the network layer, or intermediate
nodes. StackTrans incurs minimal overhead, is deployable on
a stock OS, and enables mobility signaling itself to be enacted

out-of-band via IHMP (Internet Host Mobility Protocol) a
simple signaling protocol. IHMP is far more lightweight than
all prior solutions, scale-free with respect to the number of
connections at a host, and explicitly does not depend on or
require an additional host-identifier namespace or changes to
an existing set of directory services (e.g., the DNS).

Our evaluations show that MIPv6 and HIP suffer from at
least one vital weakness. HIP supports more application use-
cases, but incurs severe performance penalties and requires a
relatively static and brittle configuration at end hosts. MIPv6
is by far the least flexible solution and effectively cannot be
deployed on today’s systems. By contrast, DIME is seamlessly
deployable on top of a wide range of systems, and outperforms
the other solutions across a wide range of performance metrics.

[1]
[2]

[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

V. Cerf and R. Kahn. A Protocol for Packet Network Intercommunica-
tion. IEEE Transactions on Communications, 1974.

A. Lella. Number of Mobile-only Internet Users Now Exceeds Desktop-
only in The U.S. https://www.comscore.com/Insights/Blog/Number-of-
Mobile-Only-Internet-Users-Now-Exceeds-Desktop-Only-in-the-U.S.
R. Qureshi. Ericsson Mobility Report: On The Pulse of The Networked
Society, 2014.

C. Perkins and D.B. Johnson. Mobility Support in IPv6. Proc. 2nd
International Conference on Mobile Computing and Networking, pages
27-37, 1996.

R. Moskowitz et. al. Host Identity Protocol. RFC 5201, April 2008.
W.M. Eddy. At What Layer Does Mobility Belong? IEEE Communi-
cations Magazine, 42(10):155-159, 2004.

E. Perera, V. Sivaraman, and A. Seneviratne.
Mobility Support. Proc. ACM SIGMOBILE, 2004.
P. Bhagwat and C. Perkins. Network Layer Mobility: An Architecture
and Survey. Personal Communications, 1996.

D. Le, X. Fu, and D. Hogrefe. A Review of Mobility Support Paradigms
for The Internet. IEEE Communications Surveys & Tutorials, 8(1):38—
51, 2006.

M. Komu, M. Sethi, and N. Beijar. A Survey of Identifier-Locator Split
Addressing Architectures. Computer Science Review, 2015.

D. Saha, A. Mukherjee, I.S. Misra, and M. Chakraborty. Mobility
Support in IP: A Survey of Related Protocols. IEEE Network, 18(6):34—
40, 2004.

Z. Gao, A. Venkataramani, and J.F. Kurose. Towards a Quantitative
Comparison of Location-Independent Network Architectures. In ACM
SIGCOMM Computer Communication Review, 2014.

V. Ishakian, I. Matta, and J. Akinwumi. On the Cost of Supporting
Mobility and Multihoming. Proc. GLOBECOM Workshops, 2010.

E. Nordmark and M. Bagnulo. Shim6: Level 3 Multihoming Shim
Protocol for IPv6. IETF RFC 5533, 2009.

R. Atkinson, S. Bhatti, and S. Hailes. ILNP: Mobility, Multi-homing,
Localized Addressing and Security through Naming. Telecommunication
Systems, 42(3-4):273-291, 2009.

C. Perkins. Mobile IP. IEEE Communications Magazine, 35(5):84-99,
1997.

M. Kunishi, M. Ishiyama, K. Uehara, and H. Esaki. LIN6: A New
Approach to Mobility Support in IPv6. Proc. International Symposium
on Wireless Personal Multimedia Communications, 2000.

C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley. How Hard Can It Be? Designing
and Implementing a Deployable multipath TCP. Proc. USENIX NSDI,
pages 29-29, 2012.

F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migratory TCP:
Highly Available Internet Services Using Connection Migration. Proc.
International Conference on Distributed Computing Systems, pages 17—
26, 2002.

K. Brown and S. Singh. M-TCP: TCP for Mobile Cellular Networks.
ACM SIGCOMM Computer Communication Review, pages 19—43, 1997.
A. Bakre and B.R. Badrinath. I-TCP: Indirect TCP for Mobile Hosts.
Proc. International Conference on Distributed Computing Systems,
pages 136-143, 1995.

Survey on Network

[22]

[23]

[24]

[25]
[26]
[27]
[28]

[29]

[30]

[31]
(32]

(33]

[34]

(35]
[36]
[37]
(38]
[39]
[40]
[41]
[42]

[43]
[44]

[45]

[40]

[47]
[48]
[49]
[50]
[51]

[52]

[53]

[54]

D. Funato, K. Yasuda, and H. Tokuda. TCP-R: TCP Mobility Support
for Continuous Operation. Proc. International Conference on Network
Protocols, pages 229-236, 1997.

S. Freire and A. Ziaquete. A TCP-Layer Name Service for TCP Ports.
Proc. USENIX Annual Technical Conference, pages 275-280, 2008.
A.C. Snoeren and H. Balakrishnan. An End-to-End Approach to Host
Mobility. Proc. 6th International Conference on Mobile Computing and
Networking, pages 155-166, 2000.

D.A. Maltz and P. Bhagwat. MSOCKS: An Architecture for Transport
Layer Mobility. Proc. IEEE INFOCOM, 1998.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: a
Transport Protocol for Real-Time Applications. RFC 3550, July 2003.
E. Wedlund and H. Schulzrinne. Mobility Support Ssing SIP. Proc.
ACM WoWMoM, 1999.

H. Schulzrinne and E. Wedlund. Application-Layer Mobility Using SIP.
Mobile Computing and Communications Review, 4(3):47-57, 2000.

A. Dutta, F. Vakil, J. Chen, M. Tauil, S. Baba, N. Nakajima, and
H. Schulzrinne. Application Layer Mobility Management Scheme for
Wireless Internet. Proc. IEEE 3G Wireless, 2001.

S. Pack, K. Park, T. Kwon, and Y. Choi. SAMP: Scalable Application-
Layer Mobility Protocol. IEEE Communications Magazine, 44(6):86—
92, 2006.

J. Kristiansson and P. Parnes. Application-Layer Mobility Support for
Streaming Real-Time Media. Proc. IEEE WCNC, 2004.

V. Zandy and B. Miller. Reliable Network Connections. Proc. ACM
MOBICOM, 2002.

B.Y.L. Kimura and H.C. Guardia. TIPS: Wrapping The Sockets API for
Seamless IP Mobility. Proc. ACM Symposium on Applied Computing,
2008.

T. Okoshi, M. Mochizuki, Y. Tobe, and H. Tokuda.
Toward Continuous Operation for Java Applications.
ICCCN, 1999.

H. Balakrishnan et. al. A Layered Naming Architecture for The Internet.
Proc. ACM SIGCOMM, pages 343-352, 2004.

A. Ghodsi et al. Intelligent Design Enables Architectural Evolution.
Proc. ACM HotNets, page 3, 2011.

I. Stoica et al. Internet Indirection Infrastructure. Proc. ACM SIGCOMM,
2002.

B. Ford. Breaking Up The Transport Logjam. Proc. ACM HotNets,
2008.

E. Nordstrom et al. Serval: An End-Host Stack for Service-Centric
Networking. Proc. USENIX NSDI, 2012.

D. et al. Han. XIA: Efficient Support for Evolvable Internetworking.
Proc. USENIX NSDI, 2012.

T. Koponen et al. Architecting for Innovation. ACM SIGCOMM
Computer Communication Review, 41(3):24-36, 2011.

J. Ubillos et al. Name-Based Sockets Architecture. /IETF Draft, 2010.
Named Data Networking (NDN). http://named-data.net.

J.J. Garcia-Luna-Aceves, M. Mirzazad-Barijough, and E. Hemmati.
Content-Centric Networking at Internet Scale through The Integration
of Name Resolution and Routing. Proc. ACM ICN ‘16, 2016.

S. Sevilla and J.J. Garcia-Luna-Aceves. Allowing applications to evolve
with the internet: The case for internet resource descriptors. Proc. IEEE
ICC ‘14, 2014.

S. Sevilla and J.J. Garcia-Luna-Aceves. HIDRA: Hiding Mobility,
Multiplexing, and Multi-homing from Internet Applications. Proc. 17th
IEEE Global Internet Symposium, 2014.

S. Sevilla and J.J. Garcia-Luna-Aceves. Freeing The IP Internet
Architecture from Fixed IP Addresses. Proc. IEEE ICNP ‘15, 2015.

T. Henderson, P. Nikander, and M. Komu. Using The Host Identity
Protocol with Legacy Applications. RFC 5203, September 2008.

J. Saltzer, D. Reed, and D. Clark. End-to-end Arguments in System
Design. ACM Transactions on Computer Systems, 1984.

B. Ford. Directions in Internet Transport Evolution. /IETF Journal, 2007.
M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and
S. Shenker. Middleboxes no Longer Considered Harmful. Proc. USENIX
OSDI, 2004.

D. Phoomikiattisak and S. Bhatti. Mobility as A First Class Function.
Proc. IEEE International Conference on Wireless and Mobile Comput-
ing, Networking and Communications, 2015.

IP Latency Statistics.
http://www.verizonenterprise.com/about/network/latency/.

S. Sevilla and J.J. Garcia-Luna-Aceves. A Deployable Identifier-Locator
Split Architecture. Proc. IFIP Networking ‘17, 2017.

MobileSocket:
Proc. IEEE

