Title
Optimizing Distributed Practice: Theoretical Analysis and Practical Implications

Permalink
https://escholarship.org/uc/item/1n15d7xr

Journal
Experimental Psychology, 56(4)

ISSN
1618-3169

Authors
Cepeda, Nicholas J
Coburn, Noriko
Rohrer, Doug
et al.

Publication Date
2009

DOI
10.1027/1618-3169.56.4.236

Peer reviewed
Optimizing Distributed Practice: Theoretical Analysis and Practical Implications

Nicholas J. Cepeda
York University and University of California, San Diego

Noriko Coburn
University of California, San Diego

Doug Rohrer
University of South Florida

John T. Wixted
University of California, San Diego

Michael C. Mozer
University of Colorado, Boulder

Harold Pashler
University of California, San Diego

More than a century of research shows that increasing the gap between study episodes using the same material can enhance retention, yet little is known about how this so-called distributed practice effect unfolds over nontrivial periods. In two three-session laboratory studies, we examined the effects of gap on retention of foreign vocabulary, facts, and names of visual objects, with test delays up to 6 months. An optimal gap improved final recall by up to 150%. Both studies demonstrated non-monotonic gap effects: Increases in gap caused test accuracy to initially sharply increase and then gradually decline. These results provide new constraints on theories of spacing and confirm the importance of cumulative reviews to promote retention over meaningful time periods.

Keywords: spacing effect, distributed practice, long-term memory, instructional design

Optimizing Distributed Practice:

Theoretical Analysis and Practical Implications

An increased temporal lag between study episodes often enhances performance on a later memory test. This finding is generally referred to as the “spacing effect,” “lag effect,” or “distributed practice effect” (for reviews, see Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006; Dempster, 1989; Dempster & Perkins, 1993; Donovan & Radosevich, 1999; Janiszewski, Noel, & Sawyer, 2003; Moss, 1995). The distributed practice effect is a well known finding in experimental psychology, having been the subject of hundreds of research studies (beginning with Ebbinghaus, 1885/1964, and Jost, 1897). Despite the sheer volume of research, a fundamental understanding of the distributed practice effect is lacking; many qualitative theories have been proposed, but no consensus has emerged. Furthermore, although distributed practice has long been seen as a promising avenue to improve educational effectiveness, research in this
area has had little effect on educational practice (Dempster, 1988, 1989; Pashler, Rohrer, Cepeda, & Carpenter, 2007).

Presumably for reasons of convenience, most distributed practice studies have used brief spacing gaps and brief retention intervals, usually on the order of seconds or minutes. Few data speak to retention overnight, much less over weeks or months. Therefore, there is little to basis for advice about how to maximize retention in real-world contexts. To begin to fill this notable hole in the literature, we present two new experiments that examine how the duration of the spacing gap affected the size of the distributed practice effect when the retention interval was educationally meaningful.

Distributed Practice: Basic Phenomena

The typical distributed practice study – including the studies described below – requires subjects to study the same material in each of two learning episodes separated by an inter-study gap (henceforth, gap). The interval between the second learning episode and the final test is the test delay. In most studies, the test delay is held constant, so that effects of gap can be examined in isolation from test delay effects.

A recent literature review (Cepeda et al., 2006) found just 14 studies that provided comparisons of very short (less than three hours) and long (one day or more) gaps with test delays of one day or more (Bahrick, 1979; Bahrick & Phelps, 1987; Bloom & Shuell, 1981; Childers & Tomasello, 2002; Fishman, Keller, & Atkinson, 1968; Glenberg & Lehmann, 1980; Gordon, 1925; Harzem, Lee, & Miles, 1976; Keppel, 1964; Robinson, 1921; Rose, 1992; Shuell, 1981; Watts & Chatfield, 1976; Welborn, 1933). In each study, a one-or-more day gap was superior to a very short gap. Thus, the extant data suggest that a gap of less than one day is reliably less effective than a gap of at least one day, given a test delay of one day or more.

Is a one-day gap sufficient to produce most or even all of the distributed practice benefit? To answer this question, we reviewed studies that used multiple gaps of one day or more, with a fixed test delay of at least one day. Thirteen studies satisfy these criteria (Ausubel, 1966; Bahrick, 1979; Bahrick, Bahrick, Bahrick, & Bahrick, 1993; Bahrick & Phelps, 1987; Burtt & Dobell, 1925; Childers & Tomasello, 2002; Edwards, 1917; Glenberg & Lehmann, 1980; Simon, 1979; Spitzer, 1939; Strong, E. C., 1973; Strong, E. K., Jr., 1916; Welborn, 1933). We found that many of these 13 studies had undesirable methodological features. For instance, several studies trained subjects to a performance criterion on Session 2, and the presumed increase in total study time after longer gaps confounds these studies. As an example of this problem, Bahrick et al. (1993) reported that subjects required twice as many trials in the second study session in order to achieve criterion, as gap increased from 14 to 56 days. Also problematic, Welborn (1933) used a 28-day test delay, but also omitted feedback from Session 2, implying that the second session probably provided no opportunity for learning those items not learned during Session 1 (Pashler, Cepeda, Wixted, & Rohrer, 2005). Once these problematic studies were excluded, just four studies remain (Figure 1; Ausubel, 1966; Childers & Tomasello, 2002; Edwards, 1917; Glenberg & Lehmann, 1980). These studies suggest that a gap of roughly one day is optimal, but they hardly demonstrate this claim with any certainty, especially given the restricted set of test delays used.

The possibility that test accuracy might follow an inverted U-function of gap has been suggested by previous authors (Balota, Duchek & Paullin, 1989; Glenberg, 1976; Glenberg & Lehmann, 1980; Peterson,
Wampler, Kirkpatrick, & Saltzman, 1963). There are several possibilities here. First, a fixed gap (e.g., one day) might be optimal, regardless of test delay, meaning that a gap less than or greater than one day would produce less than optimal test scores. Indeed, the studies shown in Figure 1 at first glance suggest that a one-day gap is always optimal. Second, optimal gap might be a fixed proportion of test delay (e.g., 100% of the test delay; Crowder, 1976; Murray, 1983), although a solid empirical or theoretical case for a ratio rule has not been offered. Third, optimal gap might vary with test delay in some other way that would not conform to a ratio rule. For example, the optimal gap might increase as a function of test delay and yet be a declining proportion of test delay.

Theoretical Constraints

Because no one has quantitatively characterized the nature of distributed practice functions over time intervals much beyond a day, existing theories of distributed practice may not have much bearing on the phenomenon as it arises over a much longer time period. Indeed, some existing distributed practice theories were formulated in ways that seem hard to apply to gaps longer than a few minutes. For example, many theories (e.g., all-or-none theory; Bower, 1961) focus on the presence or absence of items in working memory. If distributed practice benefits retention at gaps far exceeding the amount of time an item remains in working memory, then such theorizing must be incomplete at best. Including gaps of at least one day insures that the range includes at least one night of sleep, which may play a significant role in memory retention (Peigneux, Laureys, Delbeuck, & Maquet, 2001).

Overview of Experiments

The studies reported here assessed the effects of gap duration on subsequent test scores with moderately long gaps and test delays. In Experiment 1, the test delay was 10 days, and gaps ranged from 5 minutes to 14 days. These values are roughly equal to those used in the four studies shown in Figure 1; thus, Experiment 1 allows us to compare our results with prior findings and expands the sparse literature using meaningful test delays. Experiment 2 used a six-month test delay and gaps ranging from 20 minutes to 168 days. Experiments 1 and 2 are the first unconfounded examinations of paired associate learning in adults, using day-or-longer test delays. By comparing the results of these studies, we can tentatively support or refute the claim that optimal gap varies with test delay, as suggested previously (Crowder, 1976; Murray, 1983).

Experiment 1

The first study examined how retention is affected as gap is increased from 5 minutes to 14 days, for a test delay of 10 days. Subjects learned Swahili-English word pairs; the Swahili language was selected because English speakers can readily articulate Swahili words even though the language is entirely unfamiliar to most students at the University of California, San Diego (when asked, no subjects in our sample reported prior exposure to Swahili).

Method

Subjects. A total of 215 undergraduate students from the University of California, San Diego, enrolled in a three session study. Those who finished all three sessions (n=182) received course credit and US$6.00 payment. There were 31, 31, 30, 29, 29, and 32 subjects who yielded usable data in the 0-, 1-, 2-, 4-, 7-, and 14-day gap conditions, respectively.

Materials. Subjects learned the (single-word, 3-10 letter) English translations for forty 411 letter Swahili words.

Design. Subjects were randomly assigned to one of six conditions (0, 1, 2, 4, 7, or 14 day gap). For the 0-day condition, the gap was approximately 5 min.

Procedure. Subjects completed two
learning sessions and one test session. They were trained and tested individually on a computer located in a sound-attenuated chamber. Figure 2 shows the overall procedure for each experimental session. The first session began with instructions stating “You will be learning words from a foreign language. First you will see the foreign word and its English translation. Try to remember each correct English translation. You will be tested until you correctly translate each foreign word two times. The correct translation will appear after you make your response.” Immediately afterwards, subjects saw all 40 Swahili-English word pairs, presented one at a time in a random order, for 7 s each, with each Swahili word appearing directly above its English translation. Then, subjects began test-with-feedback trials in which they repeatedly cycled through the list of Swahili words and attempted to recall the English equivalent for each Swahili word. Subjects were prompted to type the English equivalent immediately after seeing each Swahili word. Subjects could take as long as needed to type their response. Immediately after a response was made, the computer sounded a tone indicating a correct or incorrect response, and both the Swahili word and its English equivalent appeared on the screen for 5 s (regardless of whether the subject had responded correctly). After two correct responses were made for a given word (although not necessarily on consecutive list presentations), the word was not presented again. Subjects continued to cycle through the list (in a new random order each time) until there were no items left.

RESULTS AND DISCUSSION

Figure 3 shows performance on the first test of Session 2 and the Session 3 test (administered 10 days after Session 2). The first test of Session 2 measured retention after a single exposure period, and these data therefore show a traditional forgetting function. For the final test, which reflects the benefits of spacing, a one-day gap optimized recall. Moreover, varying gap had a large effect: Recall improved by 34% as gap increased from zero to one day. Increases in gap beyond a single day produced a small but relatively steady decline in final-test scores, with recall accuracy decreasing just 11% as gap increased from 1 to 14 days.

These distributed practice effects were analyzed in several different ways. First, effect sizes were computed for each adjacent pair of gaps (Table 1). These effect sizes show the large benefit of increasing gap

response time was allowed. Auditory feedback followed immediately after each response, and visual feedback (the correct answer) was displayed for 5 s following each response. The entire list of 40 word pairs was tested with feedback, two times, in a different random order each time (the random order was different for each subject). (Subjects were not taught to criterion in the second learning session, as they were in the first, because that would have confounded gap and the number of trials required during the second session, as explained in the Introduction.)

Subjects returned for the test session 10 days after the second session (if the 10th day fell on a weekend, the test was shifted to the nearest weekday). Subjects were again instructed to type the English translation for each Swahili word. Unlike in the learning sessions, feedback was not provided. The Swahili words appeared in a random order, which was different for each subject, and each word was tested once.

RESULTS AND DISCUSSION

Figure 3 shows performance on the first test of Session 2 and the Session 3 test (administered 10 days after Session 2). The first test of Session 2 measured retention after a single exposure period, and these data therefore show a traditional forgetting function. For the final test, which reflects the benefits of spacing, a one-day gap optimized recall. Moreover, varying gap had a large effect: Recall improved by 34% as gap increased from zero to one day. Increases in gap beyond a single day produced a small but relatively steady decline in final-test scores, with recall accuracy decreasing just 11% as gap increased from 1 to 14 days.

These distributed practice effects were analyzed in several different ways. First, effect sizes were computed for each adjacent pair of gaps (Table 1). These effect sizes show the large benefit of increasing gap
from zero days to one day. Second, a one-way ANOVA was conducted, using final-test recall as a dependent variable and gap as an independent variable. There was a main effect of gap, $F(5,176) = 3.7, \ p < .005$. Third, Tukey HSD tests show that the zero-day gap produced significantly worse recall than the 1, 2, 4, and 7-day gaps; no other pair-wise comparisons were significant.

The results show generally good agreement with previous confound-free studies that used similar gaps and test delays, as shown in Figure 1 (i.e., Ausubel, 1966; Childers & Tomasello, 2002; Edwards, 1917; Glenberg & Lehmann, 1980). It appears that the non-monotonic relationship between gap and memory retention generalizes well from text recall (Ausubel), object recall (Childers & Tomasello), fact recall (Edwards), and free recall of word lists (Glenberg & Lehmann) to associative memory for foreign language vocabulary. However, because these four studies and Experiment 1 used approximately equal test delays, the possibility remains that a much longer test delay would yield an optimal gap other than one day. This possibility was examined in Experiment 2.

Experiment 2

The second study used a much longer test delay (six months) than Experiment 1. Because pilot data suggested that Swahili-English word pairs (which were used in Experiment 1) would produce floor effects after a 6-month test delay, we chose material that was shown to produce lesser rates of forgetting. The material was again educationally relevant: Not-well-known facts and names of unfamiliar visually presented objects. The two study sessions were separated by gaps ranging from 20 min to six months, with the final-test given six months after the second study session. Method

Subjects. A total of 233 undergraduates from the University of California, San Diego, began the study. Those who finished all three sessions received US$30 payment. Data from 72 subjects were discarded (37 because they failed to complete all three sessions, 34 because they did not complete session 2 or 3 within our allotted time frame, and 1 because he began working in our lab and was no longer considered blind to the purpose of the study). Table 2 shows fewer subjects in the six-month gap condition, partly due to the increased difficulty maintaining contact with these subjects; otherwise, dropout rates did not vary across conditions. Of the 161 subjects included in the analyses, 66% were female, and the mean age was 19.6 years old (SD = 2.4). None of the Experiment 2 subjects had participated in Experiment 1.

Materials. For part A, a list of 23 not-well-known facts was assembled. Each fact was presented as a question and then an answer. For example, the fact “Rudyard Kipling invented snow golf” was presented as “Who invented snow golf?” and “Rudyard Kipling.” For part B, a set of 23 photographs of not-well-known objects was assembled. For example, objects included a “Lockheed Electra” airplane. Each photo was associated with a question and a fact, for example, “Name this model, in which Amelia Earhart made her ill fated last flight” and “Amelia Earhart made her ill fated last flight in this model of Lockheed Electra.” A clipboard, pen, and paper with pre-numbered answer blanks were provided during testing.

Design. Subjects were randomly assigned to one of six conditions (0, 1, 7, 28, 84, or 168 day gap). For the 0-day condition, the gap was approximately 20 min.

Procedure. The experiment was conducted in a simulated classroom setting in a windowless room. A computer-controlled LCD projector displayed the stimuli on one wall of the room, and pre-recorded audio instructions and audio stimuli were presented.
(simulating the “teacher”) through speakers placed in the front of the room. A computer program controlled presentation of visual and auditory stimuli. An experimenter initiated each section of the experiment, answered questions about the instructions, and monitored subjects’ compliance with the instructions. Subjects were tested in groups of one to six.

Subjects were told that we were examining changes in learning over time, that 23 items would be presented, that items might change across sessions, and that there would be a series of tests, with feedback, to help them learn the items. They were asked to write each answer in the appropriate answer blank and were asked not to change the answer after feedback began.

Subjects were told that there was no penalty for incorrect guesses or partial answers. During each session, all obscure facts (part A) preceded all visual objects (part B).

In Session 1, the instructions were followed by a pretest, one initial exposure to each of the 23 items, and then three blocks of 23 test-with-feedback trials. In each block of 23 item presentations, a new random order was used; this random order was constant across subjects. For the pretest, each fact was visually presented as a question (13 s) as the “teacher” read the fact. Then this answer sheet was collected by the experimenter. Immediately afterwards, each of 23 items appeared on the screen in statement form (13 s) as the “teacher” read the statement. This was followed immediately by the three blocks of test-with-feedback trials. For these of these trials, subjects first saw either a question (part A) or a photo (part B) for 13 s, during which time the question or associated fact was spoken by the “teacher.” During this interval, subjects attempted to write their answer in a space provided on their answer sheet. Immediately afterwards, the correct answer appeared (5 s) and was spoken by the “teacher.” After each of three blocks of test-with-feedback trials, the answer sheet was collected by the experimenter. Session 2, by contrast, included no pre-test or learning trial, and subjects completed just two blocks of test-with-feedback trials. During Session 3, items were tested without feedback, first using a recall test and then using a multiple-choice recognition test with four possible answers. Pilot testing confirmed that the options in the multiple-choice test were about equally likely to be chosen by subjects with no previous knowledge of the fact or object.

Results and Discussion

The range of actual gaps and test delays and average gaps and test delays are shown in Table 2; these differed slightly from the nominal gaps and test delays listed in our design because of our inability to schedule some subjects’ second or third session on precisely the desired day.

Each response was scored by “blind” research assistants who were given a set of predetermined acceptable answers. Each item was assigned a score for correct answer, incorrect answer, or non-response (no answer). In general, misspellings were allowed (such as “Elektra” instead of “Electra”), and partial answers were considered correct when distinctive parts of the complete answer were given (e.g., “Ranger” for “U.S.S. Ranger”). Before final data analysis, a single research assistant rechecked all difficult-to-code items, in order to confirm that all coders used identical scoring criteria across all subjects. As well, research assistants checked each other’s work and discussed how to code difficult answers with each other and with the principal investigator (NJC). All coding was done blind to experimental condition.

For each subject, items that were answered correctly during the pretest were excluded from analysis of their data, leading to the exclusion of less than one percent of items, on average. Performance on the first
test of Session 1 showed no main effect or interaction involving gap. Facts were easier to learn than pictures, $F(1,155) = 254.9, p < .001$. First-test accuracy ranged from 75 – 82% by gap for facts and from 45 – 64% by gap for objects. Likewise, performance on the third and final test of Session 1 showed no main effect or interaction involving gap, although facts showed slightly greater learning than pictures (94 vs. 90%), $F(1,155) = 10.3, p < .005$. (The percentage of items learned during session 1 was probably higher than this, because additional learning occurred from the final test. Figure 4 – Session 2, Test 1, 0-day gap – shows 96 and 93% accuracy for facts and objects, even after a 20 min delay.)

Figure 4 shows performance on the first test of Session 2 and the Session 3 test (6 months after Session 2). As in Experiment 1, performance on the first test of Session 2 exhibited a typical forgetting function. In contrast to the results of Experiment 1, final-test recall performance was optimized by a gap of 28 days rather than just 1 day. In fact, the 28-day gap produced 151% greater retention than the 0-day gap, whereas the 1-day gap produced only an 18% improvement over the 0-day gap. Increasing gap from 28 to 168 days produced a relatively modest decline in retention of only 23%.

The effects of gap on recall were analyzed in several different ways. First, effect sizes were computed for each adjacent pair of gaps (Table 3). These effect sizes show the large benefit of increasing gap from zero days to 28 days. Second, a mixed-model ANOVA was conducted using final-test recall as a dependent variable, gap as a between-subjects factor, and type of material (facts or objects) as a within-subjects factor. There were main effects of gap, $F(5,155) = 8.3, p < .001$, and material, $F(1,155) = 502.2, p < .001$, and an interaction between gap and material, $F(5,155) = 4.6, p < .005$. The interaction between gap and material likely reflects the different degrees of improvement, relative to baseline, for fact versus visual object materials; there are no obvious qualitative differences in the results. Third, Tukey HSD tests show that the zero-day gap produced significantly worse recall than all gaps longer than one day. The one-day gap produced significantly worse recall than the 28-day gap. No other pair-wise comparisons were significant. This suggests that the 28-day gap was optimal and supports a claim that final-test recall gradually declines with too-long gaps. Quite dramatically, this demonstrates that a one-day gap is not always optimal, since zero-and one-day gaps were not significantly different, and recall was significantly worse for one-day versus 28-day gaps.

For the multiple-choice recognition test, a mixed-model ANOVA was conducted using final-test recognition as a dependent variable, gap as a between-subjects factor, and type of material (facts or objects) as a within-subjects factor. There was a main effect of gap, $F(5,155) = 4.9, p < .001$. Recognition test performance at 0-, 1-, 7-, 28-, 84-, and 168-day gaps was 91 (9.1), 95 (5.1), 97 (3.2), 98 (2.4), 95 (5.2), and 96 (7.2) percent correct (SD), respectively, mirroring the recall test results.

General Discussion

Two experiments examined how the gap separating two study episodes affected performance on a subsequent test given as much as six months later. Three primary novel findings are reported. First, spacing benefits were seen with test delays longer than one week (Figures 3 and 4), using a non-confounded design. Second, gap had non-monotonic effects on final recall even with test delays longer than a week; accuracy first increased and then decreased as gap increased. Third, for sufficiently long test
delays, the optimal gap exceeds one day, whereas the optimal gap in previous studies never exceeded one day (Figure 1), presumably because the test delays in these studies never exceeded one week.

In an effort to formally describe this non-monotonic effect of gap on final test score, we fit to these data a mathematical function that inherently produces the sharp ascent and gradual descent illustrated in Figures 3 and 4,

\[y = -a \ln(g+1) - b + c. \]

This function expresses final test score \(y \) as a quadratic function of the natural logarithm of gap \(g \), which produces a positively-skewed downward-facing parabola with shape and position depending on the parameters \(a \), \(b \), and \(c \). Although this function is not theoretically motivated, its parameters are meaningful. In particular, parameter \(c \) equals the optimal test score, and \(e^{b-1} \) equals the optimal gap. Fits of this function to the data in Experiments 1, 2 (facts), and 2 (objects) produced optimal test scores of 71%, 52%, and 21%, respectively, and optimal gaps of 3.7, 25.6, and 37.1 days, respectively. The function explained a moderate amount of variance (with \(R^2 = .67, .90, \) and \(.75 \), respectively). By contrast, the variance explained by a line (\(R^2 = .004, .10, \) and \(.14 \), respectively) was far less than that explained by numerous nonlinear functions with just two parameters.

Additional tentative conclusions can be reached. First, whereas an increase in gap from several minutes to the optimal gap produced a major gain in long-term retention, further increases in gap (from the optimal to the longest gap we tested) produced relatively small and non-significant (Experiment 1, \(p = .463 \); Experiment 2, \(p = .448 \)) – but not trivial – decreases in both final recall and recognition. Thus, the penalty for a too-short gap is far greater than the penalty for a too-long gap. Second, by comparing the results of Experiment 1 (in which a 10-day test delay produced an optimal gap of 1 day) and Experiment 2 (in which a 6-month test delay produced an optimal gap of 1 month), one might conclude that optimal gap becomes larger as test delay gets larger. Because Experiments 1 and 2 used different materials and procedures, it is possible that the change in optimal gap could be due to those differences and not increased test delay. However, because previous studies have shown optimal gap invariance using a wide range of materials and procedures, we believe the increase in optimal gap is truly related to increased test delay. The six-month test delay experiment presented here suggests that a one-day gap is far from optimal when the test delay is longer than one month. Just as short-test delay studies have demonstrated that optimal gap increases as test delay increases, these results tentatively indicate that the same holds true at long test delays.

Next, we consider our findings in relation to the literature. Figure 5 plots optimal gap as a function of test delay, for every study in the Cepeda et al. (2006) meta-analysis containing an optimal gap, plus data from the present paper (total of \(n = 48 \) data points). Two features can be seen. First, optimal gap increases as a function of test delay. Second, the ratio of optimal gap to test delay appears to decrease as a function of test delay. At very short test delays, on the order of minutes, the ratio is close to 1.0; at multi-day test delays, the ratio is closer to 0.1. These data are at odds with the notion that the optimal gap/test-delay ratio is independent of test delay, as some have speculated (Crowder, 1976; Murray, 1983). Instead, the present findings, in conjunction with the literature, are consistent with the possibility that the optimal gap increases with test delay, albeit as a declining proportion of test delay.

Encoding variability theories, such as Estes’ stimulus fluctuation model (Estes, 1955), hold that study context is stored along
with an item, and itself changes with time. As gap increases, there is an increase in the expected difference between the encoding contexts occurring at each study episode. Similarity between encoding and retrieval contexts is assumed to result in a greater likelihood of recall (Glenberg, 1979), and spacing improves retention by increasing the chance that contexts during the first or second study episode will match the retrieval context, thereby increasing the probability of successful trace retrieval. Both a published encoding variability model (Raaijmakers, 2003) and our own preliminary modeling efforts (Mozer, Cepeda, Pashler, Wixted, & Cepeda, 2008) lend support to this theory. Alternatively, study-phase retrieval theories (Hintzman, Summers, & Block, 1975; Murray, 1983) propose that each time an item is studied, previous study instances are retrieved. To the extent that the retrieval process is both successful and increasingly difficult, increasingly large distributed practice effects should be observed. Study-phase retrieval theories predict – and our data show – an inverted-U shaped function of gap on performance following a test delay.

Practical Implications

To efficiently promote truly long-lasting memory, the data presented here suggest that very substantial temporal gaps between learning sessions should be introduced—gaps on the order of months, rather than days or weeks. If these findings generalize to a classroom setting – and we expect they will, at least with regard to learning “cut and dry” kinds of material – they suggest that a considerable redesign of conventional instructional practices may be in order. For example, regular use of cumulative tests would begin to introduce sufficiently long spacing gaps. Cramming courses and shortened summer sessions are especially problematic, as they explicitly reduce the gap between learning and relearning.

Failure to consider distributed practice research is evident in instructional design and educational psychology texts, many of which fail even to mention the distributed practice effect (e.g., Bransford, Brown, & Cocking, 2000; Bruning, Schraw, Norby, & Ronning, 2004; Craig, 1996; Gardner, 1991; Morrison, Ross, & Kemp, 2001; Piskurich, Beckichi, & Hall, 2000). Those texts that mention the distributed practice effect often devote a paragraph or less to the topic (e.g., Glaser, 2000; Jensen, 1998; Ormrod, 1998; Rothwell & Kazanas, 1998; Schunk, 2000; Smith & Ragan, 1999) and offer widely divergent suggestions – many incorrect – about how long the lag between study sessions ought to be (cf. Gagné, Briggs, & Wager, 1992; Glaser, 2000; Jensen, 1998; Morrison et al., 2001; Ormrod, 2003; Rothwell & Kazanas, 1998; Schunk, 2000; Smith & Ragan, 1999). The present studies begin to fill in the gaps that have maintained this unsatisfactory state of affairs and suggest the need for research that applies distributed practice principles within classrooms and embeds them within educational technologies.

References

Ausubel, D. P. (1966). Early versus delayed review in meaningful

Footnotes

1 Crowder (1976), based on the Atkinson and Shiffrin (1968) model of memory, stated that “the optimal [gap] is determined by the delay between the second presentation and testing. If this testing delay is short, then massed repetition is favored but if this delay is longer then more distributed schedules of repetition are favored” (p. 308). Murray (1983), based on Glenberg (1976, 1979), stated that “spacing facilitates recall only when the retention interval is long in proportion to the [gap], and that recall decreases with [increased gap] if the [gap] is longer than the retention interval” (pp. 5-6).

2 Subjects in the six-month gap condition were equivalent to other subjects on a wide range of demographic measures. Even if six-month gap subjects’ memory performance was better than their cohorts’ memory performance (and our analyses suggest it wasn’t), further ANCOVA analysis removed the effects of differential memory ability across subjects and showed the same effects. Our conclusions do not depend on performance of the six-month gap group. The data from this group are qualitatively and quantitatively consistent with the three-month gap data and the literature more broadly.

3 Because we only used a limited range of gaps in the present studies, and the true optimal gap in each of our studies might be slightly shorter or longer than the observed optimal gap, our current data neither support nor refute the existence of a further decreasing ratio, within the multi-day test delay period.

4 Gagné et al. (1992) suggest reviewing material after an interval of weeks or months; in fact,
review, as compared to testing with feedback, is a poor way to restudy information (Pashler, Cepeda, Wixted, & Rohrer, 2005). Additionally, Gagné et al. state that distributed practice improves concept learning but we have found no existing studies in the literature that support this claim, and our recent studies fail to support this claim (Pashler, Rohrer, Cepeda, & Carpenter, 2007). Jensen (1998) suggests using 10 min, 2 day, and one week reviews of material; no empirical studies or theories would predict the spacing intervals cited to be ideal. Morrison et al. (2001) suggest writing facts over and over to learn them; this prescription for massed practice and overlearning is a highly inefficient use of time (Rohrer, Taylor, Pashler, Wixted, & Cepeda, 2005). Ormrod (2003) suggests distributing reviews over a period of months or years; the same caveats already mentioned, such as the relative ineffectiveness of review vs. testing with feedback, apply here. Rothwell and Kazanas (1998) suggest reviewing material periodically; this is vague, and, again, review is not ideal. Schunk (2000) suggests spaced review sessions; the caveats already mentioned apply here. Smith and Ragan (1999) incorrectly claim that massed practice benefits association learning, when in fact most studies have shown that distributed practice improves memory for paired associates.

Table 1

Effect Size (Cohen’s d) and Change in Percent Correct (PC) between Different Gaps, for Experiment 1. Gap Shows Days between Learning Sessions			
Short	Long	d	PC
0	1	1.03	18.9
1	2	-0.28	-5.0
2	4	-0.02	-0.4
4	7	0.06	1.0
7	14	-0.22	-4.0
1	14	-0.46	-8.4

Table 2

Actual Gaps and Test Delays for Each Experimental Group, for Experiment 2. n = Number of Subjects.

<table>
<thead>
<tr>
<th>Gap Group</th>
<th>n</th>
<th>Mean Gap (range)</th>
<th>Mean Test Delay (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero-Day</td>
<td>28</td>
<td>20 min (none)</td>
<td>168.6 days (161 – 179 days)</td>
</tr>
<tr>
<td>One Day</td>
<td>34</td>
<td>1 day (none)</td>
<td>171.0 days (160 – 181 days)</td>
</tr>
<tr>
<td>One Week</td>
<td>29</td>
<td>6.9 days (6 – 8 days)</td>
<td>165.5 days (159 – 176 days)</td>
</tr>
<tr>
<td>One Month</td>
<td>23</td>
<td>28.5 days (23 – 34 days)</td>
<td>168.1 days (160 – 180 days)</td>
</tr>
<tr>
<td>Three Months</td>
<td>31</td>
<td>83.0 days (77 – 90 days)</td>
<td>166.1 days (158 – 176 days)</td>
</tr>
</tbody>
</table>
Six Months 16 169 days (162 – 175 days) 167.8 days (156 – 181 days)

Table 3
Effect Size (Cohen’s d) and Change in Percent Correct (PC) between Different Gaps, for Experiment 2 Recall Data. Gap Shows Days between Learning Sessions

<table>
<thead>
<tr>
<th>Gap</th>
<th>Short</th>
<th>Long</th>
<th>d</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0.23</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0.77</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>0.80</td>
<td>12.6</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>84</td>
<td>-0.57</td>
<td>-11.3</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>168</td>
<td>0.08</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>168</td>
<td>-0.25</td>
<td>-4.8</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>28</td>
<td>1.56</td>
<td>25.5</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>168</td>
<td>0.51</td>
<td>-9.8</td>
<td></td>
</tr>
</tbody>
</table>

Figure Captions
Figure 1. Percentage of items recalled during the final retention test, for prior unconfounded experiments. A one-day gap produced optimal retention at the final test. Figure 2. Experiment 1 procedure. Figure 3. Percentage of items recalled during the first test of session 2 and the final retention test, for Experiment 1. Bars represent one SEM. A one-day gap produced optimal retention at the final test. Figure 4. Percentage of items recalled during the first test of session 2 and the final retention test, for Experiment 2. Bars represent one SEM. A one-month gap produced optimal retention at the final test. Figure 5. Log-log plot of optimal gap value by test delay, for all studies in the Cepeda et al. (2006) meta-analysis for which the optimal gap was flanked by shorter and longer gaps. The dashed line shows the best-fit power regression line for the observed data. Optimal gap increases as test delay increases, and the ratio of optimal gap to test delay decreases as test delay increases.
Figure 1
Figure 2
Figure 3

Figure 4
Figure 5