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THEORETICAL REVIEW

Improving fluid intelligence with training on working memory:
a meta-analysis

Jacky Au & Ellen Sheehan &Nancy Tsai &Greg J. Duncan &

Martin Buschkuehl & Susanne M. Jaeggi

Published online: 8 August 2014
# Psychonomic Society, Inc. 2014

Abstract Working memory (WM), the ability to store and
manipulate information for short periods of time, is an impor-
tant predictor of scholastic aptitude and a critical bottleneck
underlying higher-order cognitive processes, including con-
trolled attention and reasoning. Recent interventions targeting
WM have suggested plasticity of the WM system by demon-
strating improvements in both trained and untrained WM
tasks. However, evidence on transfer of improved WM into
more general cognitive domains such as fluid intelligence (Gf)
has been more equivocal. Therefore, we conducted a meta-
analysis focusing on one specific training program, n-back.
We searched PubMed and Google Scholar for all n-back
training studies with Gf outcome measures, a control group,
and healthy participants between 18 and 50 years of age. In
total, we included 20 studies in our analyses that met our
criteria and found a small but significant positive effect of n-
back training on improving Gf. Several factors that moderate
this transfer are identified and discussed. We conclude that
short-term cognitive training on the order of weeks can result
in beneficial effects in important cognitive functions as mea-
sured by laboratory tests.

Keywords Cognitive training . Transfer . Plasticity

Introduction

"It is becoming very clear that training on working memory
with the goal of trying to increase Gf will likely not succeed."
(Harrison, Shipstead, Hicks, Hambrick, Redick, & Engle,
2013, p. 2418)

The cognitive training literature has seen an explosion of
recent interest in exploring the claim that gains in working
memory (WM) training might transfer to gains in measures of
fluid intelligence (Gf). If true, the implications for academic,
professional, and personal success are considerable
(Gottfredson, 1997). Despite many promising studies (e.g.,
Jaeggi, Buschkuehl, Jonides, & Perrig, 2008; Rudebeck, Bor,
Ormond, O'Reilly, & Lee, 2012; Stephenson & Halpern,
2013), the aforementioned quote reflects results from other
well-controlled, rigorous attempts at replication that have
failed to find transfer (Redick et al., 2013; Thompson et al.,
2013). Thus, the debate continues without consensus.
However, disparate replication results may be the product of
disparate conditions, some of which facilitate transfer and
others of which impede it. Without careful consideration of
these conditions, any categorical claim about positive or neg-
ative impacts is premature (Jaeggi, Buschkuehl, Shah, &
Jonides, 2014). Therefore, we conducted a systematic meta-
analysis of the entire extant literature in order to estimate an
overall average effect size and to explore moderators associ-
ated with deviations from the overall average.

The debate over the malleability of intelligence is deeply
rooted in the history of psychology, stemming as far back as
the late 19th century, when Francis Galton promoted his views
on the strict heritability of intelligence (Galton, 1892). Despite
popular critics such as Alfred Binet (1909), forefather of
modern IQ testing, research over the next few decades brought
on a zeitgeist of determinism that pervaded popular scientific
thought, borne out by work on developmental critical periods
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and twin studies of inheritance. This view of the immutability
of intelligence came to influence more modern thinkers
(Caruso, Taylor, & Detterman, 1982) and was reinforced by
the difficulties many researchers faced in demonstrating trans-
fer (Detterman, 1993; Salomon & Perkins, 1989). But more
recent evidence has accumulated suggesting malleability of
intelligence, including research demonstrating the positive
impacts of such interventions as exercise, education, nutrition,
and even the industrialization of nations (Dickens & Flynn,
2001; Nisbett et al., 2012). Most scientists today acknowledge
the importance of genetics and heritability in the development
of intelligence, while recognizing the role that certain envi-
ronments can play in molding this development.

One of the critical components of general intelligence isGf,
or the ability to reason in novel situations independently of
previous knowledge. It is the aspect of intelligence that has
shown the greatest malleability over time in the documented
Flynn effect (Dickens & Flynn, 2001), as well as in experi-
mental work (e.g., Stankov, 1986). It is also highly predictive
of professional and educational success (Gottfredson, 1997)
and has, therefore, been a prime target of intervention. One of
the core processes drivingGf, as well as other higher cognitive
abilities, is WM (Wiley, Jarosz, Cushen, & Colflesh, 2011).
Estimates report a shared variance of at least 50% (Kane,
Hambrick, & Conway, 2005; Oberauer, Schulze, Wilhelm,
& Suss, 2005), and neuroimaging evidence has demonstrated
functional overlap in the lateral prefrontal and parietal corti-
ces, implicating shared neural resources that underlie both
constructs (Burgess, Gray, Conway, & Braver, 2011). This
makes sense, since any attempt to reason through a novel
situation requires maintaining multiple possible goals in
WM while simultaneously manipulating that information in
order to achieve the desired goal.

The recent prospect of improving WM through training
has raised the possibility of concomitant improvements in Gf
(cf. von Bastian & Oberauer, 2013). More specifically, the n-
back task, which requires not only the storage and continual
updating of information in WM, but also interference resolu-
tion, has been used widely in WM training studies that
explore transfer to Gf. The n-back task involves serial pre-
sentation of a stimulus (e.g., a shape), spaced several seconds
apart. The participant must decide whether the current stim-
ulus matches the one displayed n trials ago, where n is a
variable number that can be adjusted up or down to respec-
tively increase or decrease cognitive load. In the context of
WM training, efforts have focused on flexibly adapting the
task difficulty in accordance with the participant's fluctuating
performance level by increasing and decreasing the level of n.
The idea is to keep the participant's WM system perpetually
engaged at its limit, thereby stimulating an increase in WM
function, which may then translate into more general im-
provements in tasks that rely on the integrity of WM skills,
such as Gf (Jaeggi et al., 2008).

Despite some initial successes (cf. Buschkuehl & Jaeggi,
2010), it still remains contentious that intellectual plasticity
can continue beyond early developmental periods and into
adulthood, particularly as a result of relatively brief cognitive
training on the order of weeks with a simple, repetitive com-
puterized intervention such as n-back. However, we are now
at a point in this debate where the publication of a critical mass
of WM training studies based on just one type of intervention
(n-back) and just one type of population (healthy, young
adults) warrants a meta-analysis that can inform this debate
in ways that simple vote-counting procedures of systematic
reviews cannot.

The purpose of the present meta-analysis is twofold: first,
to estimate the net effect size of Gf improvement in healthy,
young adults as a function of n-back training and, second, to
elucidate factors that may moderate this transfer. For example,
building off previous work examining individual differences
underlying training outcomes, we hypothesized that remuner-
ation for study participation could dampen the training effect
by reducing intrinsic motivation (Jaeggi et al., 2014). This
idea is based on a broader literature demonstrating negative
effects of extrinsic rewards (e.g., money) on intrinsic motiva-
tion (Deci, Koestner, & Ryan, 1999). Moreover, remuneration
could also bias the recruitment process by preferentially
attracting participants more invested in money than in self-
improvement, a quality that may preclude the type of “grit”
(Duckworth, Peterson, Matthews, & Kelly, 2007) needed for
successful training (Jaeggi et al., 2014). We therefore hypoth-
esized an inverse correlation between amount of payment and
Gf improvement.

We also sought to empirically test several claims that have
been made in the literature. For example, many studies use
passive (or no-contact) control groups that receive no inter-
vention. While this does control for important test–retest
practice effects, it does not control for potential motivational
or Hawthorne effects associated with being enrolled in an
intervention study (Shipstead, Redick, & Engle, 2012).
Therefore, the training-based improvements seen in studies
using passive controls might be due to nonspecific effects
such as expectations of improvement or heightened
motivation.

With this in mind, two recent, widely publicized training
studies used active controls and failed to find transfer to
measures of Gf (Harrison et al., 2013; Redick et al., 2013). It
is important to note, however, that their active control groups
did not improve over baseline, nor did they outperform their
associated passive control groups, suggesting that the failure
to find transfer was irrespective of control type. Therefore, we
tested the effect of control type across studies. Furthermore,
we have previously described a dose-dependent relationship
between training and transfer, such that more training leads to
more gain (Jaeggi et al., 2008). This relationship has been
replicated in some studies (Basak, Boot, Voss, & Kramer,
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2008; Dahlin, Backman, Neely, & Nyberg, 2009; Stepankova
et al., 2014; Tomic & Klauer, 1996), but not others (Redick
et al., 2013). We hypothesized that this dosage effect would
hold up across studies in the form of a positive correlation
between number of training sessions and degree of transfer.

Finally, due to the broad interest in cognitive training,
laboratories around the world are investigating the effects of
training and transfer. In fact, the first study of n-back training
on Gf was conducted in Switzerland (Jaeggi et al., 2008), and
from our own experiences conducting research both interna-
tionally and in the U.S., we have anecdotally observed moti-
vational differences across cultures. Therefore, we sought to
systematically test for any regional differences in Gf gains.
Such differences would not be surprising given the growing
literature demonstrating culturally mediated effects on various
aspects of cognitive functioning, including attention and
learning (Ketay, Aron, & Hedden, 2009; Muggleton &
Banissy, 2014; Nisbett & Norenzayan, 2002). Along a similar
vein, we further tested for research laboratory effects by
estimating whether transfer rates among studies involving
the original n-back training researchers, S.M.J. and M.B.,
differed from average transfer rates from other laboratories.
Other potential moderators of interest are summarized further
below (c.f., Methods).

Method

Study selection

We searched the PubMed and Google Scholar databases using
the following keywords taken separately or in combination: n-
back training, WM training, cognitive training, fluid intelli-
gence. Several unpublished dissertations were also found on
Google Scholar by incorporating the keyword “dissertation”
or “thesis” into one of the above search terms. We also
included unpublished work from researchers known to us.
Finally, we checked the references of selected papers and
searched relevant conference proceedings that were accessible
to us in order to ensure that there were not any additional
studies we had omitted.

Our inclusion criteria were as follows: Studies must
have trained participants on some form of adaptive n-back,
included a control group, and used some form of Gf out-
come measure. In order to avoid the confounding effects of
development and senescence, we restricted our analysis to
healthy young adults between the ages of 18 and 50 years.
Studies using a battery of different training interventions
where the effects of n-back could not be isolated were
excluded. Similarly, studies with missing or incomplete
data relevant to our effect size calculations were also
excluded, as were studies that trained for too short a dura-
tion (less than 1 week). In the end, 20 studies remained in

the final meta-analysis (Fig. 2). All papers were written in
the English language. Study selection criteria are detailed
in Fig. 1.

Coding

After study selection was completed, coding commenced
independently by two small teams. S.M.J. and M.B. made
up one team, while J.A. and E.S. made up another. Percent
agreement on the coding (interrater reliability) was high
(94.14%), with κ = 0.88 (SE = 0.03) using a conservative
expected agreement estimate of 50% (i.e., match or nomatch).
This falls in the “almost perfect agreement” range (Viera &
Garrett, 2005). Any disagreements were discussed and
resolved as a group. Thirty distinct treatment groups and 24
distinct control groups were identified, leading to 24 group
comparisons. Where multiple control groups existed within a
study, such as an active and passive control, the active control
was chosen, provided that the control intervention did not load
on WM or some other process that might itself improve Gf.
For example, Stephenson and Halpern (2013) used a spatial
span active control task that also tapped WM, and Oelhafen
et al. (2013) investigated the use of lure trials in n-back and,
therefore, considered an adaptive n-back without lures to be
an active control. In both cases, the passive control results
were selected.

The primary outcomes of interest were treatment/control
differences in scores on the Gf tasks used by each study. Gf is
typically defined as the ability to think logically and reason
through problems in novel situations, independently from
previously acquired knowledge. In our selection of Gf tasks,
we followed previously published guidelines that include a list
of common metrics that load strongly on Gf (Ackerman,
Beier, & Boyle, 2005; Gray & Thompson, 2004). All tasks
selected in our meta-analysis are taken directly from this list or
are similar in construct. In the end, all authors reviewed and
agreed upon the Gf classifications in this article, and they are
all included in the supplementary online materials (SOM;
Table S3).

Another variable of interest was remuneration for partici-
pating in a training study. This was reported directly in the
papers as either a lump sum or an hourly rate. In the latter case,
an estimate had to be made on the basis of the duration of
study participation. When remuneration was not reported, the
authors were contacted directly for the information. For inter-
national studies, remunerationwas coded in U.S. dollars based
on the exchange rate at the time of submission for that partic-
ular article. All values were inflated from the date of publica-
tion to current U.S. price levels in 2014.

Furthermore, we quantified several different dimensions of
the training regimen, such as number of sessions (days) and
length per session (minutes). We also modeled the training
curves published in individual studies using a regression
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approach with logarithmic transformation of session number.
This analysis yielded two parameters: the starting n-back level
on day 1 (intercept) and the rate of improvement (slope). To
ensure comparability, only dual n-back studies were included
in this training curve analysis (N = 20), although two studies
were excluded because their session lengths were twice as
long as those in most other studies and, thus, their training
curves were deemed incomparable (Kundu, Sutterer, Emrich,
& Postle, 2013; Thompson et al., 2013). There were not
enough single n-back studies to perform a separate analysis:
Of the seven single n-back training groups, four had incom-
plete information (Schwarb, 2012; Stephenson & Halpern,
2013), and one (Heinzel et al., 2014) was excluded due to a
different adaptivity algorithm, leaving only two remaining
studies, which we did not analyze.

Other variables of interest that we coded were type of
control group (active or passive), training location (interna-
tional or U.S., laboratory or home), n-back type (dual or
single, visual or auditory), whether or not our team was
involved, type of Gf measure (matrix reasoning or other,
visual or verbal), attrition rate, and age.

Statistical analyses

We first assessed publication bias, also referred to as the “file
drawer problem,” in our sample of studies (Sterne, Gavaghan,
& Egger, 2000). This refers to the phenomenon in which studies

reporting null results are less likely to be published and, there-
fore, the extant literature included in a meta-analysis is suscep-
tible to bias. Although we attempted to address this issue by
including unpublished works within our data set, it is likely that
there are more out there. Publication bias can never be fully
resolved, only mitigated. However, in our case, it is fortunate
that the controversy surroundingWM training has facilitated the
publication of null effects, which may result in a more repre-
sentative sample of impact estimates. Nevertheless, statistical
methods were used to estimate the extent of bias in our sample.

Next, we assessed heterogeneity using the I2 statistic,
which represents the percentage of total variation between
studies that is due to heterogeneity rather than chance or
sampling error alone (Higgins, Thompson, Deeks, &
Altman, 2003). In other words, a high I2 value implies that
not all of the studies included in the meta-analysis are, in fact,
measuring the same effect and that some of the variation is due
to differences in study design or sampling biases across stud-
ies, rather than sampling error alone. Conversely, a low I2

value indicates homogeneity across studies and argues for the
generalizability of results.

Effect sizes (ESs) were calculated with the Comprehensive
Meta-Analysis (CMA) software package (Borenstein,
Higgins, & Rothstein, 2005), using a random effects model
to calculate standardized mean differences (SMDs), adjusted
for small sample sizes using Hedges g (Rosenthal, 1991). This
was done in two different ways. First, we calculated the SMD
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between posttest and pretest for both the treatment (Tx ES)
and control (Ctrl ES) groups separately. Positive values indi-
cate improvements on Gf measures at posttest, relative to
pretest. Additionally, we also calculated the SMDs between
treatment and control groups at posttest only (Post ES), in
order to summarize each study with only one ES (and its
associated standard error) that directly compares treatment
and control groups. Positive values indicate improvements in
treatment groups above and beyond improvements in control
groups. Post ESs were calculated per previous recommenda-
tions (Dunst, Hamby, & Trivette, 2004; Higgins, & Green,
2011), under the assumption that no group differences existed
at pretest. This assumption was tested by looking at the SMD
between treatment and control groups at pretest (baseline ES).
For simplicity, subsequent interpretations, unless otherwise
specified, are based on Post ES, but Tx ES and Ctrl ES
calculations are also presented in Table 1 for comparison.
Variances of ES were tested for equality by Levene’s test,
and t-tests were conducted accordingly to determine signifi-
cance levels of ES comparisons.

Moderator analyses were performed with both categorical
and continuous predictors. We divided our studies into sub-
groups based on categorical predictors (e.g., dual vs. single n-
back), and compared individual subgroup ESs. Post ESs were
regressed on continuous predictors, covarying out baseline
differences, using CMA's built-in unrestricted maximum like-
lihood meta-regression function. Some of our data were influ-
enced by outlying values, but it was not always clear whether
the retention or removal of outliers made more theoretical
sense. Therefore, given the relatively small sample sizes and
the large, but not necessarily undue influence that these out-
liers can exert, we have included alternate regression models
in the SOM (Table S1) that have outliers trimmed for com-
parison. Outliers were categorized as data points that were 3
median absolute deviations away from the overall median
(Leys, Ley, Klein, Bernard, & Licata, 2013).

ESs from multiple Gf outcomes within a single treatment or
control group were averaged together into one net effect.
Similarly, ESs from multiple treatment groups (e.g., dual and
single n-back) within a single study were collapsed into one
weighted average (based on sample size) if they were compared
with the same control group. If each treatment group had its
own control group within a study, then ESs were calculated
separately and treated as independent (Borenstein, Hedges,
Higgins, &Rothstein, 2009). The end result was an independent
set of ESs such that each treatment or control group was never
represented more than once in the overall analysis (n = 24).

In subgroup analyses, however, a single treatment or control
group may be factored into the separate ES calculations of
different subgroups. For example, in Jaeggi et al. (2014), two
treatment groups (dual and single n-back) were compared with
the same control group. In the subgroup analysis of dual versus
single n-back, this same control group was compared

separately with each treatment groupwithin the dual and single
n-back subgroups (creating two separate ESs), even though the
overall analysis collapsed these three groups into just one net
ES. This explains some of the sample size discrepancies in
Table 1 (i.e., the sum of subgroup sample sizes can be greater
than the overall sample size of 24). In the end, the same data
were never represented more than once in any one particular
ES calculation, creating an independent set of ESs in each of
our analyses.

Results

Description of studies

The 20 studies included here were all completed between 2008
and 2013. Sample sizes of treatment groups varied between 7
and 36 participants (mean ± SD: 19.96 ± 8.13), and control
groups between 8 and 43 (mean ± SD: 19.29 ± 8.74). Mean age
of participants was 22.85 years (SD: 2.60). In total, we analyzed
data from 98 Gf outcome measures among 559 n-back trained
participants and 463 controls. See SOM (Table S3) for a list of
each of the unique Gf outcomes used in our meta-analysis.

A statistical analysis revealed no evidence of publication
bias in our sample of studies. Egger’s regression (Egger, Davey
Smith, Schneider, & Minder, 1997), which is based on the
association between standard error and ES, revealed no rela-
tionship (p = .68). Therefore, smaller studies (indexed by
higher standard errors) are not systematically reporting higher
ESs (Fig. 2), as would be expected in the presence of publica-
tion bias, since smaller studies are more likely to show extreme
ESs. Nevertheless, since our relatively small sample of studies
lack substantial power, we also calculated the classic fail-safeN
test (Orwin, 1983), which revealed that it would take 59 studies
reporting null results (g = 0) to be included in our analyses in
order for our findings to lose statistical significance.1

We also estimated heterogeneity, which quantifies the
between-study variation caused by differences other than
sampling error (e.g., study design, etc.). Some heterogeneity
(I2 = 27.88%, p = .08) was found in Tx ES, which only looked
at improvements within the treatment groups, but this hetero-
geneity was largely controlled out in Post ES (I2 = 6.92%, p =
.37), which directly compares treatment to control groups at
posttest. According to the guidelines laid out by Higgins et al.
(2003), values of 25%, 50%, and 75% are considered low,
moderate, and high amounts of heterogeneity, respectively.

1 Classic fail-safe N calculation: The 24 observed studies, with weighted
g = 0.24, led to a combined weighted ES of g = 5.78. Adding the 59 null
effect studies would increase the sample size to n = 83. Average ES in the
new sample would be: 5:78

83 ¼ :069 . The new SE would be calculated

assuming the same SD: 0:338
ffiffiffiffi

83
pð Þ ¼ :037 . Therefore, with 59 null effect

studies, the ES would drop down to g = .07, with SE = .04.
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Our meta-analysis of n-back training studies in healthy young
adults therefore shows an overall low to trivial amount of
statistical heterogeneity. This makes sense, given our restricted
analysis of only one intervention type (n-back) among only one
subpopulation: healthy, young adults. However, the assumption
of homogeneity may be premature. The relatively small sample
sizes in our studies lead to wide, overlapping confidence inter-
vals between studies (Fig. 2), which contribute toward the
statistical assumption of homogeneity. In fact, the confidence
intervals overlap almost entirely with the range of effect that n-
back could reasonably be assumed to have (see overall effect
size below), thereby underpowering the ability to detect hetero-
geneity. However, with ESs ranging from −0.28 to 1.11 (Fig. 2)
and clear methodological differences in how n-back is imple-
mented across studies, it is important to assess these differences
with moderator analyses, which we have done further below.

Overall effect size

Results from individual studies are shown in Fig. 3 and
detailed in Table 1. The treatment/control group difference

in Gf at posttest (g = 0.24, SE = 0.07) is significantly greater
than the treatment/control group difference at baseline (g =
−0.003, SE = 0.08; group difference: p = .03). With a baseline
ES of essentially 0, we conclude that no preexisting differ-
ences are present at the group level between treatment and
control groups. The relatively large standard error of this
difference (0.08) is due to two individual studies (Salminen,
Strobach, & Schubert, 2012; Schweizer, Hampshire, &
Dalgleish, 2011) that did show statistically significant but
opposite-signed baseline differences. When we calculate the
ES of pre- to posttest improvement separately for both treat-
ment and control groups and take their difference, we obtain
an almost identical overall effect (Tx ES – Ctrl ES = 0.41 –
0.18 = 0.23).

Subgroup analyses

Table 1 also shows the subgroup analyses for categorical
moderators. Two subgroup contrasts reached conventional
levels of statistical significance, with coincidentally identical
pairs of ES estimates (see the Discussion section). First,

Table 1 Overall and subgroup analyses

Overall n ES p
Post ES 24 .24 (.07) .03*
Baseline ES 24 −.003 (.08)
Tx ES 30 .41 (.07) .03*
Ctrl ES 24 .18 (.07)

Subgroups n Post ES p n Tx ES p n Ctrl ES p

Active Control 12 .06 (.09) .01* 13 .25 (.10) .04* 12 .08 (.10) .20
Passive Control 12 .44 (.10) 17 .54 (.90) 12 .28 (.10)

International 13 .44 (.10) .01* 15 .66 (.09) <.01* 13 .29 (.09) .13
U.S. 11 .06 (.09) 15 .21 (.08) 11 .08 (.09)

Laboratory 16 .23 (.09) .81 20 .36 (.09) .32 16 .22 (.08) .50
Home 8 .27 (.12) 10 .51 (.12) 8 .11 (.12)

Dual n-Back 22 .24 (.07) .53 23 .43 (.08) .69 22 .18 (.07) .86
Single n-Back 5 .36 (.13) 7 .36 (.14) 5 .15 (.13)

Auditory n-Back 3 .27 (.16) .46 3 .21 (.20) .29 3 .01 (.16) .64
Visual n-Back 6 .46 (.13) 6 .55 (.16) 6 .14 (.12)

Visual and auditory n-Back¥ 20 .21 (.08) 21 .41 (.09) 20 .19 (.07)

Jaeggi/ Buschkuehl group 10 .23 (.11) .89 12 .46 (.11) .58 10 .24 (.10) .52
Other research group 14 .25 (.10) 18 .38 (.09) 14 .14 (.09)

Matrix Gf tasks 23 .20 (.08) .53 29 .32 (.07) .67 23 .05 (.07) .10
Nonmatrix Gf Tasks§ 13 .13 (.08) 17 .37 (.1) 13 .30 (.12)

Verbal Gf tasks 5 .13 (.12) .54 6 .33 (.18) .70 5 .39 (.23) .25
Visuospatial Gf tasks§ 24 .23 (.07) 30 .40 (.07) 24 .15 (.07)

Note. Table of all effect size calculations. Numbers in parentheses represent standard errors. Post effect size (ES) was calculated as standardized mean
difference (SMD) between treatment and control at posttest. Baseline ES was SMD between treatment and control at baseline. Tx ESwas SMD between
pre- and posttests of the treatment groups. Ctrl ES was SMD between pre- and posttests of the control groups. The Post ES estimates of the international/
U.S. and active/passive control subgroups draw uponmany of the same studies and, therefore, yield similar and significant results. However, the identical
nature of the pairs of ES estimates is coincidence and partially an artifact of rounding. See Discussion.
¥ In these analyses, visual and auditory n-back is a subset of dual n-back, which also includes dual visual modalities.
┼F test from ANOVA revealed no significant differences between any of the three means.
§ ES in these analyses are smaller than overall average, due to disaggregation of Gf measures in these calculations.
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international (outside the U.S.) studies demonstrated an aver-
age ES of .44 (SE = .10), while U.S. studies only averaged .06
(SE = .09). The difference is significant at the p < .01 level.
Second, studies that used passive controls demonstrated more
net transfer (g = 0.44, SE = .10) than those with active controls
(g = 0.06, SE = .09), a difference that is also statistically
significant at p < .01. However, there was no difference in
the performance of either type of control group when com-
pared directly with each other (Ctrl ES; p = .2), but there was
significant improvement in the performance of treatment

groups (Tx ES; p = .04) within those studies that also use
passive controls. Since Tx ES is calculated independently of
the control group, the improvements found in these studies are
irrespective of the type of control used.

Additionally, we found no difference depending on wheth-
er studies used dual or single n-back, which corroborates
previous findings (Jaeggi et al., 2014; Jaeggi et al., 2010).
We could not test the hypothesis that visual training is more
effective than auditory training (cf. Stephenson & Halpern,
2013), owing to an inadequate sample size of 3 studies within
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Fig. 2 Funnel plot of publication bias. Individual studies' mean weighted Post ES are graphed against standard error (index of sample size). Studies with
the largest standard errors (smallest sample sizes) are shown at bottom

Fig. 3 Overall effect size across studies. Forest plot showing Post ES (Hedges g) and 95% confidence intervals from each individual study. Overall
weighted ES is displayed at bottom
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the auditory group. Training in the laboratory or at home did
not make a difference either. We also assessed the nature of the
transfer by examining whether certain types of Gf tests were
more sensitive to n-back training than others. Transfer seemed
to occur equally to both verbal and visual Gf tasks, although
there were only a minority of studies that employed any form
of verbal reasoning (n = 5), making this finding preliminary.
Similarly, we saw fairly equal transfer both to matrix reason-
ing tasks (the most commonly used measure to assess Gf
transfer) and to other types of Gf tasks, thereby suggesting
that the transfer of n-back training may not be restricted to
matrix reasoning tests (Shipstead et al., 2012) but, rather, may
reflect a more global improvement inGf. Finally, there was no
statistical difference in ES between the 7 studies involving
study authors S.J.M. and M.B. and the 13 studies that did not.

Regression analyses

Our regression models, as summarized in Table 2, revealed
one primary finding: The effect of remuneration for study
participation (in units of hundreds of dollars) was significantly
and negatively associated with Post ES (p = .05, b = −.07),
controlling for baseline differences (Fig. 4). However, the
effect lost significance when outliers were trimmed (p = .22,
b = −.07; SOM, Table S1), although the slope remains the
same. No other predictors reached significance, but session
length (p = .06, b = −.03) and starting n-back level (p = .06,
b = −.33) both correlated marginally and negatively with Post
ESwhen outliers were removed (SOM, Table S1).We also ran
several multiple regression models (Table 3) to examine pos-
sible confounding variables that help explain the greater effect
observed in studies with passive controls detailed above.
Models 2 and 3 in Table 3 examined the differential effects
of controlling for remuneration and international status (with
baseline differences covaried out). Both individually appeared
to contribute toward the effect observed in passive controls

and, together, reduced the ES gain caused by the condition of
having a passive control from .31 to .09, rendering the p-value
nonsignificant.

Discussion

The primary finding from this meta-analysis is a small but
statistically significant net effect of n-back training on Gf
outcome measures (g = 0.24, SE = .07), about the equivalent
of 3–4 points on a standardized IQ test. Despite the small
ES, several important points should be borne in mind. First
is that these results are based on a restricted range of the
general population: healthy, young adults between 18 and 50
years of age who were largely at the peak of cognitive
functioning. Within this restricted range of young adults,
the majority of participants were college undergraduates,
thereby skewing our samples even younger (mean age ±
SD: 22.85 ± 2.60). A common property of statistics holds
that sampling from restricted ranges of the total population
usually biases ES downward, due to reduced variability
(Bobko, Roth, & Bobko, 2001; Fritz, Morris, & Richler,
2012). On a similar note, a common practice within our
sample of studies was to split the items on Gf outcome
measures in half in order to have a comparable pretest and
posttest version. While this is effective in reducing test–retest
practice effects, an unfortunate consequence is a reduction in
measurement reliability (Jaeggi et al., 2014), which also
causes downward biases in ES due to an increase in error
variance that weakens the strength of its correlations (Bobko
et al., 2001).

Taken together, we expect that the results reported in this
meta-analysis represent a low-end estimate of the true extent
of improvement that n-back training can have on measures of
Gf.Moreover, our moderator analyses (described below) sug-
gest several possible parameters that could be optimized in

Table 2 Regressions of continuous moderators

Moderators n b (SE) p

Remuneration (hundreds of dollars) 24 −.07 (.03) .05*

Session length (minutes) 24 −.01 (.01) .21

No. of sessions 24 −.01 (.02) .72

Starting n-back level 20 −.02 (.12) .89

Rate of training improvement (slope) 20 −.45 (.42) .29

Note. Regression table of Post ES on continuous moderators, covarying
out baseline differences. Post ES is defined as standardized mean differ-
ence (Hedges g) between treatment and control groups at posttest. See
Fig. 4 for graph of remuneration. Outliers, defined as 3 median absolute
deviations from the overall median, are reported and trimmed in the SOM
(Table S2).

* p ≤ .05

Fig. 4 Regression plot of Hedges g (Post ES) on remuneration. Diame-
ters of circles are proportional to the sample size of the training groups
they represent. Summary data are presented in Table 2
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order to design more efficacious interventions that might have
more substantive impacts on intellectual and societal function-
ing. In the words of Carl Sagan, extraordinary claims require
extraordinary evidence, and this skepticism has rightly been
applied to n-back training’s effect on improving Gf. Although
claims to date are ordinarily based on single studies, each with
various methodological limitations, this meta-analysis of 20
different studies, 30 different treatment groups, and 24 differ-
ent control groups, with data collected from 98 different Gf
outcome measures, is a first step toward providing this ex-
traordinary evidence.

Moderator analyses

The most striking moderator of the observed transfer effect is
geographic region. International studies tend to find more
transfer than U.S. studies. There is a substantial body of
literature available on the effects of culture on cognition (cf.
Muggleton & Banissy, 2014). These effects may contribute to
differences not only between international and U.S. research
participants, but also between methodological practices of
researchers. However, due to the plurality of cultures (mostly
European and American) represented in our meta-analysis, the
precise reasons for the observed regional differences are not
immediately clear. There is no difference in baseline ES
between international and U.S. studies (International vs.
U.S.: g = 0.03 vs. g = −0.03; p = .73), thereby ruling out
preexisting differences between cultures or differences in
participant characteristics due to the highly selective universi-
ties in which certain U.S. studies were conducted. One hy-
pothesis, however, based on our own experiences with both
U.S. and international populations, is that the former may be
generally less compliant, a crucial factor in an intensive train-
ing program such as the one investigated here. To quantify
this, we analyzed attrition rates reported in U.S. and interna-
tional studies and found significant differences (U.S., 21%;
International, 5%), t(34) = 2.0, p = .05, d = 0.52, across both
treatment and control groups, suggesting cultural differences
in attrition that may be reflective of issues surrounding general
compliance and investment in research. These differences in

compliance, as well as more general differences between the
methodologies of international and U.S. studies, need to be
tested more systematically in future research.

Additionally, there were a couple of interesting moderators
that were not found to influence transfer. First, there was no
difference in ES between research conducted by the present
study authors, S.M.J. and M.B. and research conducted by
other groups (Table 1). Therefore, although experimenter bias
is always a prevalent concern in research, it did not signifi-
cantly alter the ES of training across studies. Second, the type
of control group used in studies (active or passive) did not
moderate the training effect. Although our meta-analysis did
reveal significantly greater transfer in studies that used passive
controls, there was no significant difference in performance
between the active and passive control groups themselves
(Table 1; Ctrl ES), suggesting that the observed effects are
likely driven by other confounding variables within passively
controlled studies other than the type of control group used.
Therefore, there is no evidence to support the idea that
Hawthorne effects mediate the findings of transfer in studies
with passive controls.

Nevertheless, the failure to reject null hypotheses of no
difference between groups does not necessarily indicate the
absence of an effect. As with many null findings, larger
sample sizes may eventually show significant differences.
However, in our analysis of research group effects (S.M.J./
M.B. group vs. other research group; Table 1), there is not
even a trend in any direction (g = 0.23 vs. g = 0.25). In the
analysis of control groups, however, the present direction of
effects actually suggests that passive control groups could end
up outperforming active control groups (passive vs. active: g =
0.28 vs. g = 0.08; Table 1), which runs opposite to the
direction suggsted by the idea that Hawthorne or expectancy
effects drive improvements in both active control and treat-
ment groups. However, it should be noted that not all of the
active control groups in our analyses were of the same type.
Therefore, it is possible that certain studies employ more
effective active controls than do others, and true differences
may exist between these more effective active controls and
passive controls that may be masked in our meta-analysis.

Table 3 Multiple regression of effect size on control condition

Regressor Model 1 Model 2 Model 3 Model 4

B SE p B SE p B SE p B SE p

Baseline differences (covariate) .26 .17 .13 .28 .18 .11 .30 .18 .09 .31 .18 .08

Passive control .31 .14 .03 .23 .15 .13 .14 .17 .42 .09 .18 .53

Remuneration −.05 .04 .22 −.04 .04 .31

International .27 .16 .09 .25 .16 .13

Note. Multiple regression of effect size on control condition, controlling for remuneration and geographic region. Baseline differences, defined as the
Hedges g ES between treatment and control groups at pretest, were covaried out. Passive control and international were coded as dummy variables, with
active control and U.S. omitted as reference variables. Units of remuneration are in hundreds of dollars.
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Although the increased transfer in passively controlled
studies in our analyses seems not to be driven by control
group type, large improvements were found in Tx ES
(Table 1), which is calculated independently of the control
group. In other words, the large gap between treatment groups
and passive controls (Post ES) is not due to an
underperforming of passive controls, relative to active ones,
but rather to an overperforming of the treatment groups (Tx
ES). We sought to explain this overperformance by control-
ling for geographic region and remuneration. Passive control
groups were mostly enrolled in international studies (10/12),
as compared with active control groups (3/12), and these
passively controlled studies also remunerated participants sig-
nificantly less money, on average, for study participation
($61.75 vs. $220.50), t(14) = 2.23, p = .04, d = 0.87. These
factors, individually and together, account for a sizable portion
of the passive control effect and reduce its estimated effect to
the point of statistical insignificance (Table 3). The potential
effects of remuneration are discussed further below. Despite
this, there is still a large amount of shared variance between
passively controlled and international studies that needs to be
teased apart in future research. Moreover, it needs to be
clarified whether the relative overperformance of passively
controlled or international studies represents an inflation of
true effects or whether these true effects are simply masked by
certain methodology associated with actively controlled or
U.S. studies.

In addition to subgroup analyses, we used meta-regression
to examine continuous predictors. We have previously posited
that remuneration for study participation might reduce intrin-
sic motivation and adversely affect training outcomes (Jaeggi
et al., 2014). Our regression analysis equivocally supports this
hypothesis. Although we did find a negative correlation, the
effect lost significance (from p = .05 to p = .22) after trimming
outliers (SOM, Table S1). Nevertheless, the slope of the effect
(−.07) remained the same, suggesting that the loss of signifi-
cance might be indicative more of a loss of power than of the
absence of an effect, particularly given our relatively small
sample size. Moreover, the effects of rewards and compensa-
tion on performance have an extensive body of literature
behind them, which at times can also show mixed results
(Cameron, Banko, & Pierce, 2001). Therefore, while the
precise nature of the effects of remuneration for n-back train-
ing are still unclear, it is nevertheless an important consider-
ation for future research to at least bear in mind, given that our
present data suggest that every hundred dollars a subject is
compensated reduces the ES ofGf transfer by .07. It would be
important to verify whether this trend remains with a larger
sample of studies.

We also wanted to understand the type of training param-
eters that promote success. Although none of our analyzed
parameters (session length, number of sessions, starting n-
back level, and rate of improvement) reached significance in

our main regression analyses, the SOM contains alternate
regression models with trimmed outliers that revealed mar-
ginally significant negative trends between Gf transfer and
both starting n-back level (p = .06) and session length (p =
.06; Table S1). The former suggests that those who start with
more room to improve (i.e., lower n-back level on day 1) may
also gain the most. With regards to the latter, it is possible that
shorter sessions are viewed as more achievable by participants
and, therefore, more enjoyable, which might promote training
quality. Longer sessions may cause fatigue that reduces moti-
vation for subsequent sessions. Importantly, the shortest ses-
sion length in our sample was only 18.5 min, so it is not clear
what would happen below this data range. We predict that the
inclusion of even shorter sessions would reveal an optimal
training length, before and after which transfer is reduced. It is
possible that our data range represents only the descending
latter half of such a parabolic function.

A note of caution is warranted here regarding these regres-
sion results: given the heavy influence of outliers (SOM,
Table S1) and the relatively small sample sizes, these results
should be viewed as preliminary but should present a good
scaffold for future research to build upon. It would be impor-
tant to see how these regression trends develop in future meta-
analyses that include more samples.

Conclusions

Our work demonstrates the efficacy of several weeks of n-
back training in improving performance on measures of Gf.
We urge that future studies move beyond attempts to answer
the simple question of whether or not there is transfer and,
instead, seek to explore the nature and extent of how these
improved test scores may reflect “true” improvements in Gf
that can translate into practical, real-world settings. On theo-
retical grounds, the observed improvements are plausible,
since Gf and n-back performance draw upon overlapping
cognitive and neural processes, including shared demands
on WM and interference resolution (Burgess et al., 2011;
Buschkuehl, Hernandez-Garcia, Jaeggi, Bernard, & Jonides,
2014; von Bastian & Oberauer, 2013). Since Gf is a funda-
mental cognitive skill that underlies a wide range of life
functions, even small improvements can have profound so-
cietal ramifications, particularly given the healthy young
adults in our analyses, representative of society's workforce.
Taken together, it is becoming very clear to us that training
on WM with the goal of trying to increase Gf holds much
promise.
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