UNIVERSITY OF CALIFORNIA
RIVERSIDE

Personality and the Construal of Situations

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Psychology

by

Elysia Ruth Todd

June 2014

Dissertation Committee:
 Dr. David C. Funder, Chairperson
 Dr. Daniel J. Ozer
 Dr. Robert Rosenthal
The Dissertation of Elysia Ruth Todd is approved:

Committee Chairperson

University of California, Riverside
Acknowledgment of Contributions

The work contained in this dissertation combines years of work by multiple members of the Riverside Accuracy Lab. Some of the theoretical content discussed here overlaps with a number of published and unpublished works from the Riverside Accuracy Lab. This includes a published book chapter (Wagerman & Funder, 2009), several poster presentations (Sherman, Nave & Funder, 2009-2011), recent work from our lab (Sherman, Nave, & Funder, 2013), a funded NSF grant proposal (to David C. Funder, 2011), and numerous lab meetings which, beside myself, frequently included the following individuals (alphabetically listed): Erica Baranski, David Funder, Esther Guillaume, Patrick Morse, Christopher Nave, Jasenka Orion, Kyle Sauerberger, and Ryne Sherman. In addition, portions of the empirical work presented in this dissertation come from published papers and manuscripts currently in preparation. Specifically, data for Study 2, involving the Thematic Apperception Test, come from the work of David Serfass and Ryne Sherman. They published selected findings from these data in 2013, however, the analyses discussed here in my dissertation have not been published. Discussion of the method used to collect these data is borrowed from their publication. Some discussion of Study 3 borrows language and ideas from an NSF grant to David Funder (2011). Where identifiable, ideas and paraphrased sentences appearing in published and unpublished works (including those mentioned above) are cited. Where not identifiable, let this acknowledgment serve notice to the reader that the aforementioned people have provided both indirect and direct contributions to the work presented throughout this dissertation.
Acknowledgements

First and foremost I thank my parents Susan Todd and Ermine Todd III, and my brother Ermine Todd IV. As I wrote in my personal statements when applying for graduate school, “I was lucky. I grew up being taught that the pursuit of knowledge is a wonderful thing. Even when times were tough, my parents told me if you had curiosity and imagination you had all you needed.” Both my appreciation for these values and my gratitude to my family for instilling them in me remain strong; I will be forever grateful to them for never doubting my ability to succeed and always being there to encourage me even at my lowest moments. I couldn’t have done this without them.

Two people without whom I would have never been so inspired to pursue psychology are Frank Bernieri, and Bob Rosenthal. Frank’s teaching and mentorship opened the world of scientific psychology to me, and gave me the confidence to take my own first steps into the field. Due to his own mentorship to Frank, even before I met him, Bob had been and continues to be an inspiration and an exemplar of the best in our field. Being around them to talk about psychology is a great gift that can’t be found in any textbook. It lets one peek into the ideal world of science, full of curiosity and passion for knowledge, humility and knowing the value of mistakes, and hope for the future of our field.

When it comes to the data, the Riverside Accuracy Lab is hard to beat when it comes to large-scale projects of which I have grown so fond. I am grateful to David Funder for challenging the 2x2 status quo and tackling large and complex projects that allow many different avenues of exploration into the data. I have learned skills here that I
would not have learned in more traditional labs. I’m also grateful for the chance to work with and learn from the many helping hands required to accomplish what we do in this lab. I am thankful for my lab mates, particularly Ryne Sherman for his perpetual willingness to show me his work in detail, my cohort-mates Esther and Jasa for sticking with me even in challenging times, and Patrick Morse for taking on so much during his first year to help me manage the large NSF study I would never have been able to handle alone. If there were anyone, however, without whom this research would not be possible, it would most certainly be the small army of research assistants who have dedicated their time and effort to our work, often going above and beyond their assigned duties to make sure this research was done the best way it could be. The following people were research assistants who were part of the gathering of data for studies one and three; Michelle Ahn, Andrea Bink, Kevin Bowman, Liliana Castro, Kevin DeLeon, Melanie Jay, Sophia Nguyen, Ami Patel, Krista Sao, Chelsa Sylvis, Jonathan Tran, Jerel Villanueva, Vanessa Wong and Kate Wright. In particular, Andrea Bink and Vanessa Wong were integral to these projects’ successes and I am proud to have had the opportunity to mentor them in their time here.

I must also extend my thanks to those people who helped make things go smoothly during my 5 years here at UCR. This includes the administrative staff working in the psychology department office, who are always there for you in a pinch. A special thanks to Faye Harmer for providing much needed sarcasm and the ability to cut through even the most insurmountable-seeming stress with a joke and a certainty that everything will work out in the end. My fellow students here at UCR, particularly in my cohort, were
also an integral part of the successes I had. Here there is an environment of collaboration that far surpasses the competitive environment we know exists in other programs, and we have all made some life-long friends and colleagues across our different sub-disciplines that will stay with us no matter where we go. And of course, Ether Guillaume, for Thursday afternoon pizza and long phone-calls for figuring out the right analyses for our projects and everything else in between.

Lastly I must thank my committee members David Funder, Dan Ozer, and Bob Rosenthal for their thoughtful feedback and guidance over the past five years, particularly during the planning and implementation of studies included in this dissertation, throughout fascinating and challenging coursework and while serving on my prior program committees, and finally in preparation of this dissertation. I am grateful for all they have taught me and I look forward to all the future opportunities to apply what I have learned.
ABSTRACT OF THE DISSERTATION

Personality and the Construal of Situations

by

Elysia Ruth Todd

Doctor of Philosophy, Graduate Program in Psychology
University of California, Riverside, June 2014
Dr. David C. Funder, Chairperson

The same situation may be perceived to have different qualities depending on who is making the assessment of the situation. Since situations have important implications for behavior, there is clearly value in pursuing an understanding of how people’s perceptions of situations differ and what the predictors of these differences might be. However, few researchers have investigated this topic and none have examined its relationship to situations in a comprehensive manner. Following the development of the Riverside Situational Q-Sort (RSQ: Wagerman & Funder, 2009) it has become possible to assess the manner in which individuals idiosyncratically construe a wide variety of situational features in ways that can be compared across very different situations. This dissertation examines personality’s relationship to the broad individual difference variable “Distinctiveness of Situational Construal” which is defined here as the cumulative assessment of the discrepancy between an individual’s distinctive description of a situation and a more consensual view of the situation. In each of three studies, the RSQ was used to assess participants’ perceptions of situational stimuli. Study 1 featured two
brief video scenarios as situational stimuli. Study 2 featured three Thematic Apperception Test images, and Study 3 featured situations experienced by the subjects in a laboratory setting. A variety of methods for quantifying construal were also evaluated in relation to each of these studies. The results indicate that distinctiveness of situational construal is quantifiable in a meaningful manner, that a person’s tendency towards distinctive construal is stable across different situations, that this tendency towards distinctive construal has meaningful personality correlates, and that the patterns of these correlates replicate across three separate studies. Among the findings; extraversion and depression were positively correlated with distinctiveness of situational construal. Common CAQ correlates of distinctiveness of construal included items signifying independence, assertiveness, distrust, and even malicious traits. Common personality correlates of normativity included items signifying interpersonal warmth and sympathy, interest in intellectual and aesthetic concerns, as well as tendencies towards suppression of self and discomfort with uncertainties. Overall this dissertation demonstrates that distinctiveness of construal can be quantified across a variety of situations and that the potential applications are myriad.
Table of Contents

Acknowledgment of Contributions ... iv
Acknowledgements ... v
ABSTRACT OF THE DISSERTATION ... viii
Table of Contents .. x
List of Figures .. xii
List of Tables ... xiv
List of Appendices .. xviii
Chapter 1 – Introduction ... 1
 Study Structure ... 7
 Situations ... 7
 Measuring Situational Experiences ... 9
 Measuring Individual Differences ... 13
Quantifying Construal .. 16
 Profile agreement .. 19
 Deviations by individual RSQ item ... 21
Hypotheses ... 22
 H1: People vary in the degree to which they distinctively construe situations. 22
 H2: People are consistent in the degree to which they distinctively construe different situations they experience 24
 H3: Differences in individuals’ distinctiveness of construal are systematically related to personality .. 25
 H4: Construal relates to specific personality variables 26
 H5: The patterns of these findings are consistent across three studies 28
Chapter 2 – Video Situations ... 30
Method .. 30
 Participants .. 30
 Measures ... 31
 Design & Procedure ... 34
Results ... 35
 H1: People vary in the degree to which they distinctively construe situations. 35
 H2: There is stability in this variation of distinctiveness of construal 40
 H3: Differences in individuals’ distinctiveness of construal are systematically related to personality .. 42
 H4: Construal relates to specific personality variables 44
Chapter 3 – Thematic Apperception Test Situations 51
Method .. 51
 Participants .. 51
 Measures ... 52
 Design & Procedure ... 55
Results ... 56
 H1: People vary in the degree to which they distinctively construe situations. 57
<table>
<thead>
<tr>
<th>Chapter 4 – Personality and the Perception of Situations</th>
<th>74</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1: People vary in the degree to which they distinctively construe situations</td>
<td>86</td>
</tr>
<tr>
<td>H2: There is stability in this variation of distinctiveness of construal</td>
<td>92</td>
</tr>
<tr>
<td>H3: Differences in individuals’ distinctiveness of construal are systematically related to personality</td>
<td>95</td>
</tr>
<tr>
<td>H4: Construal relates to specific personality variables</td>
<td>98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5 – Conclusion</th>
<th>107</th>
</tr>
</thead>
<tbody>
<tr>
<td>H5: The patterns of these findings are consistent across three studies</td>
<td>107</td>
</tr>
<tr>
<td>H1: People vary in the degree to which they distinctively construe situations</td>
<td>107</td>
</tr>
<tr>
<td>H2: People are consistent in the degree to which they distinctively construe different situations they experience</td>
<td>108</td>
</tr>
<tr>
<td>H3: Differences in individuals’ distinctiveness of construal are systematically related to personality</td>
<td>113</td>
</tr>
<tr>
<td>H4: How does personality relate to unique perceptions of situations?</td>
<td>113</td>
</tr>
</tbody>
</table>

General Discussion	118
Limitations, Implications, and Future Directions	119
Conclusion	120

References	122
Appendix A	132
Appendix B	137
Appendix C	138
Appendix D	139
Appendix E	165
Appendix F	167
Appendix G	171
Appendix H	176
List of Figures

<table>
<thead>
<tr>
<th>Figure #</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1.</td>
<td>The Portion of the Situational Construal Model Explored in this Dissertation.</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2.1.3.A.</td>
<td>Distributions of Distinctiveness of construal for Video Situations as Measured by Correlation with Mean Profile.</td>
<td>37</td>
</tr>
<tr>
<td>Figure 2.1.3.A.2.</td>
<td>Distributions of Distinctiveness of construal for Video Situations as Measured by Fisher’s Z-Transformed Correlation with Mean Profile.</td>
<td>165</td>
</tr>
<tr>
<td>Figure 2.1.3.B.</td>
<td>Distributions of Distinctiveness of construal for Video Situations as Measured by Sum of Absolute Z-Score Deviations from Item Means.</td>
<td>165</td>
</tr>
<tr>
<td>Figure 2.1.3.D.</td>
<td>Distributions of Distinctiveness of construal for Video Situations as Measured by Aggregated Residuals of Linear Regressions from the Mean RSQ Profile.</td>
<td>166</td>
</tr>
<tr>
<td>Figure 2.1.3.E.</td>
<td>Distributions of Distinctiveness of construal for Video Situations as Measured by Median Absolute Deviations from the Mean RSQ Profile.</td>
<td>166</td>
</tr>
<tr>
<td>Figure 3.1.3.A.</td>
<td>Distributions of Distinctiveness of construal for TAT Situations as Measured by Degree of Correlation with Mean Profile.</td>
<td>167</td>
</tr>
<tr>
<td>Figure 3.1.3.B.</td>
<td>Distributions of Distinctiveness of construal for TAT Situations as Measured by Sum of Absolute Z-Score Deviations from Item Means.</td>
<td>168</td>
</tr>
<tr>
<td>Figure 3.1.3.D.</td>
<td>Distributions of Distinctiveness of construal for TAT Images as Measured by Aggregated Residuals of Linear Regressions from the Mean RSQ Profile.</td>
<td>169</td>
</tr>
<tr>
<td>Figure 3.1.3.E.</td>
<td>Distributions of Distinctiveness of construal for TAT Images as Measured by Median Absolute Deviations from the Mean RSQ Profile.</td>
<td>170</td>
</tr>
<tr>
<td>Figure 4.0.1.</td>
<td>An image of an Original Tinker Toy kit.</td>
<td>81</td>
</tr>
<tr>
<td>Figure 4.0.2.</td>
<td>A diagram participants used to cooperatively construct a model fire engine using Tinker Toy pieces.</td>
<td>81</td>
</tr>
<tr>
<td>Figure 4.0.3.</td>
<td>An image of an original Simon game manufactured in the 1980s.</td>
<td>82</td>
</tr>
</tbody>
</table>
Figure 4.1.3.A. Distributions of Distinctiveness of construal for Lab Situations as Measured by Degree of Correlation with Mean Profile.

Figure 4.1.3.B.1. Distributions of Distinctiveness of construal for Lab Situations as Measured by Sum of Absolute Z-Score Deviations from Item Means, Within Groups.

Figure 4.1.3.B.2. Distributions of Distinctiveness of construal for Lab Situations as Measured by Sum of Absolute Z-Score Deviations from Item Means, Across Groups.

Figure 4.1.3.D. Distributions of Distinctiveness of construal for Lab Situations as Measured by Aggregated Residuals of Linear Regressions from the Mean RSQ Profile.

Figure 4.1.3.E. Distributions of Distinctiveness of construal for Lab Situations as Measured by Median Absolute Deviations from the Mean RSQ Profile.

Figure B.1. Still frame from "Flirting" video

Figure B.2. Still frame from "Workplace" video.

Figure C.1. The “Field” TAT image.

Figure C.2. The “Window” TAT image.
List of Tables

<table>
<thead>
<tr>
<th>Table #</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.0.1</td>
<td>Comparison of Two Methods for Describing Situations.</td>
<td>11</td>
</tr>
<tr>
<td>Table 1.0.2</td>
<td>Methods for Quantifying Distinctiveness of Construal.</td>
<td>18</td>
</tr>
<tr>
<td>Table 2.1.3.A</td>
<td>Distribution of Individuals’ General Degree of Normativity for Study 1.</td>
<td>36</td>
</tr>
<tr>
<td>Table 2.1.3.B</td>
<td>Distribution of Individuals’ Distinctiveness of By-Item Z-Scored Construal for Study 1.</td>
<td>38</td>
</tr>
<tr>
<td>Table 2.1.3.D</td>
<td>Distribution of Individuals’ Aggregated Residuals from Linear Profile Regression for Study 1.</td>
<td>39</td>
</tr>
<tr>
<td>Table 2.1.3.E</td>
<td>Distribution of Individuals’ Median Absolute Deviations for Study 1.</td>
<td>39</td>
</tr>
<tr>
<td>Table 2.3.A</td>
<td>Results from Randomization Tests Correlating 100 CAQ Items with Normativity of Construal for Study 1.</td>
<td>43</td>
</tr>
<tr>
<td>Table 2.3.B</td>
<td>Results from Randomization Tests Correlating 100 CAQ Items with By-Item Z-Scored Distinctiveness of construal for Study 1.</td>
<td>43</td>
</tr>
<tr>
<td>Table 2.3.D</td>
<td>Results from Randomization Tests Correlating 100 CAQ Items with Accumulated Residuals from a Linear Regression Prediction for Study 1.</td>
<td>44</td>
</tr>
<tr>
<td>Table 2.3.E</td>
<td>Results from Randomization Tests Correlating 100 CAQ Items with Median Absolute Deviations for Study 1.</td>
<td>44</td>
</tr>
<tr>
<td>Table 2.4.1.1</td>
<td>Positive Self-Rated CAQ Personality Correlates of Distinctiveness of Construal of Video Situations.</td>
<td>45</td>
</tr>
<tr>
<td>Table 2.4.1.2</td>
<td>Negative Self-Rated CAQ Personality Correlates of Distinctiveness of Construal of Video Situations.</td>
<td>47</td>
</tr>
<tr>
<td>Table 2.4.2</td>
<td>Self-Rated Big-Five Personality Correlates of Distinctiveness of Construal of Video Situations.</td>
<td>49</td>
</tr>
<tr>
<td>Table 2.4.3</td>
<td>Correlations Between Distinctiveness of construal of Video Situations and Self-Rated Beck Depression Inventory.</td>
<td>50</td>
</tr>
</tbody>
</table>
Table 3.0.1. **Descriptive Statistics and Reliability Estimates of Personality Measures for Study 2.**

Table 3.0.2. **Descriptive Statistics and Reliability Estimates of Multi Source Assessment of Personality Pathology and Subscales.**

Table 3.1.3.A. **Distribution of Individuals’ General Degree of Normativity for Study 2.**

Table 3.1.3.B. **Distribution of Individuals’ Distinctiveness of By-Item Z-Scored Construal for Study 2.**

Table 3.1.3.D. **Distribution of Individuals’ Aggregated Residuals from Linear Profile Regression for Study 2.**

Table 3.1.3.E. **Distribution of Individuals’ Median Absolute Deviations for Study 2.**

Table 3.3.A. **Results from Randomization Tests Correlating 100 CAQ Items with Normativity of Construal for Study 2.**

Table 3.3.B. **Results from Randomization Tests Correlating 100 CAQ Items with By-Item Z-Scored Distinctiveness of Construal for Study 2.**

Table 3.3.D. **Results from Randomization Tests Correlating 100 CAQ Items with Accumulated Residuals from a Linear Regression Prediction for Study 2.**

Table 3.3.E. **Results from Randomization Tests Correlating 100 CAQ Items with Median Absolute Deviations for Study 2.**

Table 3.4.1.1. **Positive Self-Rated CAQ Personality Correlates of Distinctiveness of construal of TAT Situations.**

Table 3.4.1.2. **Negative Self-Rated CAQ Personality Correlates of Distinctiveness of construal of TAT Situations.**

Table 3.4.2. **Self-Rated Big-Five Personality Correlates of Distinctiveness of construal of TAT Situations.**

Table 4.0.1. **Descriptive Statistics and Reliability Estimates of Personality Measures for Study 3.**
Table 4.1.3.A. Distribution of Individuals’ General Degree of Normativity for Study 3.

Table 4.1.3.B.1. Distribution of Individuals’ Distinctiveness of Within-Group By-Item Z-Scored Construal for Study 3.

Table 4.1.3.B.2. Distribution of Individuals’ Distinctiveness of Across-Group By-Item Z-Scored Construal for Study 3.

Table 4.1.3.D. Distribution of Individuals’ Aggregated Residuals from Linear Profile Regression for Study 3.

Table 4.1.3.E. Distribution of Individuals’ Median Absolute Deviations for Study 3.

Table 4.3.1.A. Results from Randomization Tests Correlating 100 CAQ Items with Normativity of Construal for Study 3.

Table 4.3.1.B.1. Results from Randomization Tests Correlating 100 CAQ Items with Distinctiveness of Within-Group By-Item Z-Scored Construal for Study 3.

Table 4.3.1.B.2. Results from Randomization Tests Correlating 100 CAQ Items with Distinctiveness of Across-Group By-Item Z-Scored Construal for Study 3.

Table 4.3.1.D. Results from Randomization Tests Correlating 100 CAQ Items with Accumulated Residuals from a Linear Regression Prediction for Study 3.

Table 4.3.1.E. Results from Randomization Tests Correlating 100 CAQ Items with Median Absolute Deviations for Study 3.

Table 4.4.1.1. Positive Self-Rated CAQ Personality Correlates of Distinctiveness of Construal of Lab Situations.

Table 4.4.1.2. Negative Self-Rated CAQ Personality Correlates of Distinctiveness of Construal of Lab Situations.

Table 4.4.2. Self-Rated Big-Five Personality Correlates of Distinctiveness of Construal of Lab Situations.

Table 4.4.3. Correlations between Distinctiveness of Construal of Lab Situations and self-rated Beck Depression Inventory.
Table 5.1.1. Average Intercorrelations Among Methods of Quantifying Distinctiveness of Construal.

Table 5.2.1.A. Within-Person Consistencies of General Normativities of Construal, by Study.

Table 5.2.1.B. Within-Person Consistencies of By-Item Z-Scored Distinctiveness of Construal, by Study.

Table 5.2.1.C. Mean Within-Person Consistencies of Residuals from Linear Regression, by Study.

Table 5.2.1.D. Within-Person Consistencies of Aggregated Residuals of Construal, by Study.

Table 5.2.1.E. Within-Person Consistencies of Median Absolute Deviations of Construal, by Study.

Table 5.4.1. Intercorrelations Across Three Studies Among CAQ Correlation Profiles with Distinctiveness of Construal.

Table 5.4.2. Correlations between Distinctiveness of Construal and Self-Rated Big-Five Personality, Combined Across Three Studies.

Table 5.4.3. Correlations Between Distinctiveness of Construal and Self-Rated Beck Depression Inventory, Combined Across Two Studies.
List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Riverside Situational Q-Sort (version 3.15) Full Item Content</td>
<td>132</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Stimuli for Study 1</td>
<td>137</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Stimuli for Study 2</td>
<td>138</td>
</tr>
<tr>
<td>Appendix D</td>
<td>R code and functions developed specifically for this dissertation.</td>
<td>139</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Additional figures for Study 1</td>
<td>165</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Additional figures for Study 2</td>
<td>167</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Additional figures for Study 3</td>
<td>171</td>
</tr>
<tr>
<td>Appendix H</td>
<td>Calculation Details for Methods of Quantification of Distinctiveness of Construal</td>
<td>176</td>
</tr>
</tbody>
</table>
Chapter 1 – Introduction

For some the world is a hostile place where men are evil and dangerous; for others it is a stage for fun and frolic. It may appear as a place to do one’s duty grimly; or a pasture for cultivating friendship and love.

Gordon Allport (1961, p. 266)

Though elegantly put, Gordon Allport is neither the first nor the last person to notice this important distinction. In fact there are several idioms built into the English language, such as “There’s no accounting for taste,” or “To each their own,” commonly used to signify just how very differently individuals may see their worlds. To some, this variety is simply the spice of life. At the extremes, it is perhaps even a mechanism by which mental disorders make their stamp on the world. A personality psychologist, however, is bound to ask why these differences exist. Why do different people see the same situation differently? How does personality relate to an individual’s perceptions of a given situation?

Murray (1938) suggested the classic distinction between two situational forces. “Alpha-press” refers to the objective properties of the situation, or “reality”. Though reality is hard to define, one commonly employed metric in psychological research is the consensual perception of multiple observers. His second force, “beta-press”, is the way the situation is perceived by the individual. He suggested that comparing these two forces within a given individual could reflect personality and even psychological dysfunction. For the purposes of my dissertation, I will be addressing construal in this manner.
Studying this construal might, as Murray suggested, provide insights into an individual’s personality or psychological function. It might also give us insight into the relationships between how persons and situations interact to impact behavioral outcomes. The claim that situations powerfully influence behavior is central to the entire domain of social psychology (Ross & Nisbett, 1991); thousands of published studies demonstrate that even seemingly minor manipulations of situational variables can have major effects (Richard, Bond, & Stokes-Zoota, 2003). Though it has not always been the case, it is now commonly accepted that behavior is influenced by the features of the situation the individual is in and by their personality traits (Funder, 2006). However, the intersection of the situation’s features and the person’s personality is one that is less well studied (Funder, 2008; Rauthmann 2012; Sherman, Nave, & Funder, 2013).

Despite its long-recognized importance (Allport, 1937; Murray, 1938), situational construal has been surprisingly neglected by empirical research. Though there are no studies, prior to recent work in this lab, that have examined construal in any broad sense, a few studies have examined particular aspects of construal, highlighting the potentially important impact such construals can have. The concept of rejection sensitivity is linked to the idea that some people are more likely to expect rejection in relationships (Downey & Feldman, 1996; Downey, Freitas, Michaelis, & Khouri, 1998). These rejection sensitive people are more likely to perceive impending rejection in the ambiguous behavior of a romantic partner. By interpreting an ambiguous behavior differently from less rejection sensitive people, they construe an interaction for the poorer. In some cases this can create a self-fulfilling prophecy based on their construal that prevents them from
engaging in relationships they might have otherwise had. Aggressiveness also appears to influence perceptions of situations. Other studies have examined the propensity of aggressive children to interpret ambiguous stories as including characters with hostile intentions (e.g., Dodge, 1993; Dodge & Frame, 1982) and may even be part of the path that leads to incarceration for the most violent, who mis-attribute hostility in ambiguous situations to a dangerous degree (Dodge, Price, Bachorowski, & Newman, 1990).

Similarly, aggressive individuals tend to form memories that include associations of hostile traits to an actor (Zelli, Huesmann, & Cervone, 1995). While research like this is valuable, few if any studies have addressed the contrast between the situation as perceived and its actual (as opposed to ambiguous) nature. It is also difficult to find any research that attempts to assess situational construal across a range of situational properties (rather than just one theory-relevant feature). What little replication of this work exists does not examine these findings across a variety of situations, and often does not include situations that the individual had actually experienced, often using interpretations of written scenarios.

In pursuing broader research into the intersection of the person and the situation, we need to consider how we might measure persons, situations, and their intersection. There is a strong history of research conceptualizing and quantifying psychological differences between individuals. The personality literature includes hundreds of established tools for personality assessment. These tools can, in turn, be used to predict behaviors and important life outcomes (Ozer & Benet-Martínez, 2006; Roberts, Kuncel, Shiner, Caspi & Goldberg, 2007).
The assessment of situations, however, has lagged far behind. Studies of situational variables commonly focus on manipulations of narrow situational forces and their impact on single behavioral outcomes in order to test particular, theoretically-based hypotheses (Funder, 2009b). The traditional emphasis on hypothesis-testing of single events prevents us from understanding the bigger picture of whether and in what way different personality variables may influence our perceptions of situations as a whole (Bowers, 1973). Additionally, a lack of broad tools for describing situations have stymied any attempts in that direction, even for those interested in pursuing the intersections of these variables. Recently, however, investigators have been renewing attention to the importance of conceptualizing situations (Reis, 2008; Wagerman & Funder, 2009). Included in this resurgence is the development of the Riverside Situational Q-sort (RSQ: Wagerman & Funder, 2009).

With this resurgence in mind, it is my goal to take a closer look at the interrelationships of personality, distinctive construal of the situation, the objective or consensual features of the situation, and behavior. To do this I plan to measure subjects’ perceptions of the psychological properties of a given situation and to assess how these subjects’ personalities relate to their perceptions of said situation. Figure 1.1 represents a portion of the model for situational construal that we have been developing in our lab (Funder, 2011) which lays out these relationships. It is possible to assess all of these variables and make meaningful comparisons using tools that have been used or developed in our lab, particularly the newer Riverside Situational Q-sort (Wagerman & Funder, 2009).
Figure 1.1. The Portion of the Situational Construal Model Explored in this Dissertation.

Though we have the measure capable of gathering a wide variety of psychological situational features, the question remains of which aspect of construal to study. I could continue in a similar vein as previous research on theories about very specific domains which could be considered in this construal framework. However, I want to be able to explore whether there is general systematic variation across many properties of situations and personality variables alike. In particular I want to examine the broad individual difference variable “Distinctiveness of Situational Construal” which is defined here as the cumulative assessment of the discrepancy between an individual’s distinctive description of a situation and a more consensual view of the situation. There are few theories about the wider set of personality traits and their relationship to construal of situation aspects and even fewer which actually suggest specific outcomes, therefore I will need to take a data-driven approach during these early stages of this research area.
To begin, I propose to examine construal at a broad level, using exploratory methods rather than theoretical. Some research using this technique has begun to explore the topic of construal of particular situational features. Sherman, Nave, and Funder (2013) compared participants’ perception of a situation they reported experiencing to rater’s perceptions based on a brief description of that situation. However, this first attempt has many limitations. Despite the fact that this research allowed access to participants’ everyday lives, it lacks in direct observation leading to a rather limited plausibility that the stimuli being described are exactly the same for the participants and the raters alike. In order to advance our understanding of construal we must develop more solid methods and analyses from multiple angles. The situation stimuli need to be controlled, designed, and measured more carefully, the findings need to be replicated across multiple samples, and the principle of construal as a general individual difference needs to be quantified and reliably assessed. In this dissertation I will demonstrate just such a project of study, designed to ask these broad questions across three data-sets in order to begin to detect what patterns may exist in distinctiveness of construal. Do people differ in their propensity towards generally construing situations differently than the consensus? Can we consistently measure it? And what are the personality correlates of perceiving a given situation differently than others do?
Study Structure

In the following three chapters I will be discussing three separate studies, each attempting to examine the relationship of personality variables to situational construal. Before that, I will present the methods I have developed in partnership with my lab to assess these questions.

In simple terms, I want to examine how and why different people see that same situation differently. This means I need to have a situation, which different people can all experience. I need to collect those different experiences, and I need to collect data that may explain why those differences may exist – in this case, personality. Fundamentally, all three studies will follow the same Study Recipe. Personality data for participants. A set of consistent situational stimuli to compare participants across. Participants’ perceptions of the situation. Though each study may do this in a slightly different manner, the central similarities will allow meaningful comparisons.

The consensual properties of a selected situation will be assessed by the average of the perceptions of different observers. Target individuals will also provide their perceptions of the selected situation, which is a joint product of their personality and the situation’s objective features. The distinctiveness of that individual’s perception will be calculated based on its divergence from that common viewpoint, and will be considered their construal.

Situations

To examine construal, multiple perspectives on the same situation, as identical as humanly possible, are necessary. Since it is not possible to actually have different people
experience precisely the same situation, a researcher would have to make approximations. Either the stimuli-situation equivalence will need to be sacrificed, or the participant’s personal experience will have to be sacrificed.

One approximation is to have individuals observe a situation they are not a part of, but for which the stimuli are fixed. This technique has a long history of use; a low-cost method of giving participants stimuli scenarios that they can then respond to. However, a written scenario is a particularly sparse representation of a real situation. The interpretation of the scenario must go through the lens of the participant’s reading skill and often leaves a great deal to the imagination in unspecified ways. Given the advances in technology, using a video recording of a situation may be a much more beneficial stimuli to use.

The other direction would be to focus on lessening the degradation of the participant’s genuine experience of the situation. One possibility is bringing participants into a lab and putting them in a series of situations which are all ostensibly the same. However, while the start-point would be essentially the same across participants, this design would include the factor of evocation; the idea that the person in the situation may alter the situation from its starting parameters to suit themselves (e.g. a hostile person acts in certain ways that influence the situation to become more objectively hostile). Indeed, even with the same goals, people with different personalities use different strategies for pursuing their interactions, even influencing their word choices (Fast & Funder, 2008).

Each of these methods has its strengths and weaknesses, which is why I propose to use three variations of them to assess my question. These studies each used different
types of situations, but very similar measurement tools. This will allow me to make some
broader conclusions about the nature of distinctive construal.

One failing of the current set of studies is that we cannot examine the ways in
which people perceive situations they actually experience in their social worlds on a daily
basis. A research design using real-world situations is advantageous because it allows
researchers to account for the fact that people may actively select for particular situations
that suit their personalities (Ickes, Snyder, & Garcia, 1997), unlike experimental designs
which impose sometimes arbitrary situations on participants.

Measuring Situational Experiences

For all its importance, there is actually relatively little research quantifying
situations and situational experiences in the literature. Most of the research in this domain
has sought to develop a taxonomy of situations, a fundamental set of types of situations in
which people tend to find themselves (Frederiksen, 1972; Van Heck, 1984; Forgas, &
Van Heck, 1992; Ten Berge, & De Raad, 1999; Edwards & Templeton 2005; Kelley et
al., 2003; Sherman, Nave, & Funder, 2010; Yang, Read, & Miller, 2006). However,
many of these taxonomies are very limited in focus, e.g. anxiety-provoking situations
(Endler, Hunt, & Rosenstein, 1962) or academic study situations (Magnusson, 1971) and
thus there is little consensus. Even beyond this lack of coordination, these taxonomies are
not a measurement tool. They require subjective coding to place a situation in a type and
may not have a place for all situations. For most of these researchers, coming up with a
taxonomy was their end goal (e.g., Saucier, Bel-Bahar, & Fernandez, 2005). Direct
measures of situations are rare.
What research isn’t of the taxonomic bent tends to focus on environmental or concrete factors in a situation alone, rather than including any psychological factors. This has led to some peculiar conclusions, such as the finding that taking care of one’s own children ranks as second-most un-enjoyable type of activity (Kahneman, Kreuger, Schkade, Schwarz, & Stone, 2004). In that study, even exercising and commuting were listed as inspiring less negative affect than spending time with one’s children. This would be alarming indeed to some family-oriented people if it were taken at face-value. Based on some of our own data, we are not too surprised at these odd findings and believe they exist because they do not capture the spirit of the situations people are in. Take this illustrated example comparing two methods in Table 1.0.1. A situation from a sample of situations gathered from the everyday lives of university undergraduates (Todd & Funder, 2011) was described using multiple situational measures. Using Kahneman et al.’s (2004) Day Reconstruction Method, the event could be described as being in a car, with a significant other, and being very low on positive affect experienced. From the data gathered about the situation using the DRM method, one could conclude that driving with significant others is an unpleasant activity. But that doesn’t seem to be the whole picture. The Riverside Situational Q-sort (RSQ: Wagerman & Funder, 2009) descriptions seem to paint a clearer and more comprehensive image. Given that the situation as experienced and described by the participant was “Having an argument with my girlfriend that lasted about 10 minutes,” the items included as being most descriptive in the RSQ make much more sense than those items included in the DRM. Using only concrete factors does not adequately describe the situation if psychological conclusions are the goal.
Table 1.0.1.
Comparison of Two Methods for Describing Situations.

<table>
<thead>
<tr>
<th>DRM:</th>
<th>RSQ:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where were you?</td>
<td>High Items:</td>
</tr>
<tr>
<td>Option 3: Car</td>
<td>P is being criticized, directly or</td>
</tr>
<tr>
<td>Were you alone?</td>
<td>indirectly.</td>
</tr>
<tr>
<td>Option 2: No</td>
<td>Someone is attempting to dominate or</td>
</tr>
<tr>
<td>Were you talking with anyone?</td>
<td>“boss” P.</td>
</tr>
<tr>
<td>Option 2: One person.</td>
<td>P is being blamed for something.</td>
</tr>
<tr>
<td></td>
<td>Someone (present or discussed) is</td>
</tr>
<tr>
<td></td>
<td>unhappy or suffering.</td>
</tr>
<tr>
<td>If you were talking or interacting with</td>
<td>Low Items:</td>
</tr>
<tr>
<td>anyone, who was it?</td>
<td>A reassuring other person is present.</td>
</tr>
<tr>
<td>Option 1: Spouse/ Romantic partner.</td>
<td>Someone is trying to impress P.</td>
</tr>
<tr>
<td>What were you doing?</td>
<td>Someone needs help.</td>
</tr>
<tr>
<td>Option 9: Talking/ Conversing.</td>
<td>Situation is basically simple and clear-</td>
</tr>
<tr>
<td>Mean affect</td>
<td>cut.</td>
</tr>
<tr>
<td>(from 0 – 6): 2.11</td>
<td></td>
</tr>
</tbody>
</table>

Very little has been done regarding the psychological experience of the situation. In part this is due to the previous lack of a tool for quantitatively describing the psychologically relevant properties of situations. Work defining what a situation is and how situations ought to be conceptualized and measured has been inconsistent. Recently, however, Wagerman and Funder (2009) provided a definition and conceptualization of situations that seems most useful for psychological research, and through their work, the Riverside Situational Q-sort was developed into a useful tool for assessing situations.
The Riverside Situational Q-Sort

The Riverside Situational Q-Sort (RSQ) was initially developed by Wagerman and Funder (2009). Unlike some previous attempts to quantify situations, the principal aim of the RSQ was not to identify a fundamental or essential set of characteristics of situations. Nor was it developed to suit a particular theoretical perspective (e.g., Fournier et al., 2008; Reis, 2008). The foundations of the development of the RSQ were 1) the instrument should be applicable to as wide a range of situations as possible, 2) the instrument should be able to quantify the degree of similarity or dissimilarity between any two situations across a wide range of psychological properties, and 3) the instrument should be related to important outcomes relevant to personality (e.g. behaviors, emotions) (Wagerman & Funder, 2009).

The item content for the RSQ was originally inspired by the long-used and wide-ranging California Adult Q-sort (CAQ) for the description of personality developed more than 50 years ago by Jack Block and his colleagues (Block, 1978). When the RSQ was developed, it was done from the perspective that the most relevant or interesting situational properties might be those which could be clearly related to the expression of a particular personality trait. Because of its broad coverage and established effectiveness in personality assessment, the CAQ provided a useful foundation for the development of situational descriptors. For many of the personality descriptors in the CAQ, a description was written of an aspect of situational context that might tend to evoke the relevant behavioral tendency. For example, the CAQ item referring to characteristic talkativeness yielded the RSQ item “Talking is permitted.” CAQ items pertaining to tendencies to
experience or not deal well with anxiety yielded the RSQ item “Situation is potentially anxiety-inducing.”

The full set for RSQ Version 3.15 includes 89 items. The Q-sort format requires raters to place each into a forced, quasi-normal distribution (Block, 1978). The format has some distinct advantages over conventional Likert-style response scales, in that it forces raters to choose only a small subset of the items as highly characteristic or uncharacteristic of the target of assessment, with many more being placed in the middle as relatively irrelevant (e.g., Block, 1978; Funder & Colvin, 1991). This method prevents the manifestation of some rater response sets (e.g., acquiescence, extremity), and forces a rater to carefully consider each item, since each one is, in effect, compared with every other.

In this dissertation I aim to use the RSQ to capture individual’s perceptions of situations, as well as consensual or observer perceptions about situations. This tool will allow me to examine systematic differences in construal about situations across a wide variety of situational features as well as across different situations.

Measuring Individual Differences

Of the three main components of these studies, measuring individual differences has the strongest history of research. Though there are many directions that could be taken, because I am examining personality from a broad perspective there are a few that would be best suited to these questions.
The California Adult Q-Sort

The California Adult Q-Sort (CAQ: Block, 1978; as modified for use by non-professionals by Bem & Funder, 1978) contains 100 diverse personality characteristics (e.g., “Is genuinely dependable and responsible”; “Has a wide range of interests”). The CAQ was developed over the course of many years by Jack Block and his colleagues and has been employed in a number of personality studies. Each participant describes his or her own personality by placing each of the items into one of nine categories (1 = extremely uncharacteristic, 9 = extremely characteristic) forming a forced choice, quasi-normal distribution. As with the RSQ, the CAQ is ideal because it measures a wide variety of personality characteristics and because it avoids biases which may be introduced by typical Likert type rating measures (e.g. Acquiescence, Response Set).

The CAQ is an obvious choice, in part, because it is related to the development of the RSQ and therefore should be able to tap into similar constructs. Other important reasons why the CAQ is a good choice for personality measurement here are that it is on a similar macroscopic level of analysis with the RSQ. The types of descriptions used are not too disparate, and thus it should yield informative correlations.

The Big-Five

The most widely used model is the Big Five framework, which organizes the domain of personality in terms of the broad traits of Extraversion, Neuroticism, Conscientiousness, Agreeableness, and Openness to Experience. This framework has become a near-consensual means of organizing the personality literature, despite a range of slightly different perspectives on it, such as Goldberg's (1990) conception of the traits
as broad domains of individual difference phenomena found in self-rating measures and McCrae and Costa’s (1996) Five Factor Model of personality, in which the traits are viewed as basic mental structures. A large body of research relates Big Five traits to behaviors and important life outcomes (Ozer & Benet-Martinez, 2006).

One recent study found relationships between Big Five personality traits and perceptions of situations (Rauthmann, 2012). Rauthmann’s design focused on having participants rate the frequency, intensity, and valence of a variety of situational features. Subjects who scored high on Neuroticism rated neurotic situational features as occurring more frequently, having higher activation, and a more negative valence. Though an interesting step in this direction, these findings do not concern situations as a whole, but rather limited situational properties taken one at a time, without settings or actors within them. Thus the applicability of such results to the perception of actual situations is limited. Also, participants only rated each situation item on three properties: frequency, valence, and activation. Therefore, a more comprehensive description of these situations is necessary to fully understand differences in perception. While Rauthmann’s (2012) research demonstrates that personality is related to the ways in which people distinctively perceive situations, these limitations warrant further research.

In this dissertation, the Big Five will be related to real situations across a large variety of situational features, which should expand on his research.

Beck Depression Inventory.

The Beck Depression Inventory II (BDI-II: Beck, Steer, & Brown, 1996) is a 21-item self-report scale that updates a widely-used instrument for measuring the severity of
depression (BDI: Beck et al., 1961). Participants rated each item using a 4-point scale ranging from 0 to 3 (e.g. Sadness: “I do not feel sad” (0), “I feel sad much of the time” (1), “I am sad all the time” (2), or “I am so sad or unhappy that I can’t stand it” (3)) using a computerized testing procedure. BDI scores were calculated by summing the ratings on all 21 items.

Though the samples studied in this dissertation are from non-clinical populations, this tool has been demonstrated to be effective in quantifying meaningful levels of depression even in non-clinical samples (Furr & Funder, 1998).

Quantifying Construal

Although I have a measure with which to quantify different perceptions of situational features, the manner in which construal is quantified is a different matter. In the simplest form, the self-reported view of a single situation is made up of two components: a) the objective psychological properties of that situation and b) the participant’s subjective view of the psychological properties of that situation. Although one might question whether the consensual measures of a given situation are made up of these same components, it is never the case that these consensual ratings are made only based on one individual’s ratings. Thus when combined, each independent rater’s own subjective construals or perceptual biases tend to cancel each other’s out, leaving only the more objective view of situations.

In this section I will be discussing some of the different analytic methods used to quantify construal. When using the RSQ to describe a given situation experienced by participants, a self-view of the psychological properties of that situation is gathered. For
each study design, it is also possible to also gather a consensual view of the psychological properties of that situation. The exact manner in which this is done differs slightly depending on the study design in question; however, each of the three studies does have a self-component and an observer-component, which can be compared in some way to reveal how much a person is discrepant from the norm. Conceptually, then, it should seem simple to compare. The quantification of this discrepancy, however, is not quite as simple as it might at first seem.

In the simplest conception, if we take out the objective properties of the situation, whatever remains must be unique to the perceiver. Unfortunately, there is another concern that needs to be remembered when discussing any calculation of construal. Though in its purest form, the self-reported view of a single situation is made up of two components: a) the objective psychological properties of that situation and b) the participant’s subjective view of the psychological properties of that situation, in reality there is a third component: error. Therefore, an attempt to partial out the objective properties of the situation and make conclusions based on the residual is going to be weakened to some degree. While there are theoretical and empirical reasons to believe that an individual’s personality is related to his or her unique perceptions of situations, there are also reasons to expect these relationships to be relatively small, particularly when compared to other effect sizes in social and personality research (Ozer, 1985; 2007). In fact, if the degree of distinct construal in every situation were high, individuals would surely struggle to survive in a world where they must negotiate shared situations.
with other people. Thus a range of small values, ones often dismissed as insignificant, may signify important degrees of distinct construal.

Though these issues might seem problematic, the nature of our measurement tool does provide some respite. As described earlier, the q-sort technique does limit the influence of response sets and individual differences in overall variance. This reduction in some of the known sources of error and bias should prove valuable in this situation.

From a statistical point of view, for the relationships between personality and unique perceptions of situations to be large, there must be both variability in personality and unique perceptions.

Beyond the conceptual issues remain the methodological questions. How might we quantify construal? Is there a best way? In the following sections I present a few different methods for quantifying construal, each of which will be used during the subsequent portions of this dissertation.

Table 1.0.2.

Methods for Quantifying Distinctiveness of Construal.

<table>
<thead>
<tr>
<th>Method</th>
<th>Name</th>
<th>Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Correlation</td>
<td>Simple pearson r between an individual’s profile and a consensus profile.</td>
</tr>
<tr>
<td>B</td>
<td>By-Item Z-Scores</td>
<td>Sum of absolute values of an individual’s z-scores for each item.</td>
</tr>
<tr>
<td>C</td>
<td>Linear Regression Residuals</td>
<td>A vector of residuals from a linear regression prediction of an individual’s profile from a consensus profile.</td>
</tr>
<tr>
<td>D</td>
<td>Aggregated Residuals</td>
<td>The sum of the absolute value of the residuals from method C.</td>
</tr>
<tr>
<td>E</td>
<td>Median Absolute Deviations</td>
<td>The median of the absolute value of an individuals by-item deviations from the consensus.</td>
</tr>
</tbody>
</table>
Simplified versions of the R-code used to calculate these indices can be found in Appendix H. In Table 1.0.2, the five methods used throughout this dissertation are summarized.

Profile agreement

Because of the nature of the q-sort, not only do we have 89 individual items describing the situation, we also have a profile made up of 89 items and their relative placements. One way to form the consensual view of the situation would be to combine the entire profiles of the observer ratings. In some cases this could mean finding the average RSQ profile for all the others in the sample than the target participant in question. A simple index of overall construal might be found using the correlation between an individual’s view of the situation and the consensual view of the situation. Indeed, an iterative computer process makes it effective to calculate a consensual view of the situation for each participant, excluding his or her own view of the situation from the calculation of the mean. This method reduces independence issues in the data. By calculating these correlations for each individual, the r value can then be stored and used as a variable itself. This general normativity of perception is, in a sense, the opposite of construal, and can be used as such. This will be referred to as construal method A. Because this technique is the only one which measures normativity rather than construal, any time where the multiple methods of quantifying construal are discussed in parallel and sign is relevant, these values will be inverted so that they too are a measure of distinctiveness of construal.
Another technique used by Sherman, Nave, & Funder (2013) involves standardized linear regression. Using an average profile of peer ratings of the situation as the objective situational, we could use linear regression to predict self-reports of situational properties. Using linear regression these consensual views of each situation can be partialled out of the target participant’s ratings of the situation to leave only residuals of the participant’s ratings. These residuals represent the participant’s unique view, or construal, of his or her situation. To achieve this result in these data, a standardized linear regression predicting the 89 RSQ self-report scores from the 89 RSQ consensual view scores for each situation, for each participant, can be computed and the residuals from these regressions retained. This resulted in 89 residual scores for each situation provided by each participant which represent the degree to which that participant uniquely construed the psychological properties of that situation as different from the consensual view. These unique construals can be used in the subsequent analyses. This will be referred to as construal method C.

Method C leaves each individual with a distribution of residuals. Though these residuals can be used in some ways, condensing them into a single number as an indicator is necessary to do some further analyses. To generate a general index of construal, these residuals can be treated in the same way as when deviations are calculated by-item. By taking the absolute value of the residuals and then summing them for each person, I can calculate a single-item indicator of the magnitude of residuals left from a person’s linear regression. This is method D.
Deviations by individual RSQ item.

Within each of the q-sort items there is some variability. One way to index the degree of deviation would be to take the z-score of an individual’s placement of a given item, relative to the mean and standard deviation of everyone else. This method would make each of the differing variances of the items more equivalent, rather than letting the items at the endpoints have more sway. After the item-level z-scores are calculated, then the absolute value of this z-score can be summed across all of the q-sort items to give each participant a score for their distinctiveness of construal over all the situational properties for a given situation. This similar to a correlation between one’s rating profile and the average rating profile for a given situation, but it is not precisely the same. It uses item-specific scaling as opposed to the profile-level z-scoring, meaning that each item is given the same weight in contributing to the individual’s overall construal score. This may not be better or worse, but it will be interesting to see where this method deviates from the profile methods like method A. This will be referred to as construal method B.

Sums of Squared deviations could be a slightly different technique for assessing construal distinctiveness. Instead of the traditional calculation of the sum across individuals for deviations around a single item’s mean, the sum could be calculated across items, within a single individual. However, in the case of these q-sort data, the resulting values are analogous to correlating an individual’s profile with the mean profile, so it would be redundant to use in further analyses when combined.

Additionally, it was suggested that absolute deviations from the mean might be more sensitive to small differences. In this case it would be the median of the absolute
value of an individuals by-item deviations from the consensus. The median absolute deviation is a more robust statistic than the standard deviation. In the standard deviation, the distances from the mean are squared, so large deviations are weighted more heavily, and thus outliers can heavily influence it. In the median absolute deviation, the deviations of a small number of outliers are irrelevant. This would prevent any individual’s rating of the situation from being unduly influenced by a particularly odd rating of a few others in the sample. This is method E.

Hypotheses

Because the three studies share a similar structure, the hypotheses that follow are the general form of the hypotheses which each study includes. Any deviations from these hypotheses that are study-specific will be discussed in those chapters.

H1: People vary in the degree to which they distinctively construe situations.

H1.1: Consensus can be reached about the situation.

Before deviations from the consensus can be considered, first it must be established that a stable consensus can be reached for all the observers viewing a shared or similar situation. Accomplishing this could be done multiple ways.

The first method for calculating a measure of consensus could involve calculating a profile correlation between each participant’s RSQ descriptions of the situation. In one sense, the average of this matrix’s unique values is the average agreement among participants about the situation.

Serfass & Sherman (2013) used a different method to establish the agreement around a profile. To assess agreement, first, a consensus RSQ profile of each situation
was estimated by calculating the mean RSQ profile on that picture. Next, profile correlations were computed between the consensual profiles and each participant’s rating of the TAT card. The average of those profile correlations was considered to be their index of overall agreement.

More traditional measures of reliability could also be calculated. A Spearman-Brown ‘up’ can be used to determine effective reliability of judges (Rosenthal & Rosnow, 2008). In this case, we might consider each participant to be a judge of the situation. Similarly, a Chronbach’s alpha could be conducted on the profile intercorrelations as a measure of reliability of the profile ratings of the situations.

H1.2 The consensus average intercorrelations will be higher than baseline

One issue that has sometimes arisen in null-hypothesis significance-testing frameworks is the frequent comparison to a null hypothesis of zero, rather than whatever empirical baseline might be appropriate for a particular type of data or measure. This is particularly important to note in correlational designs where no possible control or ‘placebo’ group can be examined.

I will calculate a baseline situational similarity score based on an outside dataset of varied situations gathered using the RSQ. This will serve as an empirical baseline for the degree to which situations of any sort tend to be similar when described using these methods. By comparing the two it will be possible to demonstrate that there are, indeed, shared perceptions of a given situation.
H1.3: Construal can be quantified.

Finally, I will need to quantify the degree to which individuals are distinctively construing selected situations. This will be done using the variety of techniques discussed in the previous section, where appropriate, including; H1.3.A: Simple profile correlation normativity, H1.3.B: By-item z-scored overall construal, H1.3.C: Linear regression residuals, H1.3.D: Accumulated residuals, H1.3.E: Median Absolute Deviations. When calculating these methods I will also report some basic descriptive statistics for the method. This will allow comparison between studies and methods.

H2: People are consistent in the degree to which they distinctively construe different situations they experience.

H2.1: People are consistent in the degree to which they distinctively construe different situations they experience.

Given that each of these studies includes at least two different situations across which we can compare, it is possible to look at the correlation between a person’s distinctiveness of construal for the first situation, and his or her distinctiveness of construal for the second situation. This will be true for all of the previously-specified methods of quantifying construal where appropriate, including; H2.1.A: Simple profile correlation normativity, H2.1.B: By-item z-scored overall construal, H2.1.C: Linear regression residuals, H2.1.D: Accumulated residuals, H2.1.E: Median Absolute Deviations.
H2.2: This consistency is higher than the baseline.

Not only can the consistency of a person’s construal be calculated for a particular metric of construal, but it can be compared to an empirically-gathered baseline. Taking a person’s distinctiveness of construal for one situation, and correlating it with a different person’s distinctiveness of construal for a different situation should provide a more appropriate value for comparison. The average intercorrelations among the construals of unrelated persons and situations can serve as a baseline consistency of construal rather than assuming it to be 0.

I hypothesize that the consistency of construal will be higher than this empirical baseline. This will be tested for all of the previously-specified methods of quantifying construal where appropriate, including: H2.2.A: Simple profile correlation normativity, H2.2.B: By-item z-scored overall construal, H2.2.C: Linear regression residuals, H2.2.D: Accumulated residuals, H2.2.E: Median Absolute Deviations.

H3: Differences in individuals’ distinctiveness of construal are systematically related to personality.

Since our data frequently yield a great many correlations, it can be difficult to find ways to create cohesive or summarized findings. However, thanks to some innovations on the part of Ryne Sherman, we can use randomization procedures to look at a set of correlations at once. Not only does this allow us to be more confident in our p-values given that it is not based on the traditional assumptions of normality or independence among findings, but it also gives us a helpful summary finding for the set of correlates.
Rather than getting into which personality variables relate to which construals of particular situational items, it makes sense to start with a broader question. I predict that the CAQ as a set relate to distinctiveness of construal, as demonstrated by a randomization test. This analysis will be conducted for each metric of construal, where appropriate, including; H3.1.A: Simple profile correlation normativity, H3.1.B: By-item z-scored overall construal, H3.1.C: Linear regression residuals, H3.1.D: Accumulated residuals, H3.1.E: Median Absolute Deviations.

H4: Construal relates to specific personality variables.

H4.1 CAQ correlates of distinctiveness of construal

Once it’s established that there are, in fact, correlations worth examining in the relationship between the CAQ and measures of construal, the actual personality traits themselves can be examined. Because the approach taken in this dissertation is one that is more exploratory and data-driven than theory-driven, the correlations will be allowed to speak for themselves by examining the full set of possible correlations between the 100 CAQ items and each of the metrics of construal, where appropriate, including; H4.1.A: Simple profile correlation normativity, H4.1.B: By-item z-scored overall construal, H4.1.D: Accumulated residuals, and H4.1.E: Median Absolute Deviations. Each of these analyses will be accompanied by a randomization test to ensure that the data structures and non-independence issues will not interfere with assumptions about probability.

H4.2 BFI Personality correlates of Distinctiveness of construal

In addition to the CAQ, the Big Five Inventory will be used to assess personality. There is almost no existing research on how the big-five relate to perceptions of
situations. A rarity, Rauthmann’s (2012) paper demonstrates that personality is related to the ways in which people perceive limited aspects of certain situational features. However, this study was not done using actual situations.

By including the Big Five Inventory in the measures for these studies, we can assess whether there are stable correlates of construal at this level of personality. This will be done using the variety of techniques discussed in the previous section, where appropriate, including; H4.2.A: Simple profile correlation normativity, H4.2.B: By-item z-scored overall construal, H4.2.C: Linear regression residuals, H4.2.D: Accumulated residuals, and H4.2.E: Median Absolute Deviations.

H4.3 BDI Depression correlates of distinctiveness of construal

Persons who are depressed should tend to perceive their situations as more negative, as more limiting, and as eliciting more self-pity than those who are less depressed. On the other hand, persons who are high in well-being should tend to construe their situations to be less stressful, more pleasant, and enjoyable than persons lower on Well-Being (Lyubomirsky, 2001; Lyubomirsky & Dickerhoof, 2010; Lyubomirsky & Tucker, 1998; Sherman, Nave, & Funder, 2013).

The correlation between depression scores and construal will be done using the variety of techniques discussed in the previous section, where appropriate, including; H4.3.A: Simple profile correlation normativity, H4.3.B: By-item z-scored overall construal, H4.3.C: Linear regression residuals, H4.3.D: Accumulated residuals, H4.3.E: Median Absolute Deviations.
H5: The patterns of these findings are consistent across three studies.

Moving on to a model that transcends the specific situations provided in the specific studies, I wish to establish whether the patterns of relationships between distinctiveness of construal and personality are stable enough to replicate across the three studies. Though there is indeed some bias due to similar methods and labs, it is an important step towards being able to generalize this question beyond the scope of these limited situations.

H5.1 The relative magnitudes and other descriptive statistics for each method of construal will replicate across the three studies.

Each of the specified methods of quantifying construal are mathematically distinct, however, they ought to be highly similar. This section will focus on quantifying the degree of similarity among the different methods and confirming any patterns across the three studies, as well as discussing any issues noticed throughout the three studies.

H5.2 The patterns of within-person consistency for each method of construal will replicate across the three studies.

For each of the three studies, the values calculated for within-person consistency of construal will be compared. The magnitude of the effect-sizes for these correlations are expected to be similar. They will be discussed, as well as combined and compared against the null using a meta-analytic mindset, using a random-effects t-test across the three studies. Additionally the pattern of the effect sizes will be examined when the groups are separated by gender to compare the relative magnitudes of the effect sizes for any consistency in the pattern.
H5.3 The test of the set of personality correlates of construal will replicate across the three studies.

This hypothesis is simple in execution and will only involve a brief discussion of the findings from each of the three studies in order to compare them.

H5.4 The pattern of personality correlates with distinctiveness of construal will replicate across the three studies for each method of construal.

For the CAQ correlates this will be quantified by correlating the pattern of 100 correlates from each of the three studies. This will be repeated for each of the relevant methods of quantifying construal and the resulting correlations will be compared.

For the Big Five, the various correlations will be combined in a table in order to be compared across the three studies. Patterns will be discussed.

For depression, the values found in studies one and three will be compared and discussed.
Chapter 2 – Video Situations

When initial discussions for developing a study began in our lab, one of the ideas that seemed to best balance resource cost and effectiveness was to use brief video clips. This method keeps the stimuli as stable as possible, while being relatively rich in information compared to written-scenario techniques. While it has its own limitations, the closest one can get to true construal is to have everyone simply view the same situation stimuli. In this study I attempted to do so by showing participants video clips of two people interacting.

The first study was conducted in 2010 at UC Riverside, following the awarding of an Academic Senate Grant to David Funder based on a proposal I wrote for the project. A portion of this grant was used to purchase the video stimuli. I was the chief architect of study protocols and manager of this project in my lab.

For this study I will be examining hypotheses 1 through 4, along with the sub-hypotheses appropriate for these data.

Method

Participants

Participants included 127 Undergraduates at UCR; 69 women and 58 men. Demographic data gathered included Age, Gender, and Ethnicity. 95% reported English as their first language. 72% consider themselves multi-cultural. Commonly reported ethnicities include African-American / Black, Asian, Asian-American, Caucasian/White, Hispanic, Middle-Eastern. University of California, Riverside is an accredited minority-
serving post-secondary institution such that the majority of the student body does not identify their ethnicity as being primarily Caucasian/White.

Participants were recruited from the university’s subject pool, made up of students across a variety of majors who are enrolled in one of the university’s two introductory psychology courses. Participants received course credit in compensation for their time.

Measures

Big 5 Inventory

The Big Five Inventory (BFI: John, Donahue, & Kentle, 1991) includes 44 items that assess the global personality traits of Agreeableness, Conscientiousness, Extraversion, Neuroticism, and Openness. Participants rated each item on a five-point Likert-type scale (1 = disagree strongly, 5 = agree strongly). The means (SDs) for each of the five composites were as follows: Agreeableness = 3.79 (0.63), Extraversion = 3.45 (0.65), Conscientiousness = 3.52 (0.55), Neuroticism = 2.79 (0.63), and Openness = 3.64 (0.45). The alpha reliabilities of the five composites were as follows: Agreeableness = 0.81, Extraversion = 0.82, Conscientiousness = 0.80, Neuroticism = 0.80, and Openness = 0.72.

Beck Depression Inventory

The Beck Depression Inventory II (BDI-II: Beck, Steer, & Brown, 1996) is a 21-item self-report scale that updates a widely-used instrument for measuring the severity of depression (BDI: Beck et al., 1961). This tool has been demonstrated to be effective in quantifying meaningful levels of depression, which have consequences even in non-clinical samples (Furr & Funder, 1998). Participants rated each item using a 4-point scale.
ranging from 0 to 3 (e.g. Sadness: “I do not feel sad” (0), “I feel sad much of the time” (1), “I am sad all the time” (2), or “I am so sad or unhappy that I can’t stand it” (3)). BDI scores were calculated by summing the ratings on all 21 items. The mean score for this sample was 10.02 (SD = 7.25), scores ranged from 0 to 41, and the full scale Cronbach’s alpha was 0.88.

Subjective Happiness Scale

The Subjective Happiness Scale (SHS; Lyubomirsky & Lepper, 1999) is a 4-item global self-assessment. Participants rated each item on a 7 point Likert-type scale (e.g. Item 1 – “In general I consider myself: 1 = Not a very happy person to 7 = A very happy person). A subjective happiness score was computed by averaging these four items, with the fourth item being reverse scored. This scale’s correlates are not included in the analyses for this study and will not be discussed further.

California Adult Q-set

The California Adult Q-Sort (CAQ: Block, 1978; as modified for use by non-professionals by Bem & Funder, 1978) contains 100 diverse personality characteristics (e.g., “Is genuinely dependable and responsible”; “Has a wide range of interests”) broadly covering the personality domain. Using the Q-sorting computer program, each participant assessed his or her own personality using the modified CAQ by placing each of the items into one of nine categories (1 = extremely uncharacteristic, 9 = extremely characteristic) forming a forced choice, quasi-normal distribution.
Riverside Situational Q-Sort

The Riverside Situational Q-Sort (RSQ) was initially developed by Wagerman and Funder (2009). The current version 3.15 consists of 89 diverse characteristics of situations (e.g., “Situation is potentially enjoyable”; “A job needs to be done”). Participants describe the situation he or she is focused on by placing each item into one of nine categories (1 = extremely uncharacteristic, 9 = extremely characteristic) according to a forced choice, quasi-normal distribution, using the Q-sorting computer program\(^1\).

The number of items placed in each category was 3, 6, 11, 15, 18, 15, 11, 6, and 3 for categories 1-9 respectively. Thus, as is typical of the Q-Sort method, participants are forced to decide which few items are the most and least characteristic of the situation while the majority of less relevant, or even irrelevant, items are left to the middle categories. The version used for study 1 was 3.14, which is the 88-item version of the RSQ. The 89-item version of the RSQ: version 3.15, is essentially the same as the 88-item version used in this study. In addition to simple edits to punctuation and consistency of vocabulary, the single notable difference is the addition of the 89\(^{th}\) item, which is created from severing the double-barreled item #80 “Affords an opportunity to express masculinity or femininity (depending on whether P is male or female, respectively).” For the analyses in this dissertation, this distinction between q-sets is not likely to make much impact.

\(^1\) Go to http://rap.ucr.edu/qsorter/ for more information about this program and a free, downloadable copy. This website also includes complete lists of the CAQ & RSQ items used in the present study.
Video Clips

The primary stimuli were two brief (approximately 50 seconds) videos of a man and a woman interacting. One scenario involved a flirting situation. The second involved a workplace situation. By using the medium of video images, all participants get essentially the same situation information. The situations are interpersonal and dynamic, though each only features one scene. This is as opposed to scenarios where an individual might be performing a task alone, such as cooking. Clips were gathered from stock footage sold by a company specializing in stock photos and video clips. These stock images tend to use actors who are not famous and therefore wouldn’t have additional connotations for the participants. Clip lengths: 0:57 (workplace), 1:19 (flirting).

Design & Procedure

Participants made two separate visits to the lab to complete this study. Each session lasted approximately one hour. The sessions were broken up to reduce participant fatigue as the RSQ often takes between twenty and forty minutes to complete. Participants were free to choose when to return for their second session, so long as it was at least one day in the future and no more than three weeks later than their first session. Most participants returned within approximately one week.

During their first session, participants completed personality (CAQ, BFI) and other measures using a computer-based survey program. During the second session, participants viewed a video clip and then used the RSQ to describe that situation. Each saw two video clips, orders were counterbalanced.
Results

H1: People vary in the degree to which they distinctively construe situations.

H1.1: Consensus can be reached about the situation.

The first hypothesis is regarding the agreement or consensus about the target situations. In this case our stimuli were at least, in part, agreed upon by our set of participants. The mean intercorrelation between individuals’ rating of the flirting video was $r = 0.526$. For women it was $r = 0.511$ and for men it was $r = 0.541$. For the workplace video, the mean intercorrelation between individuals’ ratings was $r = 0.347$. For women it was $r = 0.352$ and for men it was $r = 0.343$.

H1.2 The consensus average intercorrelations will be higher than baseline

Though these correlations are not exceedingly large, they are much larger than a baseline correlation calculated from a random sample of RSQ-descriptions from situations across the United States (Hanes, et al., in preparation). The average intercorrelations of descriptions of unrelated situations across the U.S. is $r = 0.154$, $SD = 0.166$. Significance tests of this difference, using Welch’s adjusted t-test for unequal variances, range from $t_{(1676.798)} = 45.246$ to $t_{(8631.869)} = 199.524$, all with infinitesimal p-values.

H1.3: Construal can be quantified.

As discussed in chapter 1, there are several different possible ways in which construal might be quantified. The following sections detail the descriptive statistics for each method as appropriate.
H1.3.A Simple profile correlation normativity.

By calculating a mean profile for the dataset, each individual’s RSQ profile can be compared to the mean with a correlation.

Table 2.1.3.A.

Distribution of Individuals’ General Degree of Normativity for Study 1.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>med</th>
<th>min</th>
<th>max</th>
<th>skew</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video X</td>
<td>127</td>
<td>0.72</td>
<td>0.15</td>
<td>0.76</td>
<td>-0.18</td>
<td>0.89</td>
<td>-3.14</td>
<td>13.63</td>
</tr>
<tr>
<td>Video X: Women</td>
<td>69</td>
<td>0.71</td>
<td>0.17</td>
<td>0.74</td>
<td>-0.19</td>
<td>0.89</td>
<td>-3.15</td>
<td>12.11</td>
</tr>
<tr>
<td>Video X: Men</td>
<td>58</td>
<td>0.73</td>
<td>0.11</td>
<td>0.77</td>
<td>0.30</td>
<td>0.88</td>
<td>-1.97</td>
<td>4.63</td>
</tr>
<tr>
<td>Video Y</td>
<td>127</td>
<td>0.59</td>
<td>0.14</td>
<td>0.59</td>
<td>-0.03</td>
<td>0.82</td>
<td>-1.49</td>
<td>3.53</td>
</tr>
<tr>
<td>Video Y: Women</td>
<td>69</td>
<td>0.59</td>
<td>0.13</td>
<td>0.59</td>
<td>0.07</td>
<td>0.81</td>
<td>-1.2</td>
<td>2.32</td>
</tr>
<tr>
<td>Video Y: Men</td>
<td>58</td>
<td>0.58</td>
<td>0.15</td>
<td>0.59</td>
<td>-0.03</td>
<td>0.8</td>
<td>-1.63</td>
<td>3.8</td>
</tr>
</tbody>
</table>

This correlation could be considered an individual’s normativity of construal.

Table 2.1.3.A. provides the basic descriptive statistics for this measure of normativity of situational description for study 1. Measured this way, these data do seem to be rather skewed, in part due to ceiling effect of the correlation value. In this case, too much agreement is perhaps not a desirable force. The indices for skew and kurtosis are, for the flirting video, beyond the scope of even conservative thresholds for indicators of normality.
Figure 2.1.3.A. Distributions of Distinctiveness of construal for Video Situations as Measured by Correlation with Mean Profile.

In this case, Fisher’s Z transformations of these r values yield a more normally distributed index. Though it does not achieve the cutoffs for normality, the Fisher’s Z-transformed “Flirting” video data have a skew of -1.37 and a kurtosis value of 3.86. This second distribution can be seen in Figure 2.1.3.A.2. in Appendix E

This is fortunate since several of the later analyses can be done using this Fisher’s Z-transformation of the data.

H1.3.B By-item z-scored overall construal.

Within each of the q-sort items there is some variability. One way to index the degree of deviation would be to take the standardized z-score of an individual’s placement of a given item, relative to the mean and standard deviation of everyone else. Then the absolute value of this z-score can be summed across all of the q-sort items to
give each participant a score for their distinctiveness of construal over all the situational properties for a given situation. See Table 2.1.3.B for information on the distribution of this index of distinctiveness of construal.

Table 2.1.3.B.

Distribution of Individuals’ Distinctiveness of By-Item Z-Scored Construal for Study 1.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>med</th>
<th>min</th>
<th>max</th>
<th>skew</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video X</td>
<td>127</td>
<td>69.27</td>
<td>13.75</td>
<td>66.21</td>
<td>49.3</td>
<td>135.39</td>
<td>2.06</td>
<td>6.03</td>
</tr>
<tr>
<td>Video X: Women</td>
<td>69</td>
<td>69.08</td>
<td>15.00</td>
<td>66.61</td>
<td>48.64</td>
<td>130.67</td>
<td>2.01</td>
<td>5.12</td>
</tr>
<tr>
<td>Video X: Men</td>
<td>58</td>
<td>69.93</td>
<td>11.85</td>
<td>66.58</td>
<td>52.45</td>
<td>115.8</td>
<td>1.65</td>
<td>3.31</td>
</tr>
<tr>
<td>Video Y</td>
<td>127</td>
<td>70.63</td>
<td>8.47</td>
<td>69.11</td>
<td>54.97</td>
<td>97.72</td>
<td>0.86</td>
<td>0.78</td>
</tr>
<tr>
<td>Video Y: Women</td>
<td>69</td>
<td>70.77</td>
<td>8.38</td>
<td>69.65</td>
<td>55.1</td>
<td>97.5</td>
<td>0.87</td>
<td>0.88</td>
</tr>
<tr>
<td>Video Y: Men</td>
<td>58</td>
<td>70.88</td>
<td>8.80</td>
<td>69.23</td>
<td>55.1</td>
<td>97.1</td>
<td>0.84</td>
<td>0.57</td>
</tr>
</tbody>
</table>

For the by-item z-scored method of indexing construal, there is less severity in the indicators of skew. However, the kurtosis indicator for the “flirting” video is still well outside of the range of acceptable values, indicating a lack of normality in the distribution. This can be seen in Figure 2.1.3.B, where the flirting video is clearly right skewed.

H1.3.C Linear regression residuals.

This calculation of construal leaves 88 residuals for each individual. The descriptive statistics for this method of construal would be cumbersome to detail, however, the following method, method D, should provide an appropriate picture.

H1.3.D Accumulated residuals.
By aggregating the residual values calculated in method C, descriptive statistics can be calculated regarding the linear regression method of predicting construal.

Table 2.1.3.D.

Distribution of Individuals’ Aggregated Residuals from Linear Profile Regression for Study 1.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>med</th>
<th>min</th>
<th>max</th>
<th>skew</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video X</td>
<td>127</td>
<td>1.00</td>
<td>0.18</td>
<td>0.98</td>
<td>0.67</td>
<td>1.55</td>
<td>0.99</td>
<td>1.31</td>
</tr>
<tr>
<td>Video X: Women</td>
<td>69</td>
<td>1.01</td>
<td>0.19</td>
<td>0.99</td>
<td>0.68</td>
<td>1.55</td>
<td>0.94</td>
<td>1.32</td>
</tr>
<tr>
<td>Video X: Men</td>
<td>58</td>
<td>0.99</td>
<td>0.17</td>
<td>0.95</td>
<td>0.69</td>
<td>1.52</td>
<td>1.11</td>
<td>1.66</td>
</tr>
<tr>
<td>Video Y</td>
<td>127</td>
<td>1.20</td>
<td>0.15</td>
<td>1.20</td>
<td>0.86</td>
<td>1.55</td>
<td>0.20</td>
<td>-0.20</td>
</tr>
<tr>
<td>Video Y: Women</td>
<td>69</td>
<td>1.19</td>
<td>0.14</td>
<td>1.20</td>
<td>0.90</td>
<td>1.55</td>
<td>0.23</td>
<td>-0.23</td>
</tr>
<tr>
<td>Video Y: Men</td>
<td>58</td>
<td>1.20</td>
<td>0.15</td>
<td>1.19</td>
<td>0.89</td>
<td>1.55</td>
<td>0.20</td>
<td>-0.09</td>
</tr>
</tbody>
</table>

This method demonstrates skew and kurtosis values much closer to the 0 values that would indicate normality. In most cases they do not exceed a value of 1, and none of them are larger than 2, which is a liberal threshold for these indicators of normality, which can be seen in Figure 2.1.3.D.

HI.3.E Median absolute deviations.

Table 2.1.3.E.

Distribution of Individuals’ Median Absolute Deviations for Study 1.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>med</th>
<th>min</th>
<th>max</th>
<th>skew</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video X</td>
<td>127</td>
<td>0.87</td>
<td>0.19</td>
<td>0.81</td>
<td>0.56</td>
<td>1.59</td>
<td>1.41</td>
<td>2.61</td>
</tr>
<tr>
<td>Video X: Women</td>
<td>69</td>
<td>0.87</td>
<td>0.20</td>
<td>0.81</td>
<td>0.57</td>
<td>1.50</td>
<td>1.41</td>
<td>2.50</td>
</tr>
<tr>
<td>Video X: Men</td>
<td>58</td>
<td>0.87</td>
<td>0.17</td>
<td>0.80</td>
<td>0.58</td>
<td>1.42</td>
<td>1.47</td>
<td>2.66</td>
</tr>
<tr>
<td>Video Y</td>
<td>127</td>
<td>1.03</td>
<td>0.16</td>
<td>1.00</td>
<td>0.73</td>
<td>1.53</td>
<td>0.75</td>
<td>0.66</td>
</tr>
<tr>
<td>Video Y: Women</td>
<td>69</td>
<td>1.02</td>
<td>0.16</td>
<td>1.00</td>
<td>0.68</td>
<td>1.57</td>
<td>0.72</td>
<td>0.99</td>
</tr>
<tr>
<td>Video Y: Men</td>
<td>58</td>
<td>1.05</td>
<td>0.16</td>
<td>1.04</td>
<td>0.78</td>
<td>1.54</td>
<td>0.95</td>
<td>1.31</td>
</tr>
</tbody>
</table>
Method E does provide more normality than the first two methods, though there is still some indication of peakedness and skew in the “flirting” video. However, most of the values fall within the range of normality.

H2: There is stability in this variation of distinctiveness of construal.

H2.1.A Simple profile correlation normativity.

The correlation between a person’s general normativity of construal for the first video and his or her general normativity of construal in the second video was calculated, along with a randomization test for statistical significance. Combined $r = 0.464, p < 0.0001$, 95% CI: [0.315, 0.590]; Women $r = 0.406, p = 0.002$, 95% CI: [0.249, 0.542]; Men $r = 0.627, p < 0.0001$, 95% CI: [0.508, 0.722].

H2.1.B By-item z-scored overall construal.

The correlation between a person’s distinctiveness of construal for the first video and his or her distinctiveness of construal in the second video was calculated, along with a randomization test for statistical significance. Combined $r = 0.409, p < 0.0001$, 95% CI: [0.253, 0.544]; Women $r = 0.425, p = 0.001$, 95% CI: [0.209, 0.601]; Men $r = 0.441, p = 0.002$, 95% CI: [0.206, 0.628].

H2.1.C Linear regression residuals.

Because this method leaves a set of residuals for each individual, rather than a single number for distinctiveness of construal, the correlation between a person’s residuals from a linear regression prediction for the first video and his or her residuals from a linear regression prediction in the second video would yield a correlation for each individual and is therefore somewhat different from the other methods. This method
indexes whether the exact ratings’ deviations for the first situation match those of the second situation. The average correlation within an individual is $r = 0.089$, 95% CI: [-0.086, 0.259]. For women, the average correlation within an individual is $r = 0.090$, 95% CI: [-0.150, 0.320]. For men, the average correlation within an individual is $r = 0.086$, 95% CI: [-0.176, 0.337].

H2.1.D Accumulated residuals.

The correlation between a person’s accumulated residuals from a linear regression prediction for the first video and his or her accumulated residuals from a linear regression prediction in the second video was calculated, along with a randomization test for statistical significance. Combined $r = 0.455, p < 0.0001, 95\%$ CI: [0.303, 0.582]; Women $r = 0.461, p < 0.0001, 95\%$ CI: [0.311, 0.587]; Men $r = 0.458, p < 0.0001, 95\%$ CI: [0.302, 0.581].

H2.1.E Median absolute deviations.

The correlation between a person’s median absolute deviations for the first video and his or her median absolute deviations for the second video was calculated, along with a randomization test for statistical significance. Combined $r = 0.464, p < 0.0001, 95\%$ CI: [0.158, 0.471]; Women $r = 0.404, p = 0.0029, 95\%$ CI: [0.186, 0.493]; Men $r = 0.630, p < 0.0001, 95\%$ CI: [0.193, 0.499].

H2.2 These consistencies in construal are higher than an empirical baseline value

Instead of being content to compare to a null value of 0, using a randomization procedure, samples of the data can be taken and assigned to random orders, staying consistent with the same data structures as the other analyses.
For analysis A, the empirical baseline value calculated is \(r = -0.00094 \). The statistical test comparing the value to the sampled consistency of distinctiveness of construal in H2.1 is \(z = 3.963 \), \(p < 0.0001 \). For analysis B, the empirical baseline value calculated is \(r = -0.00198 \). The statistical test comparing the value to the sampled consistency of distinctiveness of construal in H2.1 is \(z = 3.438 \), \(p = 0.00059 \). For analysis D, the empirical baseline value calculated is \(r = -0.00698 \). The statistical test comparing the value to the sampled consistency of distinctiveness of construal in H2.1 is \(z = 3.905 \), \(p < 0.0001 \). For analysis E, the empirical baseline value calculated is \(r = -0.01458 \). The statistical test comparing the value to the sampled consistency of distinctiveness of construal in H2.1 is \(z = 2.759 \), \(p = 0.0058 \).

In all, the empirical baseline consistencies in construal calculated between unrelated persons are remarkably close to zero. Though perhaps unsurprising, this verification lends even more support to the consistency values found in section 2.1.

H3: Differences in individuals’ distinctiveness of construal are systematically related to personality.

As I do not have any specific theory-based predictions about the particular personality variables and their relationship to distinctiveness of construal, I will examine the set of correlates between CAQ-measured personality and distinctiveness of construal. In this case, the measures of construal were combined across situations, then correlated with the CAQ for a more conservative analysis. Initial analyses, including a randomization test (Sherman & Funder, 2009) of the set of correlates, indicate that a significant proportion of these relationships are unlikely to be due to chance alone. In the
following four tables, # Significant is the observed number of statistically significant correlations in the 100x1 correlation matrix followed by the p-value associated with such a number. Avg. |r| is the average absolute r in the 100x1 correlation matrix followed by its associated p-value.

H3.A Simple profile correlation normativity.

Table 2.3.A.

Results from Randomization Tests Correlating 100 CAQ Items with Normativity of Construal for Study 1.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th># Significant</th>
<th>p</th>
<th>Avg.</th>
<th>r</th>
<th></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>127</td>
<td>11</td>
<td>0.035</td>
<td>0.084</td>
<td></td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>69</td>
<td>13</td>
<td>0.012</td>
<td>0.113</td>
<td></td>
<td>0.053</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>58</td>
<td>3</td>
<td>0.789</td>
<td>0.100</td>
<td></td>
<td>0.696</td>
<td></td>
</tr>
</tbody>
</table>

H3.B By-item z-scored overall construal.

Table 2.3.B.

Results from Randomization Tests Correlating 100 CAQ Items with By-Item Z-Scored Distinctiveness of Construal for Study 1.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th># Significant</th>
<th>p</th>
<th>Avg.</th>
<th>r</th>
<th></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>127</td>
<td>11</td>
<td>0.029</td>
<td>0.082</td>
<td></td>
<td>0.063</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>69</td>
<td>12</td>
<td>0.013</td>
<td>0.112</td>
<td></td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>58</td>
<td>3</td>
<td>0.806</td>
<td>0.100</td>
<td></td>
<td>0.684</td>
<td></td>
</tr>
</tbody>
</table>
H3.D Accumulated residuals.

Table 2.3.D.
Results from Randomization Tests Correlating 100 CAQ Items with Accumulated Residuals from a Linear Regression Prediction for Study 1.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th># Significant</th>
<th>p</th>
<th>Avg.</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>127</td>
<td>12</td>
<td>0.011</td>
<td>0.089</td>
<td>0.008</td>
</tr>
<tr>
<td>Women</td>
<td>69</td>
<td>13</td>
<td>0.008</td>
<td>0.114</td>
<td>0.039</td>
</tr>
<tr>
<td>Men</td>
<td>58</td>
<td>5</td>
<td>0.535</td>
<td>0.107</td>
<td>0.467</td>
</tr>
</tbody>
</table>

H3.E Median Absolute Deviations

Table 2.3.E.
Results from Randomization Tests Correlating 100 CAQ Items with Median Absolute Deviations for Study 1.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th># Significant</th>
<th>p</th>
<th>Avg.</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>127</td>
<td>6</td>
<td>0.392</td>
<td>0.077</td>
<td>0.190</td>
</tr>
<tr>
<td>Women</td>
<td>69</td>
<td>9</td>
<td>0.081</td>
<td>0.105</td>
<td>0.176</td>
</tr>
<tr>
<td>Men</td>
<td>58</td>
<td>4</td>
<td>0.678</td>
<td>0.106</td>
<td>0.742</td>
</tr>
</tbody>
</table>

H4: Construal relates to specific personality variables

H4.1 CAQ correlates of distinctiveness of construal

Now that it has been established that there are correlates worth pursuing, this section will focus on looking beyond the set of correlates to the actual CAQ items which relate to the different measures of construal. Each of the four applicable types of construal were correlated with the individuals’ CAQ. Each individual’s multiple situation ratings were first correlated with the CAQ, then averaged after a Fisher’s Zr
transformation. Additionally a randomization test was used to calculate the appropriate threshold values. The positive correlates that surpassed the r-value associated with a p-value of .10 are reported in Table 2.4.1.1. below.

Table 2.4.1.1.

Positive Self-Rated CAQ Personality Correlates of Distinctiveness of Construal of Video Situations.

<table>
<thead>
<tr>
<th>CAQ Item</th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 Is moralistic.</td>
<td>0.203***</td>
<td>0.180**</td>
<td>0.172**</td>
<td>0.120*</td>
</tr>
<tr>
<td>52 Behaves in an assertive fashion.</td>
<td>0.178**</td>
<td>0.149**</td>
<td>0.152**</td>
<td>0.098†</td>
</tr>
<tr>
<td>32 Seems to be aware of the impression he or she makes on others.</td>
<td>0.176**</td>
<td>0.175**</td>
<td>0.207***</td>
<td>0.160**</td>
</tr>
<tr>
<td>31 Regards self as physically attractive.</td>
<td>0.160**</td>
<td>0.122*</td>
<td>0.121*</td>
<td>0.070</td>
</tr>
<tr>
<td>27 Shows condescending behavior in relations with others</td>
<td>0.149**</td>
<td>0.158**</td>
<td>0.191**</td>
<td>0.130*</td>
</tr>
<tr>
<td>73 Tends to perceive many different contexts in sexual terms; eroticizes situations.</td>
<td>0.146**</td>
<td>0.149**</td>
<td>0.178**</td>
<td>0.118*</td>
</tr>
<tr>
<td>78 Feels cheated and victimized by life; self-pitying.</td>
<td>0.145*</td>
<td>0.146**</td>
<td>0.160**</td>
<td>0.115*</td>
</tr>
<tr>
<td>11 Is protective of those close to him or her.</td>
<td>0.140*</td>
<td>0.123*</td>
<td>0.108*</td>
<td>0.065</td>
</tr>
<tr>
<td>15 Is skilled in social techniques of imaginative play, pretending and humor.</td>
<td>0.128*</td>
<td>0.151**</td>
<td>0.132*</td>
<td>0.137*</td>
</tr>
<tr>
<td>77 Appears straightforward, forthright, and candid in dealing with others.</td>
<td>0.118*</td>
<td>0.144*</td>
<td>0.134*</td>
<td>0.115*</td>
</tr>
<tr>
<td>59 Is concerned with own body and the adequacy of its physiological functioning.</td>
<td>0.113*</td>
<td>0.070</td>
<td>0.090†</td>
<td>0.091†</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>Correlation Values</td>
<td>Note</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Thinks and associates ideas in unusual ways; has unconventional thought processes.</td>
<td>0.110 * 0.119 * 0.135 * 0.082 †</td>
<td>CAQ Item content abbreviated. Correlations are calculated by situation, then averaged. p-values determined via randomization test. *** = p < .001, ** = p < .01, * = p < .05, † = p < .10.</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Keeps people at a distance; avoids close interpersonal relationships.</td>
<td>0.106 * 0.101 † 0.099 † 0.070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Is productive; gets things done.</td>
<td>0.103 † 0.105 * 0.107 * 0.111 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Is subjectively unaware of self-concern; feels satisfied with self.</td>
<td>0.101 † 0.077 0.093 † 0.080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Is basically distrustful of people in general; questions their motives.</td>
<td>0.099 † 0.127 * 0.121 * 0.070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Interprets basically simple and clear-cut situations in complicated and particularizing ways.</td>
<td>0.096 † 0.107 * 0.118 * 0.107 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Is physically attractive; good looking.</td>
<td>0.095 † 0.074 0.073 0.059</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Arouses nurturant feelings in others.</td>
<td>0.087 † 0.074 0.060 0.070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Is guileful and deceitful, manipulative, opportunistic. Exploits and takes advantage of people and situations.</td>
<td>0.087 † 0.059 0.093 † 0.048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Does not vary roles; relates to everyone in the same way.</td>
<td>0.072 0.079 0.083 † 0.033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>091</td>
<td>Is power oriented; values power in self and others.</td>
<td>0.066 0.073 0.092 † 0.088 †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>060</td>
<td>Has insight into own motives and behaviors. Knows and understands self well.</td>
<td>0.062 0.073 0.086 † 0.095 †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>083</td>
<td>Able to see to the heart of important problems.</td>
<td>0.060 0.085 † 0.063 0.094 †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>038</td>
<td>Has hostility toward others.</td>
<td>0.053 0.048 0.088 † 0.026</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Among the positive correlates of distinctiveness of construal are several items that seem to be related to assertive or dominant traits. For instance, “Behaves in an assertive
fashion,” as well as “Appears straightforward, forthright, and candid in dealing with others,” and “Shows condescending behavior in relations with others.”

Another tone that comes out is a sort of self-absorption, “Feels cheated and victimized by life; self-pitying,” and particularly concerning physical or sexual interactions, such as “ Regards self as physically attractive,” and “Tends to perceive many different contexts in sexual terms; eroticizes situations,” and “Is concerned with own body and the adequacy of its physiological functioning.”

On the other end of the spectrum are the negative personality correlates of the various distinctiveness of construal, as measured by the four methods, which can be seen in Table 2.4.1.2. below.

Table 2.4.1.2.

Negative Self-Rated CAQ Personality Correlates of Distinctiveness of Construal of Video Situations.

<table>
<thead>
<tr>
<th>CAQ item</th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 Is uncomfortable with uncertainty and complexities.</td>
<td>-0.169***</td>
<td>-0.185**</td>
<td>-0.182**</td>
<td>-0.188**</td>
</tr>
<tr>
<td>43 Is facially and/or gesturally expressive.</td>
<td>-0.164**</td>
<td>-0.201***</td>
<td>-0.175**</td>
<td>-0.184**</td>
</tr>
<tr>
<td>05 Behaves in a giving way to others.</td>
<td>-0.161**</td>
<td>-0.165**</td>
<td>-0.186**</td>
<td>-0.144*</td>
</tr>
<tr>
<td>56 Responds to humor. Appreciates humor.</td>
<td>-0.158**</td>
<td>-0.134*</td>
<td>-0.152**</td>
<td>-0.119*</td>
</tr>
<tr>
<td>42 Reluctant to commit self to any definite course of action; tends to delay or avoid action.</td>
<td>-0.157**</td>
<td>-0.137*</td>
<td>-0.138*</td>
<td>-0.103†</td>
</tr>
<tr>
<td>82 Has fluctuating moods.</td>
<td>-0.153**</td>
<td>-0.142*</td>
<td>-0.157**</td>
<td>-0.090†</td>
</tr>
<tr>
<td>66 Enjoys esthetic impressions; is esthetically reactive.</td>
<td>-0.151**</td>
<td>-0.109*</td>
<td>-0.119*</td>
<td>-0.039†</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>28</td>
<td>Tends to arouse liking and acceptance in people.</td>
<td>-0.144 *</td>
<td>-0.128 *</td>
<td>-0.121 *</td>
</tr>
<tr>
<td>95</td>
<td>Tends to proffer advice. Proffer = offer or give.</td>
<td>-0.140 *</td>
<td>-0.163 **</td>
<td>-0.193 **</td>
</tr>
<tr>
<td>51</td>
<td>Genuinely values intellectual and cognitive matters.</td>
<td>-0.134 *</td>
<td>-0.149 **</td>
<td>-0.153 **</td>
</tr>
<tr>
<td>79</td>
<td>Tends to ruminate and have persistent, preoccupying thoughts.</td>
<td>-0.109 *</td>
<td>-0.054</td>
<td>-0.081</td>
</tr>
<tr>
<td>89</td>
<td>Compares self to others.</td>
<td>-0.102 †</td>
<td>-0.092 †</td>
<td>-0.127 *</td>
</tr>
<tr>
<td>64</td>
<td>Is socially perceptive of a wide range of interpersonal cues.</td>
<td>-0.101 †</td>
<td>-0.060</td>
<td>-0.106 *</td>
</tr>
<tr>
<td>75</td>
<td>Has a clear cut internally consistent personality.</td>
<td>-0.097 †</td>
<td>-0.104 *</td>
<td>-0.106 *</td>
</tr>
<tr>
<td>46</td>
<td>Engages in personal fantasy and daydreams, fictional speculations.</td>
<td>-0.093 †</td>
<td>-0.086 †</td>
<td>-0.080</td>
</tr>
<tr>
<td>58</td>
<td>Enjoys sensuous experiences (including touch, taste, smell, physical contact).</td>
<td>-0.088 †</td>
<td>-0.119 *</td>
<td>-0.133 *</td>
</tr>
<tr>
<td>53</td>
<td>Various needs tend toward relatively direct and uncontrolled expression; unable to delay gratification.</td>
<td>-0.085 †</td>
<td>-0.093 †</td>
<td>-0.100 †</td>
</tr>
<tr>
<td>25</td>
<td>Tends toward over-control of needs and impulses.</td>
<td>-0.082 †</td>
<td>-0.066</td>
<td>-0.073</td>
</tr>
<tr>
<td>34</td>
<td>Over-reactive to minor frustrations; irritable.</td>
<td>-0.081 †</td>
<td>-0.069</td>
<td>-0.081</td>
</tr>
<tr>
<td>12</td>
<td>Tends to be self-defensive.</td>
<td>-0.081 †</td>
<td>-0.076</td>
<td>-0.050</td>
</tr>
<tr>
<td>17</td>
<td>Behaves in a sympathetic or considerate manner.</td>
<td>-0.078</td>
<td>-0.075</td>
<td>-0.096 †</td>
</tr>
<tr>
<td>22</td>
<td>Feels a lack of personal meaning in life.</td>
<td>-0.077</td>
<td>-0.078</td>
<td>-0.069</td>
</tr>
<tr>
<td>67</td>
<td>Is self-indulgent.</td>
<td>-0.073</td>
<td>-0.094 †</td>
<td>-0.083 †</td>
</tr>
<tr>
<td>24</td>
<td>Prides self on being objective, rational.</td>
<td>-0.072</td>
<td>-0.047</td>
<td>-0.086 †</td>
</tr>
</tbody>
</table>
Concerned with own adequacy as a person, either at conscious or unconscious levels.

-0.072 -0.073 -0.092 † -0.053

Is sensitive to anything that can be construed as a demand.

-0.069 -0.095 † -0.093 † -0.123 *

Emphasizes being with others; gregarious.

-0.062 -0.070 -0.074 -0.087 †

Behaves in a gender congruent style and manner.

-0.043 -0.075 -0.090 † -0.077

Note. CAQ Item content abbreviated. Correlations are calculated by situation, then averaged. p-values determined via randomization test. *** = p < .001, ** = p < .01, * = p < .05, + = p < .10.

These personality correlates are what seem to be typical of those individuals whose perceptions of the situations best match those of their peers. These correlates do appear to be desirable traits in some ways, including humor, expressivity, and generosity.

On the other hand, the people whose perceptions are more normative appear to also be less confident and uncomfortable with uncertainties or interpersonal comparisons.

H4.2 BFI

Table 2.4.2.

Self-Rated Big-Five Personality Correlates of Distinctiveness of Construal of Video Situations.

<table>
<thead>
<tr>
<th>Big-5 item</th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraversion</td>
<td>0.165</td>
<td>**</td>
<td>0.134</td>
<td>*</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>-0.023</td>
<td></td>
<td>-0.028</td>
<td></td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>0.027</td>
<td>0.019</td>
<td>0.029</td>
<td>0.052</td>
</tr>
<tr>
<td>Openness</td>
<td>-0.023</td>
<td>0.014</td>
<td>0.054</td>
<td>0.035</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>0.019</td>
<td>0.027</td>
<td>0.021</td>
<td>-0.037</td>
</tr>
</tbody>
</table>

Note. Correlations are calculated by situation, then averaged. p-values determined via randomization test. *** = p < .001, ** = p < .01, * = p < .05, + = p < .10.
Extraversion appears to have the strongest relationship with distinctiveness of construal in study 1. This is perhaps due to the independent / assertive component of extraversion which we see detailed more thoroughly in the CAQ correlates. Serfass and Sherman (2013) showed that there are specific RSQ situation items whose construal correlate well with Big-Five personality, so this might suggest that overall construal is too broad a variable to be reflected well in Big-Five personality.

H4.3 BDI

The final hypothesis tested in study one is regarding the relationship of depression to the various measures of distinctiveness of construal.

Table 2.4.3.

<table>
<thead>
<tr>
<th>Construal method</th>
<th>Depression r</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.097 *</td>
</tr>
<tr>
<td>B</td>
<td>0.098 †</td>
</tr>
<tr>
<td>D</td>
<td>0.081</td>
</tr>
<tr>
<td>E</td>
<td>0.097 †</td>
</tr>
</tbody>
</table>

*Note. Correlations are calculated by situation, then averaged. p-values determined via randomization test. *** = $p < .001$, ** = $p < .01$, * = $p < .05$, † = $p < .10$.*

Though these correlations are small, they appear close to being reliable, demonstrating a small, positive relationship between indices of overall construal and depression scores. This rounds out the findings of the relationship between personality and distinctiveness of construal.
Chapter 3 – Thematic Apperception Test Situations

This study was conducted by Serfass and Sherman, published 2013, using methodology based off of my video construal study presented here as Study 1. Instead of videos, Serfass and Sherman used images from the Thematic Apperception Test (TAT; Murray, 1943). The RSQ was still used to assess participants’ perceptions of the TAT situations. Though some of their additional measures do not line up with measures used in studies 1 and 3, they included the CAQ and BFI in their measures of personality, which will allow us to make comparisons of patterns between our data sets.

The use of the TAT images as target stimuli allows assessments based on stimuli that have been valued historically because of their nature as ambiguous scenarios designed to allow an individual’s interpretations to unfold. It is no coincidence that the same researcher who theorized partitions of situation perception into alpha and beta press designed the TAT. Murray’s TAT is a well-known and widely used measure (Cramer, 2004; Rossini & Moretti, 1997; Watkins, Campbell, Nieberding, & Hallmark, 1995) and for this reason it makes an interesting choice of situational stimuli.

With the exception of some reliability information calculated about the measures, their published analyses are not included in this dissertation; all analyses presented here are new.

Method

Participants

Participants for this study were 186 (99 female, 87 male) undergraduates from Florida Atlantic University. The Ethnic breakdown of participants was somewhat
different from the typical UCR sample with 20% African American, 4% Asian, 45% Caucasian, 18% Hispanic, 10% Other, and 3% No Response.

Measures

California adult Q-Sort

The California Adult Q-Sort (CAQ; Bem & Funder 1978; Block, 1978) is a comprehensive personality measure that consists of 100 statements that can be used to describe a person (e.g., ‘‘Tends to be self-defensive’’; ‘‘Is thin skinned’’). This is administered using a Q-Sort procedure in which people are required to sort these statements into one of nine categories from 1 (extremely uncharacteristic) to 9 (extremely characteristic). The CAQ uses a forced-choice procedure in which only a certain number of descriptions may be placed into each category, resulting in a quasi-normal distribution. Participants used a computer program to facilitate this procedure.

The Big Five inventory

The Big Five Inventory (BFI; John & Srivastava, 1999) is a 44-item personality survey designed to measure the five factors of personality as derived from repeated lexical analyses. The Big Five taxonomy provides a summarizing view of personality (McCrae & Costa, 2008), and scores are computed for each dimension: Neuroticism, Extraversion, Conscientiousness, Agreeableness, and Openness. Items are rated on a 5-point Likert-type scale from 1 (strongly disagree) to 5 (strongly agree). Table 3.0.1. shows the reliabilities and relevant descriptive statistics for the BFI scores reported in Serfass and Sherman (2013).
Table 3.0.1.

Descriptive Statistics and Reliability Estimates of Personality Measures for Study 2.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Mean</th>
<th>SD</th>
<th>alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agreeableness</td>
<td>3.82</td>
<td>0.6</td>
<td>0.73</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>3.48</td>
<td>0.63</td>
<td>0.78</td>
</tr>
<tr>
<td>Extraversion</td>
<td>3.35</td>
<td>0.82</td>
<td>0.85</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>2.70</td>
<td>0.80</td>
<td>0.83</td>
</tr>
<tr>
<td>Openness</td>
<td>3.59</td>
<td>0.58</td>
<td>0.75</td>
</tr>
</tbody>
</table>

The Multi source assessment of personality pathology

The Multi Source Assessment of Personality Pathology (MAPP; Okada & Oltmanns, 2009) is an 80-item questionnaire designed to assess ten personality disorders defined by the DSM-IV-TR (e.g., Obsessive-Compulsive Personality Disorder, Avoidant Personality Disorder, etc.). The MAPP has been used to predict outcomes such as maladjustment to military life and early separation from the military (Oltmanns & Turkheimer, 2009). Items are rated on a 5-point Likert-type scale from 0 (strongly disagree) to 4 (strongly agree). Table 3.0.2. shows the reliabilities and relevant descriptive statistics for the MAPP scores reported in Serfass and Sherman (2013). This scale’s correlates are not included in the analyses for this study and will not be discussed further.
Table 3.0.2.

Descriptive Statistics and Reliability Estimates of Multi Source Assessment of Personality Pathology and Subscales.

<table>
<thead>
<tr>
<th>MAPP Subscale</th>
<th>Mean</th>
<th>SD</th>
<th>alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-social</td>
<td>2.37</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>Avoidant</td>
<td>2.24</td>
<td>0.73</td>
<td>0.73</td>
</tr>
<tr>
<td>Borderline</td>
<td>2.22</td>
<td>0.65</td>
<td>0.72</td>
</tr>
<tr>
<td>Dependent</td>
<td>1.81</td>
<td>0.61</td>
<td>0.74</td>
</tr>
<tr>
<td>Histrionic</td>
<td>2.63</td>
<td>0.62</td>
<td>0.61</td>
</tr>
<tr>
<td>Narcissistic</td>
<td>2.52</td>
<td>0.56</td>
<td>0.66</td>
</tr>
<tr>
<td>Obsessive-compulsive</td>
<td>2.98</td>
<td>0.64</td>
<td>0.61</td>
</tr>
<tr>
<td>Paranoid</td>
<td>2.73</td>
<td>0.67</td>
<td>0.61</td>
</tr>
<tr>
<td>Schizoid</td>
<td>2.22</td>
<td>0.53</td>
<td>0.51</td>
</tr>
<tr>
<td>Schizotypal</td>
<td>2.33</td>
<td>0.53</td>
<td>0.59</td>
</tr>
</tbody>
</table>

The Thematic Apperception Test

The Thematic Apperception Test (TAT; Murray, 1943) consists of a set of 20 black and white pictures depicting relatively ambiguous situations. In this study, three TAT cards were used as stimuli rather than the full set of 20 pictures. This reduction was made in an effort to reduce fatigue effects from repeated use of the RSQ. According to Serfass and Sherman (2013) TAT cards 2 (Field), 6BM (Couple), 14 (Window) were selected because they depict clear situations and everyday activities. The “Field” card depicts a two women and a man in a field with one woman holding books, the “Couple” card depicts a man and woman standing near each other, and the “Window” card shows the silhouette of a person standing near a window.
Though when used in the traditional manner the TAT has issues with internal consistency, in this case the TAT images are being used as situational stimuli and are not being scored in any of the standard ways.

Riverside Situational Q-Sort

The Riverside Situational Q-Sort (RSQ) was initially developed by Wagerman and Funder (2009). The version used for study 2, version 3.15 is comprised of 89 diverse characteristics of situations (e.g., “Situation is potentially enjoyable”; “A job needs to be done”). Participants describe the situation he or she is focused on by placing each item into one of nine categories (1 = *extremely uncharacteristic*, 9 = *extremely characteristic*) according to a forced choice, quasi-normal distribution, using the Q-sorting computer program. The number of items placed in each category was 3, 6, 11, 15, 19, 15, 11, 6, and 3 for categories 1-9 respectively. Thus, as is typical of the Q-Sort method, participants are forced to decide which few items are the most and least characteristic of the situation while the majority of less relevant, or even irrelevant, items are left to the middle categories.

Design & Procedure

Participants made two visits to the lab to complete this study. Each session lasted approximately one and a half hours. The sessions were broken up to reduce participant fatigue as the RSQ often takes between twenty and forty minutes to complete. Because participants scheduled their own appointment for Session two, the time between sessions varied, depending on the subjects’ preferences. On average, time between sessions was about four days.
In the first session, participants came to the laboratory, and completed the personality measures using a computer-based survey. Participants were then asked to look at one TAT card. The sequence of pictures shown was counterbalanced to reduce order effects. Participants then wrote a brief paragraph describing the situation depicted in the TAT card based on the following instructions:

“‘These pictures are meant to be ambiguous, so it is up to you to determine what you think is happening. Please write a description of what you think is happening. Describe what is happening at the moment, what the characters are feeling and thinking.’”

These instructions were derived from Murray’s (1938) TAT Manual, although they were slightly modified. The average length of these brief paragraphs was 98.34 (SD = 57.84) words. After completing their description of the situation, participants rated the situation using the RSQ. Once this was completed, participants were dismissed until Session 2. In the second session, participants completed the same procedure that they completed for the first picture in Session 1, but this time for two additional pictures. After completing Session 2, participants were thanked and dismissed.

All participants viewed each of these images and completed an RSQ to describe their perceptions of the situation.

Results

As with the video construal study, it is possible to compare each person’s placement of an item to how all the other participants placed that item. Most of the analyses used in study one can be used in study two as well.
With the exception of the reliability information about the participants’ ratings of the three TAT images, none of the analyses reported here are among those reported in Serfass and Sherman (2013). Their focus was primarily on the explicit RSQ item correlates of big-five personality traits. My analyses will cover multiple measures of construal as well as patterns of consistency among them and CAQ personality correlates of that overall construal.

H1: People vary in the degree to which they distinctively construe situations.

H1.1: Consensus can be reached about the situation.

There is agreement. The mean intercorrelation between individuals’ rating of the Couple image was \(r = 0.306 \). For women it was \(r = 0.307 \) and for men it was \(r = 0.305 \). For the Field image, the mean intercorrelation between individuals’ ratings was \(r = 0.154 \). For women it was \(r = 0.180 \) and for men it was \(r = 0.134 \). For the Window image, the mean intercorrelation between individuals’ ratings was \(r = 0.199 \). For women it was \(r = 0.240 \) and for men it was \(r = 0.157 \). The agreement found here is certainly lower than that found with the video situations, which is perhaps a product of the intentionally-ambiguous nature of the TAT images.

Serfass and Sherman (2013) reported the average profile correlation to the mean profile to be \(r = .57 \) (SD = .22) for the Couple image, was \(r = .40 \) (SD = .20) for the Field picture, and \(r = .46 \) (SD = .24) for the Window picture, showing that using this secondary metric of consensus there was more agreement than baseline generated from agreement about unrelated situational descriptions.
H1.2 The consensus average intercorrelations will be higher than baseline

Though these correlations are not exceedingly large, they are generally larger than a baseline correlation calculated from a random sample of RSQ-descriptions from situations across the United States (Hanes, et al., in preparation). The average intercorrelations of descriptions of unrelated situations across the U.S. is \(r = 0.154, SD = 0.166 \). With the exception of the Field image, significance tests of this difference, using Welch’s adjusted t-test for unequal variances, range from \(t(676.78) = 5.20 \) to \(t(861.89) = 157.59 \), all with p-values less than \(p = 0.00005 \).

H1.3: Construal can be quantified.

The following sections and tables detail the descriptive statistics for each of the ways of measuring construal. Figures of the distributions are in Appendix F

H1.3.A Simple profile correlation normativity.

Table 3.1.3.A.

<table>
<thead>
<tr>
<th>Distribution of Individuals’ General Degree of Normativity for Study 2.</th>
<th>(N)</th>
<th>M</th>
<th>SD</th>
<th>med</th>
<th>min</th>
<th>max</th>
<th>skew</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couple</td>
<td>186</td>
<td>0.56</td>
<td>0.17</td>
<td>0.60</td>
<td>-0.11</td>
<td>0.82</td>
<td>-1.48</td>
<td>2.74</td>
</tr>
<tr>
<td>Couple: Women</td>
<td>99</td>
<td>0.56</td>
<td>0.15</td>
<td>0.60</td>
<td>-0.02</td>
<td>0.76</td>
<td>-1.60</td>
<td>3.66</td>
</tr>
<tr>
<td>Couple: Men</td>
<td>87</td>
<td>0.56</td>
<td>0.18</td>
<td>0.62</td>
<td>-0.11</td>
<td>0.83</td>
<td>-1.39</td>
<td>2.30</td>
</tr>
<tr>
<td>Field</td>
<td>186</td>
<td>0.40</td>
<td>0.17</td>
<td>0.43</td>
<td>-0.29</td>
<td>0.70</td>
<td>-0.94</td>
<td>1.41</td>
</tr>
<tr>
<td>Field: Women</td>
<td>99</td>
<td>0.43</td>
<td>0.18</td>
<td>0.47</td>
<td>-0.36</td>
<td>0.71</td>
<td>-1.36</td>
<td>3.21</td>
</tr>
<tr>
<td>Field: Men</td>
<td>87</td>
<td>0.38</td>
<td>0.14</td>
<td>0.41</td>
<td>-0.08</td>
<td>0.64</td>
<td>-0.67</td>
<td>0.30</td>
</tr>
<tr>
<td>Window</td>
<td>186</td>
<td>0.45</td>
<td>0.19</td>
<td>0.49</td>
<td>-0.12</td>
<td>0.78</td>
<td>-0.75</td>
<td>0.13</td>
</tr>
<tr>
<td>Window: Women</td>
<td>99</td>
<td>0.50</td>
<td>0.18</td>
<td>0.52</td>
<td>-0.13</td>
<td>0.79</td>
<td>-0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>Window: Men</td>
<td>87</td>
<td>0.41</td>
<td>0.20</td>
<td>0.44</td>
<td>-0.03</td>
<td>0.76</td>
<td>-0.43</td>
<td>-0.05</td>
</tr>
</tbody>
</table>
For the most part, this method of quantifying construal appears to be distributed normally, though there is some excessive peakedness in the “couple” and “field” images.

H1.3.B By-item z-scored overall construal.

Within each of the q-sort items there is some variability. One way to index the degree of deviation would be to take the standardized z-score of an individual’s placement of a given item, relative to the mean and standard deviation of everyone else.

Then the absolute value of this z-score can be summed across all of the q-sort items to give each participant a score for their distinctiveness of construal over all the situational properties for a given situation. See Table 3.1.3.B. for information on the distribution of this index of distinctiveness of construal.

Table 3.1.3.B.

Distribution of Individuals’ Distinctiveness of By-Item Z-Scored Construal for Study 2.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>med</th>
<th>min</th>
<th>max</th>
<th>skew</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couple</td>
<td>186</td>
<td>71.15</td>
<td>9.66</td>
<td>69.53</td>
<td>54.57</td>
<td>105.7</td>
<td>1.11</td>
<td>1.37</td>
</tr>
<tr>
<td>Couple: Women</td>
<td>99</td>
<td>71.31</td>
<td>8.60</td>
<td>70.63</td>
<td>57.59</td>
<td>101</td>
<td>1.18</td>
<td>1.99</td>
</tr>
<tr>
<td>Couple: Men</td>
<td>87</td>
<td>71.29</td>
<td>10.57</td>
<td>69.35</td>
<td>53.11</td>
<td>105.93</td>
<td>1.00</td>
<td>0.79</td>
</tr>
<tr>
<td>Field</td>
<td>186</td>
<td>72.54</td>
<td>5.80</td>
<td>72.42</td>
<td>60.63</td>
<td>89.61</td>
<td>0.49</td>
<td>0.16</td>
</tr>
<tr>
<td>Field: Women</td>
<td>99</td>
<td>72.74</td>
<td>6.50</td>
<td>71.77</td>
<td>61.14</td>
<td>95.06</td>
<td>0.72</td>
<td>0.73</td>
</tr>
<tr>
<td>Field: Men</td>
<td>87</td>
<td>72.37</td>
<td>4.86</td>
<td>72.64</td>
<td>61.3</td>
<td>86.5</td>
<td>0.36</td>
<td>0.48</td>
</tr>
<tr>
<td>Window</td>
<td>186</td>
<td>71.98</td>
<td>8.54</td>
<td>70.54</td>
<td>55.47</td>
<td>102.6</td>
<td>0.73</td>
<td>0.30</td>
</tr>
<tr>
<td>Window: Women</td>
<td>99</td>
<td>71.93</td>
<td>8.64</td>
<td>69.93</td>
<td>57.07</td>
<td>95.23</td>
<td>0.62</td>
<td>-0.37</td>
</tr>
<tr>
<td>Window: Men</td>
<td>87</td>
<td>72</td>
<td>7.76</td>
<td>70.47</td>
<td>56.11</td>
<td>97.09</td>
<td>0.67</td>
<td>0.38</td>
</tr>
</tbody>
</table>
The skew and kurtosis indicators all fall below a liberal threshold of normality, with the majority of them falling below a stricter threshold of 1, indicating a good degree of normality in this measure of construal.

H1.3.C Linear regression

This calculation of construal leaves 89 residuals for each individual. The descriptive statistics for this method of construal would be cumbersome to detail, however, the following method, method D, should provide an appropriate picture.

H1.3.D Accumulated residuals.

Table 3.1.3.D.

Distribution of Individuals’ Aggregated Residuals from Linear Profile Regression for Study 2.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>med</th>
<th>min</th>
<th>max</th>
<th>skew</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couple</td>
<td>186</td>
<td>1.23</td>
<td>0.15</td>
<td>1.22</td>
<td>0.84</td>
<td>1.53</td>
<td>0.09</td>
<td>-0.54</td>
</tr>
<tr>
<td>Couple: Women</td>
<td>99</td>
<td>1.23</td>
<td>0.14</td>
<td>1.24</td>
<td>0.99</td>
<td>1.52</td>
<td>0.14</td>
<td>-0.71</td>
</tr>
<tr>
<td>Couple: Men</td>
<td>87</td>
<td>1.23</td>
<td>0.17</td>
<td>1.20</td>
<td>0.84</td>
<td>1.53</td>
<td>0.04</td>
<td>-0.57</td>
</tr>
<tr>
<td>Field</td>
<td>186</td>
<td>1.39</td>
<td>0.10</td>
<td>1.41</td>
<td>1.11</td>
<td>1.55</td>
<td>-0.59</td>
<td>-0.39</td>
</tr>
<tr>
<td>Field: Women</td>
<td>99</td>
<td>1.36</td>
<td>0.11</td>
<td>1.38</td>
<td>1.10</td>
<td>1.53</td>
<td>-0.51</td>
<td>-0.63</td>
</tr>
<tr>
<td>Field: Men</td>
<td>87</td>
<td>1.42</td>
<td>0.08</td>
<td>1.43</td>
<td>1.16</td>
<td>1.54</td>
<td>-0.58</td>
<td>-0.23</td>
</tr>
<tr>
<td>Window</td>
<td>186</td>
<td>1.33</td>
<td>0.14</td>
<td>1.33</td>
<td>0.97</td>
<td>1.55</td>
<td>-0.25</td>
<td>-0.97</td>
</tr>
<tr>
<td>Window: Women</td>
<td>99</td>
<td>1.30</td>
<td>0.14</td>
<td>1.29</td>
<td>0.95</td>
<td>1.53</td>
<td>-0.09</td>
<td>-1.00</td>
</tr>
<tr>
<td>Window: Men</td>
<td>87</td>
<td>1.37</td>
<td>0.14</td>
<td>1.39</td>
<td>1.01</td>
<td>1.55</td>
<td>-0.59</td>
<td>-0.59</td>
</tr>
</tbody>
</table>

In the case of these aggregated residuals, there appears to be a trend of negative kurtosis, though it all falls within the strict threshold of a deviation of 1 from 0.
H1.3.E Median absolute deviations.

Table 3.1.3.E. Distribution of Individuals’ Median Absolute Deviations for Study 2.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>med</th>
<th>min</th>
<th>max</th>
<th>skew</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couple</td>
<td>186</td>
<td>1.04</td>
<td>0.18</td>
<td>1.02</td>
<td>0.74</td>
<td>1.55</td>
<td>0.79</td>
<td>0.35</td>
</tr>
<tr>
<td>Couple: Women</td>
<td>99</td>
<td>1.04</td>
<td>0.17</td>
<td>1.03</td>
<td>0.70</td>
<td>1.55</td>
<td>0.70</td>
<td>0.78</td>
</tr>
<tr>
<td>Couple: Men</td>
<td>87</td>
<td>1.05</td>
<td>0.18</td>
<td>1.01</td>
<td>0.73</td>
<td>1.57</td>
<td>0.74</td>
<td>0.39</td>
</tr>
<tr>
<td>Field</td>
<td>186</td>
<td>1.23</td>
<td>0.12</td>
<td>1.25</td>
<td>0.88</td>
<td>1.56</td>
<td>-0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>Field: Women</td>
<td>99</td>
<td>1.22</td>
<td>0.13</td>
<td>1.21</td>
<td>0.87</td>
<td>1.58</td>
<td>-0.32</td>
<td>0.42</td>
</tr>
<tr>
<td>Field: Men</td>
<td>87</td>
<td>1.23</td>
<td>0.13</td>
<td>1.22</td>
<td>0.97</td>
<td>1.52</td>
<td>0.44</td>
<td>0.18</td>
</tr>
<tr>
<td>Window</td>
<td>186</td>
<td>1.17</td>
<td>0.16</td>
<td>1.14</td>
<td>0.88</td>
<td>1.71</td>
<td>0.62</td>
<td>0.19</td>
</tr>
<tr>
<td>Window: Women</td>
<td>99</td>
<td>1.13</td>
<td>0.13</td>
<td>1.12</td>
<td>0.86</td>
<td>1.48</td>
<td>0.59</td>
<td>0.40</td>
</tr>
<tr>
<td>Window: Men</td>
<td>87</td>
<td>1.2</td>
<td>0.16</td>
<td>1.21</td>
<td>0.90</td>
<td>1.79</td>
<td>0.76</td>
<td>1.06</td>
</tr>
</tbody>
</table>

H2: There is stability in this variation of distinctiveness of construal.

H2.1.A Simple profile correlation normativity.

The average intercorrelation among a person’s general normativity of construal for each of the TAT situations was calculated, along with a randomization test for statistical significance. Combined $r = 0.593$, $p < 0.0001$, 95% CI: [0.421, 0.629]; Women $r = 0.560$, $p < 0.0001$, 95% CI: [0.344, 0.640]; Men $r = 0.625$, $p < 0.0001$, 95% CI: [0.374, 0.676].

H2.1.B By-item z-scored overall construal.

The average intercorrelation among a person’s distinctiveness of construal for each of the TAT situations was calculated, along with a randomization test for statistical
significance. Combined $r = 0.589$, $p < 0.0001$, 95% CI: [0.486, 0.676]; Women $r = 0.569$, $p < 0.0001$, 95% CI: [0.419, 0.689]; Men $r = 0.610$, $p < 0.0001$, 95% CI: [0.458, 0.727].

H2.1.C Linear regression residuals.

Because this method leaves a set of residuals for each individual, rather than a single number for distinctiveness of construal, the correlation between a person’s residuals from a linear regression prediction for the first video and his or her residuals from a linear regression prediction in the second video would yield a correlation for each individual and is therefore somewhat different from the other methods. This method indexes whether the exact ratings’ deviations for the first situation match those of the second situation. The average correlation within an individual is $r = 0.105$, 95% CI: [-0.039, 0.246]. For women, the average correlation within an individual is $r = 0.095$, 95% CI: [-0.104, 0.287]. For men, the average correlation within an individual is $r = 0.116$, 95% CI: [-0.096, 0.319].

H2.1.D Accumulated residuals.

The average intercorrelation among a person’s accumulated residuals from a linear regression prediction for each of the TAT situations was calculated, along with a randomization test for statistical significance. Combined $r = 0.533$, $p < 0.0001$, 95% CI [0.421, 0.629]; Women $r = 0.507$, $p < 0.0001$, 95% CI [0.344, 0.640]; Men $r = 0.542$, $p < 0.0001$, 95% CI [0.374, 0.676].

H2.1.E Median average deviations.

The average intercorrelation among a person’s median average deviations for each of the TAT situations was calculated, along with a randomization test for statistical
significance. Combined $r = 0.488, p < 0.0001, 95\% \text{ CI} [0.370, 0.590]$; Women $r = 0.485$, $p < 0.0001, 95\% \text{ CI} [0.318, 0.623]$; Men $r = 0.522, p < 0.0001, 95\% \text{ CI} [0.350, 0.660]$.

H2.2 These consistencies in construal are higher than an empirical baseline value

Instead of being content to compare to a null value of 0, using a randomization procedure, samples of the data can be taken and assigned to random orders, staying consistent with the same data structures as the other analyses.

For analysis A, the empirical baseline value calculated is $r = -0.00124$. The statistical test comparing the value to the sampled consistency of distinctiveness of construal in H2.1 is $z = 4.181, p < 0.0001$. For analysis B, the empirical baseline value calculated is $r = 0.00298$. The statistical test comparing the value to the sampled consistency of distinctiveness of construal in H2.1 is $z = 3.626, p = 0.00029$. For analysis D, the empirical baseline value calculated is $r = -0.00394$. The statistical test comparing the value to the sampled consistency of distinctiveness of construal in H2.1 is $z = 2.96, p = 0.00308$. For analysis E, the empirical baseline value calculated is $r = 0.00037$. The statistical test comparing the value to the sampled consistency of distinctiveness of construal in H2.1 is $z = 2.253, p = 0.02426$.

In all, the empirical baseline consistencies in construal calculated between unrelated persons are remarkably close to zero. Though perhaps unsurprising, this verification lends even more support to the consistency values found in section 2.1.
H3: Differences in individuals’ distinctiveness of construal are systematically related to personality.

As with the analyses in study 1, there are no specific theory-based predictions about the particular personality variables and their relationship to distinctiveness of construal. In pursuit of my hypothesis I will examine the set of correlates between CAQ-measured personality and distinctiveness of construal, using four of the methods of quantifying distinctiveness of construal. These analyses were done by correlating the measures of distinctiveness of construal, each averaged across the three situations, with the CAQ, accompanied by a randomization test of the set of correlates (Sherman & Funder, 2009). For each of the following four tables, # Significant is the observed number of statistically significant correlations in the 100x1 correlation matrix followed by the p-value associated with such a number. Avg. |r| is the average absolute r in the 100x1 correlation matrix followed by its associated p-value.

H3.A Simple profile correlation normativity.

Table 3.3.A.

Results from Randomization Tests Correlating 100 CAQ Items with Normativity of Construal for Study 2.

| Group | N | # Significant | p | Avg. |r| | p |
|--------|-----|--------------|-------|------|---|-----|
| Combined | 186 | 13 | 0.007 | 0.089 | <0.001 |
| Women | 99 | 12 | 0.014 | 0.108 | 0.006 |
| Men | 87 | 8 | 0.169 | 0.102 | 0.054 |
H3.B By-item z-scored overall construal.

Table 3.3.B.

Results from Randomization Tests Correlating 100 CAQ Items with By-Item Z-Scored Distinctiveness of Construal for Study 2.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th># Significant</th>
<th>p</th>
<th>Avg.</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>186</td>
<td>13</td>
<td>0.009</td>
<td>0.077</td>
<td></td>
<td>0.005</td>
</tr>
<tr>
<td>Women</td>
<td>99</td>
<td>5</td>
<td>0.532</td>
<td>0.088</td>
<td></td>
<td>0.147</td>
</tr>
<tr>
<td>Men</td>
<td>87</td>
<td>8</td>
<td>0.152</td>
<td>0.100</td>
<td></td>
<td>0.048</td>
</tr>
</tbody>
</table>

H3.D Accumulated residuals.

Table 3.3.D.

Results from Randomization Tests Correlating 100 CAQ Items with Accumulated Residuals from a Linear Regression Prediction for Study 2.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th># Significant</th>
<th>p</th>
<th>Avg.</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>186</td>
<td>12</td>
<td>0.017</td>
<td>0.083</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Women</td>
<td>99</td>
<td>4</td>
<td>0.694</td>
<td>0.093</td>
<td></td>
<td>0.051</td>
</tr>
<tr>
<td>Men</td>
<td>87</td>
<td>6</td>
<td>0.377</td>
<td>0.101</td>
<td></td>
<td>0.055</td>
</tr>
</tbody>
</table>

H3.E Median Absolute Deviations.

Table 3.3.E.

Results from Randomization Tests Correlating 100 CAQ Items with Median Absolute Deviations for Study 2.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th># Significant</th>
<th>p</th>
<th>Avg.</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>186</td>
<td>9</td>
<td>0.104</td>
<td>0.069</td>
<td></td>
<td>0.047</td>
</tr>
<tr>
<td>Women</td>
<td>99</td>
<td>5</td>
<td>0.542</td>
<td>0.085</td>
<td></td>
<td>0.298</td>
</tr>
<tr>
<td>Men</td>
<td>87</td>
<td>6</td>
<td>0.382</td>
<td>0.097</td>
<td></td>
<td>0.103</td>
</tr>
</tbody>
</table>
Though not entirely consistent across the different methods for quantifying construal, it is clear that there are some relevant personality correlates of construal, and that these correlates are occurring at levels that surpass chance.

H4: Construal relates to specific personality variables

H4.1 CAQ correlates of distinctiveness of construal

Each of the four applicable types of construal were correlated with the individuals’ CAQ. However, because each individual experienced multiple situations, simply combining their correlations would lead to an inaccurate p-value. Instead, each individual’s multiple situation ratings were first correlated with the CAQ, then averaged after a Fisher’s Zr transformation. Additionally a randomization test was used to calculate the appropriate threshold values. The positive correlates that surpassed the r-value associated with a p-value of .10 are reported in Table 3.4.1.1. below.

Table 3.4.1.1.

Positive Self-Rated CAQ Personality Correlates of Distinctiveness of construal of TAT Situations.

<table>
<thead>
<tr>
<th>CAQ Item</th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 Shows condescending behavior in relations with others</td>
<td>0.248 ***</td>
<td>0.229 ***</td>
<td>0.179 ***</td>
<td>0.161 ***</td>
</tr>
<tr>
<td>53 Various needs tend toward relatively direct and uncontrolled expression; unable to delay gratification.</td>
<td>0.201 ***</td>
<td>0.178 ***</td>
<td>0.153 ***</td>
<td>0.107 **</td>
</tr>
<tr>
<td>20 Has a rapid personal tempo; behaves and acts quickly.</td>
<td>0.182 ***</td>
<td>0.149 ***</td>
<td>0.128 **</td>
<td>0.115 **</td>
</tr>
<tr>
<td>37 Is guileful and deceitful, manipulative, opportunistic.</td>
<td>0.165 ***</td>
<td>0.161 ***</td>
<td>0.150 ***</td>
<td>0.116 **</td>
</tr>
</tbody>
</table>
Exploits and takes advantage of people and situations.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Score Mean</th>
<th>Confidence Level</th>
<th>Significance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Is subtly negativistic; tends to undermine and obstruct or sabotage.</td>
<td>0.160 ***</td>
<td>0.161 ***</td>
<td>0.127 **</td>
</tr>
<tr>
<td>76</td>
<td>Tends to project his/her own feelings and motivations onto others.</td>
<td>0.111 **</td>
<td>0.131 **</td>
<td>0.133 ***</td>
</tr>
<tr>
<td>54</td>
<td>Emphasizes being with others; gregarious.</td>
<td>0.101 **</td>
<td>0.112 **</td>
<td>0.078 *</td>
</tr>
<tr>
<td>61</td>
<td>Creates and exploits dependency in people.</td>
<td>0.093 **</td>
<td>0.103 **</td>
<td>0.077 *</td>
</tr>
<tr>
<td>88</td>
<td>Is personally charming.</td>
<td>0.090 **</td>
<td>0.071 *</td>
<td>0.071 *</td>
</tr>
<tr>
<td>45</td>
<td>Has a brittle ego-defense system.</td>
<td>0.088 **</td>
<td>0.088 *</td>
<td>0.073 *</td>
</tr>
<tr>
<td>78</td>
<td>Feels cheated and victimized by life; self-pitying.</td>
<td>0.088 **</td>
<td>0.065 †</td>
<td>0.076 *</td>
</tr>
<tr>
<td>57</td>
<td>Is an interesting, arresting person.</td>
<td>0.087 **</td>
<td>0.106 **</td>
<td>0.087 *</td>
</tr>
<tr>
<td>97</td>
<td>Is emotionally bland; has flattened affect.</td>
<td>0.087 **</td>
<td>0.050 **</td>
<td>0.082 *</td>
</tr>
<tr>
<td>65</td>
<td>Characteristically pushes and tries to stretch limits; sees what he/she can get away with.</td>
<td>0.087 **</td>
<td>0.098 *</td>
<td>0.100 **</td>
</tr>
<tr>
<td>28</td>
<td>Tends to arouse liking and acceptance in people.</td>
<td>0.080 **</td>
<td>0.082 *</td>
<td>0.064 †</td>
</tr>
<tr>
<td>18</td>
<td>Initiates humor. E.g., makes jokes or tells humorous stories.</td>
<td>0.078 **</td>
<td>0.040 **</td>
<td>0.041 **</td>
</tr>
<tr>
<td>89</td>
<td>Compares self to others.</td>
<td>0.078 **</td>
<td>0.121 **</td>
<td>0.116 **</td>
</tr>
<tr>
<td>73</td>
<td>Tends to perceive many different contexts in sexual terms; eroticizes situations.</td>
<td>0.077 **</td>
<td>0.088 *</td>
<td>0.078 *</td>
</tr>
<tr>
<td>04</td>
<td>Is a talkative individual.</td>
<td>0.075 **</td>
<td>0.056 †</td>
<td>0.042 **</td>
</tr>
<tr>
<td>21</td>
<td>Aroused nurturant feelings in others.</td>
<td>0.073 **</td>
<td>0.056 †</td>
<td>0.067 †</td>
</tr>
<tr>
<td>43</td>
<td>Is facially and/or gesturally expressive.</td>
<td>0.068 †</td>
<td>0.065 †</td>
<td>0.031 **</td>
</tr>
</tbody>
</table>

67
23 Extrapunitive; tends to transfer or project blame.
 0.067 † 0.071 * 0.056 † 0.011

38 Has hostility toward others.
 0.067 † 0.092 * 0.049 0.037

63 Judges self and others in conventional terms like 'popularity,' 'the correct thing to do,' social pressures, etc.
 0.064 † 0.098 * 0.080 * 0.078 *

07 Favors conservative values in a variety of areas.
 0.062 † 0.060 † 0.074 * 0.050

81 Is physically attractive; good looking.
 0.059 † 0.039 0.089 * 0.035

91 Is power oriented; values power in self and others.
 0.058 † 0.049 0.044 0.018

50 Is unpredictable and changeable in behavior and attitudes.
 0.054 0.057 † 0.039 0.014

74 Is subjectively unaware of self-concern; feels satisfied with self.
 0.053 0.054 0.062 † 0.050

30 Gives up and withdraws where possible in the face of frustration and adversity.
 0.052 0.062 † 0.025 - 0.006

19 Seeks reassurance from others.
 0.052 0.073 * 0.063 † 0.071 *

16 Is introspective and concerned with self as an object.
 - 0.030 - 0.076 *

79 Tends to ruminate and have persistent, preoccupying thoughts.
 0.047 0.049 0.040 0.058 †

31 Regards self as physically attractive.
 0.041 0.029 0.055 † 0.042

Note. CAQ Item content abbreviated. Correlations are calculated by situation, then averaged. p-values determined via randomization test. *** = p < .001, ** = p < .01, * = p < .05, † = p < .10.

The most prominent positive correlates of distinctiveness of construal include items like “Shows condescending behavior in relations with others”, “Is guileful and deceitful, manipulative, opportunistic. Exploits and takes advantage of people and situations,” and “Is subtly negativistic; tends to undermine and obstruct or sabotage.”
Some of these elements would appear to relate to low conscientiousness, such as “Characteristically pushes and tries to stretch limits; sees what he/she can get away with”, “Various needs tend toward relatively direct and uncontrolled expression; unable to delay gratification,” and “Has a rapid personal tempo; behaves and acts quickly.”

And as with Study 1 there are elements that speak to extraversion, in items such as “Emphasizes being with others; gregarious”, “Creates and exploits dependency in people”, and “Is personally charming.”

The negative personality correlates of the various degrees of distinctiveness of construal, as measured by the four methods, can be seen in Table 3.4.1.2. below.

Table 3.4.1.2.

Negative Self-Rated CAQ Personality Correlates of Distinctiveness of construal of TAT Situations.

<table>
<thead>
<tr>
<th>CAQ item</th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>-0.173 ***</td>
<td>-0.142 ***</td>
<td>-0.132 ***</td>
<td>-0.093 *</td>
</tr>
<tr>
<td>Is concerned with own body and the adequacy of its physiological functioning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>-0.154 ***</td>
<td>-0.148 ***</td>
<td>-0.161 ***</td>
<td>-0.113 **</td>
</tr>
<tr>
<td>Genuinely values intellectual and cognitive matters.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>-0.150 ***</td>
<td>-0.186 ***</td>
<td>-0.126 **</td>
<td>-0.123 **</td>
</tr>
<tr>
<td>Enjoys esthetic impressions; is esthetically reactive.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>-0.132 ***</td>
<td>-0.118 **</td>
<td>-0.110 **</td>
<td>-0.064 †</td>
</tr>
<tr>
<td>Evaluates the motivation of others in interpreting situations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>-0.127 **</td>
<td>-0.109 **</td>
<td>-0.098 *</td>
<td>-0.078 *</td>
</tr>
<tr>
<td>Handles anxiety and conflicts by, in effect, refusing to recognize their presence; repressive or dissociative tendencies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>-0.121 **</td>
<td>-0.109 **</td>
<td>-0.087 *</td>
<td>-0.041</td>
</tr>
<tr>
<td>Appears to have a high degree of intellectual capacity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>-0.115 **</td>
<td>-0.117 **</td>
<td>-0.111 **</td>
<td>-0.099 *</td>
</tr>
<tr>
<td>Is concerned with philosophical problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Items</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Behaves in an ethically consistent manner; is consistent with own personal standards.</td>
<td>-0.113 ** -0.085 * -0.093 * -0.050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Able to see to the heart of important problems.</td>
<td>-0.109 ** -0.095 * -0.103 ** -0.053</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Tends toward over-control of needs and impulses.</td>
<td>-0.106 ** -0.087 * -0.101 ** -0.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Responds to humor. Appreciates humor.</td>
<td>-0.102 ** -0.072 * -0.066 † -0.042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Is sensitive to anything that can be construed as a demand.</td>
<td>-0.100 ** -0.069 † -0.094 * -0.039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Is calm, relaxed in manner.</td>
<td>-0.098 ** -0.100 ** -0.072 * -0.052</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>Is a genuinely dependable and responsible person.</td>
<td>-0.094 ** -0.089 * -0.057 † -0.033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Behaves in a sympathetic or considerate manner.</td>
<td>-0.092 ** -0.094 * -0.077 * -0.046</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Has a clear cut internally consistent personality.</td>
<td>-0.090 ** -0.048 -0.066 † -0.042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Is socially perceptive of a wide range of interpersonal cues.</td>
<td>-0.086 ** -0.060 † -0.046 -0.046</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Is basically distrustful of people in general; questions their motivations.</td>
<td>-0.084 ** -0.062 † -0.073 * -0.050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Interested in members of the opposite sex.</td>
<td>-0.082 ** -0.066 † -0.052 -0.067 †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Emphasizes communication through action and non-verbal behavior.</td>
<td>-0.081 ** -0.082 * -0.063 † -0.046</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Appears straightforward, forthright, and candid in dealing with others.</td>
<td>-0.076 ** -0.092 * -0.074 * -0.057 †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Engages in personal fantasy and daydreams, fictional speculations.</td>
<td>-0.073 ** -0.068 † -0.055 † -0.059 †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Is turned to for advice and reassurance.</td>
<td>-0.073 ** -0.060 † -0.075 * -0.004</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
39 Thinks and associates ideas in unusual ways; has unconventional thought processes. -0.073 ** -0.069 † -0.053 -0.028

35 Has warmth; has the capacity for close relationships; compassionate. -0.073 ** -0.092 * -0.080 * -0.055

60 Has insight into own motives and behaviors. Knows and understands self well. -0.072 ** -0.050 -0.035 0.009

72 Concerned with own adequacy as a person, either at conscious or unconscious levels. -0.069 † -0.039 -0.005 0.007

68 Is basically anxious. -0.069 † -0.060 † -0.057 † -0.021

11 Is protective of those close to him or her. -0.068 † -0.070 † -0.042 -0.042

48 Keeps people at a distance; avoids close interpersonal relationships. -0.062 † -0.097 * -0.032 -0.065 †

05 Behaves in a giving way to others. -0.060 † -0.082 * -0.078 * -0.047

82 Has fluctuating moods. -0.058 † -0.089 * -0.075 * -0.098 *

93 Behaves in a gender congruent style and manner. -0.052 -0.064 † -0.080 * -0.091 *

94 Expresses hostile feelings directly. 0.004 -0.043 -0.026 -0.088 *

99 Is self-dramatizing; histrionic. 0.021 -0.025 -0.035 -0.075 *

Note. CAQ Item content abbreviated. Correlations are calculated by situation, then averaged. p-values determined via randomization test. *** = p < .001, ** = p < .01, * = p < .05, + = p < .10.

These personality correlates are what seem to be typical of those individuals whose perceptions of these TAT situations best match those of their peers. These correlates do appear to be desirable traits in some ways, including humor, expressivity, and generosity. Example items such as “Is turned to for advice and reassurance”, “Is calm, relaxed in manner,” and “Is a genuinely dependable and responsible person,” along
with “Behaves in a sympathetic or considerate manner,” suggest that these individuals are those on whom others can rely.

However, not everything is sunshine and rainbows. “Evaluates the motivation of others in interpreting situations,” and “Handles anxiety and conflicts by, in effect, refusing to recognize their presence; repressive or dissociative tendencies,” as well as “Tends toward over-control of needs and impulses,” indicate some undesirable aspects of normativity in perception.

Finally, there appears to be an aspect of openness in normativity, which seems, perhaps, counterintuitive at first glance. Items such as “Engages in personal fantasy and daydreams, fictional speculations”, “Genuinely values intellectual and cognitive matters”, “Enjoys esthetic impressions; is esthetically reactive”, “Appears to have a high degree of intellectual capacity,” and “Is concerned with philosophical problems,” are all items which relate to openness to intellect and experience. Perhaps being open to experience allows for higher levels of understanding of how others might see a given situation and represents a lower degree of unwillingness to part from one’s own particular perception of the world.

H4.2 BFI

For study 2, the Big-Five correlates seen in Table 3.4.2 appear to be stronger as a set. Extraversion has the strongest positive relationship with distinctiveness of construal, though it is weaker here than in study 1. What comes through most strongly are the negative correlations between construal and the two
personality traits of conscientiousness and openness, which can be seen clearly in the CAQ correlates that appear.

Table 3.4.2.
Self-Rated Big-Five Personality Correlates of Distinctiveness of construal of TAT Situations.

<table>
<thead>
<tr>
<th>Big-5 item</th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraversion</td>
<td>0.096**</td>
<td>0.063†</td>
<td>0.063†</td>
<td>0.008</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>-0.025</td>
<td>-0.048</td>
<td>-0.009</td>
<td>-0.019</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>-0.138***</td>
<td>-0.148***</td>
<td>-0.058†</td>
<td>-0.106</td>
</tr>
<tr>
<td>Openness</td>
<td>-0.117**</td>
<td>-0.128***</td>
<td>-0.099*</td>
<td>-0.072†</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>-0.062†</td>
<td>-0.061†</td>
<td>-0.063†</td>
<td>-0.032</td>
</tr>
</tbody>
</table>

*Note. Correlations are calculated by situation, then averaged. p-values determined via randomization test. *** = p < .001, ** = p < .01, * = p < .05, † = p < .10.*

The correlation with conscientiousness is perhaps not surprising, given that those who are low in conscientiousness are less adherent to conventional strictures of their roles. An alternative explanation is that those who are lower in conscientiousness may be less diligent in creating their q-sorts and may be more prone to including error in their description of the situation. Whether this error is also part of their perception of the situation is a question we may never be able to answer.
Chapter 4 – Personality and the Perception of Situations

The most advanced study on this topic puts the participants directly into the situation. This study was based on an NSF grant BCS-1052638 awarded to David Funder. I developed and adapted procedures and materials for this study. I subsequently managed data collection with the help of Patrick Morse and a small army of Research Assistants over the course of two years.

Over the span of approximately five weeks, two-hundred and fifty-seven participants were assigned to unacquainted three-person groups to engage in three situations: an unstructured conversation, a cooperative interaction, and a competitive interaction. After the end of these brief group activities, participants described their experience of the situation using the RSQ.

Though these three situations are not a representative sample of the range of possible social interactions, they do at least provide a range across a few aspects of situations. These situations differ in that one is neutral, one has a cooperative tone, and one has a competitive tone. These methods have been expanded upon and adapted from previous work in our lab which have demonstrated that these three situation types are informative (Funder & Colvin, 1991).

We video-recorded the experimental situations to allow independent ratings of situational properties as well as behavioral measurements based on direct observation. However, at the time this Dissertation was written, these independent ratings were still underway. For the purposes of my dissertation I have limited the data used to those reported by participants and their interaction partners.
Because the situations were structured to be as similar as possible across participants, this allows different construals to be compared.

We also invited well-acquainted peers of our participants to the lab in order to gather an additional source of information about the personality attributes of our participants. This will allow me to expand my analyses to peer reports of personality in addition to self-reports, which should make for some interesting comparisons.

Method

Participants

Two-hundred and thirty-five undergraduate participants from the University of California, Riverside were recruited via an online university psychology participant pool. Individuals able to view the recruitment advertisement included undergraduate university students who were currently or had at some point been enrolled in an introductory psychology course. Data collection began in the fall of 2011 and concluded in the spring of 2013.

Since this study required a number of return visits, participant matriculation was an issue. Particularly because participants interacted in unacquainted trios, a few participants who matriculated from the study forced two of their peers to discontinue as well. This left a final sample of 224 (110 Female, 114 Male) participants in the last visit who completed each part of the study. Many analyses include data from a maximum of 235 participants in earlier visits, but because of matriculation and the occasional missing data on some measures, the Ns for any particular analysis in any given session may be slightly lower.
The breakdown of reported participant ethnicities in this sample was: 38% Asian, 27% Hispanic/Latino, 13% Caucasian, 13% Other, and 1% No Response.

Participants were compensated $15.00 per hour, with a maximum payment of $100.00 if they completed all 4 sessions, were an alternate, and were successful in the two challenges in which they could earn $5. Most participants earned $75.00 for their five hours of participation.

Measures

California Adult Q-Sort

The California Adult Q-Sort (CAQ: Block, 1978; as modified for use by non-professionals by Bem & Funder, 1978) contains 100 diverse personality characteristics (e.g., “Is genuinely dependable and responsible”; “Has a wide range of interests”) broadly covering the personality domain. Using the Q-sorting computer program, each participant assessed his or her own personality using the modified CAQ by placing each of the items into one of nine categories (1 = extremely uncharacteristic, 9 = extremely characteristic) forming a forced choice, quasi-normal distribution.

Big Five Inventory

The Big Five Inventory (BFI: John & Srivastava, 1999) consists of 44 items that assess the global personality traits of agreeableness, conscientiousness, extraversion, neuroticism, and openness. Each item is rated on a five-point Likert scale (1 = disagree strongly, 5 = agree strongly) using a computerized testing format. Means and reliabilities for Big Five Inventory can be seen in Table 4.0.1.below.
Table 4.0.1.

Descriptive Statistics and Reliability Estimates of Personality Measures for Study 3.

<table>
<thead>
<tr>
<th>Measure</th>
<th>M</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraversion</td>
<td>3.24</td>
<td>0.69</td>
<td>1.12</td>
<td>4.88</td>
<td>0.74</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>3.82</td>
<td>0.51</td>
<td>2.00</td>
<td>5.00</td>
<td>0.86</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>3.40</td>
<td>0.57</td>
<td>1.67</td>
<td>5.00</td>
<td>0.81</td>
</tr>
<tr>
<td>Openness</td>
<td>3.52</td>
<td>0.51</td>
<td>1.80</td>
<td>4.90</td>
<td>0.85</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>2.83</td>
<td>0.72</td>
<td>1.00</td>
<td>4.50</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Subjective Happiness

The Subjective Happiness Scale (SHS: Lyubomirska & Lepper, 1999) is a 4-item global assessment of happiness. Participants rated each item on a 7-point Likert-type scale (e.g. Item 1 – “In general I consider myself: 1 = Not a very happy person to 7 = A very happy person) using a computerized testing procedure. A subjective happiness score was computed by averaging these four items, with the fourth item being reverse scored. This scale’s correlates are not included in the analyses for this study and will not be discussed further.

Psychological Well-Being

The Psychological Well-Being questionnaire (PWB: Ryff, 1989a; 1989b) includes 84-items that assess well-being along six positively correlated dimensions—Autonomy, environmental mastery, personal growth, positive relations with others, purpose in life, and self-acceptance—as well as one overall factor of PWB. Participants rated each item on a six point Likert-type scale (1 = strongly disagree, 6 = strongly agree) using a
computerized testing procedure. This scale’s correlates are not included in the analyses for this study and will not be discussed further.

Beck Depression Inventory

The Beck Depression Inventory II (BDI-II: Beck, Steer, & Brown, 1996) is a 21-item self-report scale that updates a widely-used instrument for measuring the severity of depression (BDI: Beck et al., 1961). Participants rated each item using a 4-point scale ranging from 0 to 3 (e.g. Sadness: “I do not feel sad” (0), “I feel sad much of the time” (1), “I am sad all the time” (2), or “I am so sad or unhappy that I can’t stand it” (3)) using a computerized testing procedure. BDI scores were calculated by summing the ratings on all 21 items. The average BDI score in this sample was 11.06 ($SD = 8.1$), scores ranged from 0 to 52, and the full scale coefficient *alpha* was 0.85.

Narcissistic Personality Inventory

The Narcissistic Personality Inventory (NPI: Raskin & Terry, 1988) is a widely used 40-item self-report scale that measures 7 factors of Narcissism roughly mapping onto the DSM-III criteria for Narcissistic Personality Disorder. Participants indicated which of two written descriptions best described them for each of the 40 items. An overall NPI score was calculated by giving one point for each item marked in the Narcissism scaled direction and summing across all 40 items. This scale’s correlates are not included in the analyses for this study and will not be discussed further.

Riverside Situational Q-Sort.

The Riverside Situational Q-Sort Version 3.15 (RSQ: Sherman et al., 2010a; Wagener & Funder, 2009), is comprised of 89 diverse characteristics of situations (e.g.,
“Situation is potentially enjoyable”; “A job needs to be done”). During lab sessions 2-4, each participant assessed the lab situation he or she experienced that day by placing each item into one of nine categories (1 = extremely uncharacteristic, 9 = extremely characteristic) according to a forced choice, quasi-normal distribution, using the Q-sorting computer program. The number of items placed in each category was 3, 6, 11, 15, 19, 15, 11, 6, and 3 for categories 1-9 respectively. Thus, as is typical of the Q-Sort method, participants are forced to decide which few items are the most and least characteristic of the situation while the majority of less relevant, or even irrelevant, items are left to the middle categories.

Riverside Behavioral Q-Sort

Riverside Behavioral Q-Sort. The Riverside Behavioral Q-Sort Version 3.1 (RBQ-3.0: Funder, et al., 2000; Furr, et al., 2010), is a 68-item assessment tool designed to describe the range of a person’s behavior. Items include “appears relaxed and comfortable,” “is expressive in face, voice and gestures,” and “tries to control the situation.” During each return visit to the lab, and after completing the RSQ, each participant assessed his or her own behavior in the situation he or she participated in. This was done, using the Q-sorting computer program, by placing each of the 68 items into one of nine categories (1 = extremely uncharacteristic, 9 = extremely characteristic) forming a forced choice, quasi-normal distribution. This scale’s correlates are not included in the analyses for this study and will not be discussed further.
Positive and Negative Affect Schedule

The Positive and Negative Affect Schedule (PANAS: Clark, Tellegen, & Watson, 1988) measures positive and negative affect. The scale consists of single words and short phrases that describe states and emotions such as, “delighted”, “shy”, and “relaxed”. It’s made up of positive and negative items and each is calculated separately. Participants indicate agreement with each of 60 items. The scale used for PANAS ranges from 1 (very slightly or not at all) to 5 (extremely). This scale’s correlates are not included in the analyses for this study and will not be discussed further.

Peer ratings

In addition to self-ratings of personality, peer reports of personality were gathered for each participant. Two non-immediate-family acquaintances were asked to come to the lab on the target subject’s behalf. They completed the CAQ, and the BFI, as described earlier, except that the person they described was the target participant rather than themselves. These correlates are not included in the analyses for this study and will not be discussed further.

Tinker Toys

As an activity that is both simple in its fundamentals and complex in its execution, the Tinkertoy children’s toy is a good choice.
Participants were asked to build a particular model using a select set of pieces. Figure 4.0.2. is the image participants were given as the model they were attempting to put together.

Figure 4.0.2. A diagram participants used to cooperatively construct a model fire engine using Tinker Toy pieces.
Simon

The game of Simon is a pattern replication game. The pattern starts simply, but grows in size with each consecutive successful round. This game can be played competitively, and it was used in this manner for our study.

![Simon Game](image)

Figure 4.0.3. An image of an original Simon game manufactured in the 1980s.

Though there are many ways to play the game of Simon, we developed a method that involved all participants simultaneously. Research Assistants gave the following instructions:

You will play five games of SIMON. The winner of three out of five games wins the five dollars in cash!
To make sure everyone understands how to play, we’ll go through a trial round after I explain the game.

There are 4 buttons on the Simon game: red, green, blue, and yellow. Each colored button has a tone that corresponds with it when it is lit up.
It works best if you push the top-middle (towards center of game) of the buttons.
The purpose of the game is to correctly repeat the pattern that SIMON gives. To begin, press start. The game will start by lighting up a button. The first player should then press that color.
Then the pattern will grow. The same color will light up, along with a new one. The second player should press those two buttons in the order shown.
Then the third person will be next, continuing the pattern that has started. After the third person, the first person will continue and you will go around until one player messes up the sequence.

So before I let you guys play, we will go through a practice game to make sure no one has any questions.

<Turn on game>
<Make sure SIMON is at game 1, skill level 2>
<Press start>
<Motion for players to play>

Keep in mind that if you wait too long before taking your turn, Simon will buzz you out, and you will lose that game.

If you are the one who makes the mistake, circle “Yes” on your sheet for that round. If you didn’t lose, circle “No”

After the five games, if it is not clear who has won, then the two tied players will then play a final tie-breaker round to decide the winner. Remember to keep track of your results as you play. Please make sure you come get me when you finish.

Procedure

Participants came to the lab for a total of four sessions over the course of approximately five weeks. By bringing participants into the lab, they actually experience the situation themselves. Using trained RAs and scripts, all participants get essentially the same situation information to start with. The situations provide an unstructured, a cooperative, and a competitive framework.

During the first of these lab sessions, participants provided information about their own personalities. This included a large number of personality measures including measures of Well-Being, Depression, the Big Five, and Narcissism.

During the second visit, participants spent five minutes interacting with two unacquainted peers. During the third visit, participants spent five minutes cooperating
with two unacquainted peers to build a specified model out of “Tinker Toys” for a possible prize of $5 each if they were successful. During the fourth and final visit, participants spent five to ten minutes playing a game of “Simon” with two unacquainted peers for the prize of $5. Each session occurred at least 48 hours after the previous interaction.

Immediately after the interaction in visits 2-4, participants described the psychological characteristics of experiencing that situation using the Riverside Situational Q-Sort Version 3.15 using a computer based Q-sorter program developed in our lab. They also answered questions regarding their mood, using the PANAS, and also completed the Riverside Behavioral Q-sort, though those data will not be discussed here.

Each session was video-recorded from multiple camera angles. Participants were aware that they were being recorded, though the cameras were positioned so they would be less intrusive and most participants quickly acclimated to their presence.

Results

The analyses for the third study are essentially the same as those in the previous two studies, but more complex in application. Because the participants’ data are nested in trios, this creates a non-independence issue in the data when being run overall. Additionally, the fact that they are only trios and include many groups and qsort data, a multi-level modeling framework does not make much sense. However, a resampling procedure can be used to create many sub-samples of the data which are independent. That is to say, if each trio is not independent, a sample of the data which only included one person from each trio in each sample would be independent. By randomly sampling
from each trio, the resulting correlations would be independent but not complete. By
recording these correlations, then repeating the procedure, I would have another sample
which, while still independent, used more of the total data when recorded after the first
sample. By doing this ten thousand times, I will have a good estimate of the overall effect
as well as a distribution of sample correlations, which are independent and effective. This
resampling procedure is necessary for nearly every analysis in the study to ensure
independence. The general procedures and logic followed here are based on Sherman and
Funder (2009). The functions themselves were written to serve these data uniquely, and
can be found in detail in Appendix D.

The most relevant consensual perspective of each situation is the average of the
other two interactants’ RSQ profiles involved in that situation, which is the primary
method of analysis used here. Because it is possible that the different groups change tenor
due to the people in them, it makes more sense to compare to the situation the participant
actually experienced than the overall mean of all the participants’ ratings of the situation
type.

One other way to analyze the data is to consider the situations to be the same, and
use the average of all the other groups’ perceptions as the consensual view of the
situation. This is mathematically similar to methods used in other studies, but is limited
by the fact that different people are expected to evoke different tones in the activities, to a
certain extent.
H1: People vary in the degree to which they distinctively construe situations.

In order to analyze these data, I used a slightly different method to assess normativity of construal. Since the other members in the room each described their experience of the situation, they represent the consensus of how others view the situation. Averaging these two perspectives into a consensus gives me a profile to compare the target individual’s perception to. Because of the grouped nature of these situations, and the fact that each situation will be slightly different depending on the people in the group and how they change the situation, some of the analyses required consideration for these nested groups.

H1.1: Consensus can be reached about the situation.

There is agreement. The mean intercorrelation between individuals’ rating of the unstructured interaction was $r = 0.437$, 95% CI [0.329, 0.535]. For women it was $r = 0.420$, 95% CI [0.261, 0.557], and for men it was $r = 0.451$, 95% CI [0.294, 0.583].

For the cooperative interaction, the mean intercorrelation between individuals’ ratings was $r = 0.530$, 95% CI [0.433, 0.616]. For women it was $r = 0.539$, 95% CI [0.399, 0.654] and for men it was $r = 0.536$, 95% CI [0.393, 0.653]. For the competitive interaction, the mean intercorrelation between individuals’ ratings was $r = 0.439$, 95% CI [0.331, 0.536]. For women it was $r = 0.439$, 95% CI [0.283, 0.573] and for men it was $r = 0.448$, 95% CI [0.291, 0.581].
H1.2 The consensus average intercorrelations will be higher than baseline

Rather than assuming the null to be zero, a more appropriate comparison is a baseline correlation calculated from a random sample of RSQ-descriptions from situations across the United States (Hanes, et al., in preparation). The average intercorrelations of descriptions of unrelated situations across the U.S. is $r = 0.154$, $SD = 0.166$. Significance tests of this difference, using Welch’s adjusted t-test for unequal variances, range from $t_{(662.18)} = 26.16$ to $t_{(662.18)} = 108.61$, all with p-values less than $p = 0.05 \times 10^{-9}$.

H1.3: Construal can be quantified.

The N for the different groups is going to vary more throughout these analyses because missing data affects different analyses different ways. Some analyses require that all members of a group have complete data, where others can compare individuals with complete data to the whole dataset. Descriptive statistics for each of the methods as appropriate are in the following tables. Figures detailing the distributions of the values calculated for distinctiveness of construal can be found in Appendix G

H.1.3.A Simple profile correlation normativity.

Within each trio, a correlation between the target individual’s profile and the consensus of the two peer ratings gives an effect size for the degree of normativity of the target individual’s perception, relative to the specific instance of the situation they experienced.
Table 4.1.3.A.

Distribution of Individuals’ General Degree of Normativity for Study 3.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>med</th>
<th>min</th>
<th>max</th>
<th>skew</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstructured</td>
<td>235</td>
<td>0.52</td>
<td>0.14</td>
<td>0.54</td>
<td>0.00</td>
<td>0.77</td>
<td>-0.89</td>
<td>0.81</td>
</tr>
<tr>
<td>Unstructured : Women</td>
<td>117</td>
<td>0.52</td>
<td>0.14</td>
<td>0.55</td>
<td>0.00</td>
<td>0.77</td>
<td>-0.97</td>
<td>1.33</td>
</tr>
<tr>
<td>Unstructured : Men</td>
<td>117</td>
<td>0.52</td>
<td>0.14</td>
<td>0.54</td>
<td>0.10</td>
<td>0.77</td>
<td>-0.82</td>
<td>0.26</td>
</tr>
<tr>
<td>Cooperative</td>
<td>235</td>
<td>0.63</td>
<td>0.10</td>
<td>0.64</td>
<td>0.23</td>
<td>0.82</td>
<td>-0.79</td>
<td>0.90</td>
</tr>
<tr>
<td>Cooperative : Women</td>
<td>117</td>
<td>0.62</td>
<td>0.09</td>
<td>0.64</td>
<td>0.23</td>
<td>0.80</td>
<td>-1.11</td>
<td>2.26</td>
</tr>
<tr>
<td>Cooperative : Men</td>
<td>117</td>
<td>0.63</td>
<td>0.10</td>
<td>0.66</td>
<td>0.36</td>
<td>0.82</td>
<td>-0.57</td>
<td>-0.25</td>
</tr>
<tr>
<td>Competitive</td>
<td>221</td>
<td>0.55</td>
<td>0.11</td>
<td>0.55</td>
<td>0.12</td>
<td>0.75</td>
<td>-0.66</td>
<td>0.63</td>
</tr>
<tr>
<td>Competitive : Women</td>
<td>108</td>
<td>0.55</td>
<td>0.11</td>
<td>0.55</td>
<td>0.12</td>
<td>0.75</td>
<td>-0.72</td>
<td>1.42</td>
</tr>
<tr>
<td>Competitive : Men</td>
<td>112</td>
<td>0.55</td>
<td>0.11</td>
<td>0.56</td>
<td>0.25</td>
<td>0.75</td>
<td>-0.58</td>
<td>-0.20</td>
</tr>
</tbody>
</table>

For this metric of construal, the indicators of skew and kurtosis fall within acceptable ranges, suggesting that these data are normally distributed.

H.1.3.B: By-item z-scored overall construal.

Within each of the q-sort items there is some variability. One way to index the degree of deviation would be to take the standardized z-score of an individual’s placement of a given item, relative to the mean and standard deviation of everyone else.

Then the absolute value of this z-score can be summed across all of the q-sort items to give each participant a score for their distinctiveness of construal over all the situational properties for a given situation. This method can be used two ways. It can be done within-groups in study 3, using a very limited range of mean and standard deviation.
to compare against, but within the appropriate situation. Table 4.1.3.B.1. presents the
descriptive statistics for the first method, the within-group method.

Table 4.1.3.B.1.

Distribution of Individuals’ Distinctiveness of Within-Group By-Item Z-Scored Construal for Study 3.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>med</th>
<th>min</th>
<th>max</th>
<th>skew</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstructured</td>
<td>235</td>
<td>0.91</td>
<td>0.06</td>
<td>0.90</td>
<td>0.75</td>
<td>1.08</td>
<td>0.19</td>
<td>-0.36</td>
</tr>
<tr>
<td>Unstructured : Women</td>
<td>118</td>
<td>0.91</td>
<td>0.06</td>
<td>0.90</td>
<td>0.75</td>
<td>1.07</td>
<td>0.22</td>
<td>0.03</td>
</tr>
<tr>
<td>Unstructured : Men</td>
<td>117</td>
<td>0.91</td>
<td>0.07</td>
<td>0.90</td>
<td>0.77</td>
<td>1.08</td>
<td>0.15</td>
<td>-0.69</td>
</tr>
<tr>
<td>Cooperative</td>
<td>234</td>
<td>0.91</td>
<td>0.06</td>
<td>0.91</td>
<td>0.76</td>
<td>1.04</td>
<td>0.02</td>
<td>-0.54</td>
</tr>
<tr>
<td>Cooperative : Women</td>
<td>114</td>
<td>0.91</td>
<td>0.06</td>
<td>0.91</td>
<td>0.78</td>
<td>1.03</td>
<td>0.09</td>
<td>-0.78</td>
</tr>
<tr>
<td>Cooperative : Men</td>
<td>115</td>
<td>0.91</td>
<td>0.06</td>
<td>0.90</td>
<td>0.76</td>
<td>1.04</td>
<td>-0.04</td>
<td>-0.30</td>
</tr>
<tr>
<td>Competitive</td>
<td>234</td>
<td>0.90</td>
<td>0.06</td>
<td>0.90</td>
<td>0.73</td>
<td>1.04</td>
<td>-0.09</td>
<td>-0.36</td>
</tr>
<tr>
<td>Competitive : Women</td>
<td>115</td>
<td>0.90</td>
<td>0.06</td>
<td>0.90</td>
<td>0.78</td>
<td>1.04</td>
<td>0.03</td>
<td>-0.58</td>
</tr>
<tr>
<td>Competitive : Men</td>
<td>114</td>
<td>0.90</td>
<td>0.06</td>
<td>0.90</td>
<td>0.73</td>
<td>1.04</td>
<td>-0.17</td>
<td>-0.26</td>
</tr>
</tbody>
</table>

By the indicators of skew and kurtosis, these data are close to being normally
distributed when measured in this way.

Alternatively this by-item z-scoring can be done in the same way it has been done
for the other studies, but only by assuming that trios’ situations are equivalent for a given
visit. For example, the data could be treated as though one trio’s description of their
unstructured interaction is not somehow fundamentally different than another trio’s
description of their respective unstructured interaction.

This still leaves the issue of independence. What can be done to alleviate this
independence issue is to calculate distribution estimating the values of these z-scores
based on independent subsets of the data, selecting only one randomly-sampled member of each trio to contribute to the means and standard deviations needed to calculate the z-score deviations. Table 4.1.3.B.2. presents the descriptive statistics for this second method, the across-groups method.

Table 4.1.3.B.2.
Distribution of Individuals’ Distinctiveness of Across-Group By-Item Z-Scored Construal for Study 3.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>med</th>
<th>min</th>
<th>max</th>
<th>skew</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstructured</td>
<td>235</td>
<td>0.79</td>
<td>0.12</td>
<td>0.77</td>
<td>0.56</td>
<td>1.27</td>
<td>1.04</td>
<td>1.55</td>
</tr>
<tr>
<td>Unstructured : Women</td>
<td>118</td>
<td>0.80</td>
<td>0.11</td>
<td>0.77</td>
<td>0.62</td>
<td>1.26</td>
<td>1.22</td>
<td>2.42</td>
</tr>
<tr>
<td>Unstructured : Men</td>
<td>117</td>
<td>0.80</td>
<td>0.12</td>
<td>0.78</td>
<td>0.57</td>
<td>1.19</td>
<td>0.85</td>
<td>0.70</td>
</tr>
<tr>
<td>Cooperative</td>
<td>233</td>
<td>0.80</td>
<td>0.12</td>
<td>0.77</td>
<td>0.60</td>
<td>1.22</td>
<td>1.25</td>
<td>1.80</td>
</tr>
<tr>
<td>Cooperative : Women</td>
<td>117</td>
<td>0.80</td>
<td>0.10</td>
<td>0.78</td>
<td>0.60</td>
<td>1.23</td>
<td>1.16</td>
<td>2.61</td>
</tr>
<tr>
<td>Cooperative : Men</td>
<td>117</td>
<td>0.79</td>
<td>0.12</td>
<td>0.76</td>
<td>0.60</td>
<td>1.16</td>
<td>1.17</td>
<td>1.07</td>
</tr>
<tr>
<td>Competitive</td>
<td>224</td>
<td>0.80</td>
<td>0.11</td>
<td>0.78</td>
<td>0.63</td>
<td>1.23</td>
<td>1.07</td>
<td>1.54</td>
</tr>
<tr>
<td>Competitive : Women</td>
<td>110</td>
<td>0.80</td>
<td>0.10</td>
<td>0.78</td>
<td>0.65</td>
<td>1.16</td>
<td>1.09</td>
<td>1.20</td>
</tr>
<tr>
<td>Competitive : Men</td>
<td>114</td>
<td>0.80</td>
<td>0.11</td>
<td>0.78</td>
<td>0.64</td>
<td>1.20</td>
<td>1.00</td>
<td>1.48</td>
</tr>
</tbody>
</table>

This method displays more skew and kurtosis than the first, though the majority of values are within the acceptable liberal ranges for normality.

H1.3.C Residuals from linear regression

The calculation of residuals from linear regression based on a profile match leaves 89 residuals for each individual. The descriptive statistics for this method of construal would be cumbersome to detail, however, the following method, method D, should provide an appropriate picture.
H1.3.D Aggregated residuals from linear regression

The measures of normality indicate a low degree of skew or kurtosis in these data when construal is quantified via aggregation of residuals from linear regression.

H1.3.E Median absolute deviations.

The distributions of Median Absolute Deviations for Study 3 are somewhat different than those from the previous studies. Due to the small comparison groups from which these values were calculated, the number of possible values for deviation is small, resulting in a somewhat stunted, if relatively normal, distribution. *Figure 4.1.3.E.* shows these values in detail.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>med</th>
<th>min</th>
<th>max</th>
<th>skew</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstructured</td>
<td>226</td>
<td>1.27</td>
<td>0.13</td>
<td>1.27</td>
<td>0.94</td>
<td>1.54</td>
<td>-0.07</td>
<td>-0.43</td>
</tr>
<tr>
<td>Unstructured : Women</td>
<td>113</td>
<td>1.27</td>
<td>0.13</td>
<td>1.26</td>
<td>0.95</td>
<td>1.52</td>
<td>-0.11</td>
<td>-0.59</td>
</tr>
<tr>
<td>Unstructured : Men</td>
<td>113</td>
<td>1.28</td>
<td>0.12</td>
<td>1.27</td>
<td>0.94</td>
<td>1.54</td>
<td>0.00</td>
<td>-0.31</td>
</tr>
<tr>
<td>Cooperative</td>
<td>226</td>
<td>1.16</td>
<td>0.12</td>
<td>1.16</td>
<td>0.88</td>
<td>1.50</td>
<td>0.18</td>
<td>-0.22</td>
</tr>
<tr>
<td>Cooperative : Women</td>
<td>113</td>
<td>1.17</td>
<td>0.11</td>
<td>1.17</td>
<td>0.93</td>
<td>1.50</td>
<td>0.29</td>
<td>0.12</td>
</tr>
<tr>
<td>Cooperative : Men</td>
<td>113</td>
<td>1.15</td>
<td>0.13</td>
<td>1.14</td>
<td>0.88</td>
<td>1.47</td>
<td>0.17</td>
<td>-0.55</td>
</tr>
<tr>
<td>Competitive</td>
<td>226</td>
<td>1.26</td>
<td>0.13</td>
<td>1.26</td>
<td>0.89</td>
<td>1.53</td>
<td>-0.18</td>
<td>-0.12</td>
</tr>
<tr>
<td>Competitive : Women</td>
<td>113</td>
<td>1.26</td>
<td>0.12</td>
<td>1.26</td>
<td>0.89</td>
<td>1.53</td>
<td>-0.18</td>
<td>-0.21</td>
</tr>
<tr>
<td>Competitive : Men</td>
<td>113</td>
<td>1.25</td>
<td>0.13</td>
<td>1.25</td>
<td>0.91</td>
<td>1.52</td>
<td>-0.18</td>
<td>-0.10</td>
</tr>
</tbody>
</table>
Table 4.1.3.E.

Distribution of Individuals’ Median Absolute Deviations for Study 3.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>med</th>
<th>min</th>
<th>max</th>
<th>skew</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstructured</td>
<td>235</td>
<td>1.11</td>
<td>0.23</td>
<td>1.00</td>
<td>0.50</td>
<td>2.00</td>
<td>1.35</td>
<td>1.50</td>
</tr>
<tr>
<td>Unstructured : Women</td>
<td>118</td>
<td>1.11</td>
<td>0.24</td>
<td>1.00</td>
<td>0.50</td>
<td>2.00</td>
<td>1.02</td>
<td>1.06</td>
</tr>
<tr>
<td>Unstructured : Men</td>
<td>117</td>
<td>1.10</td>
<td>0.21</td>
<td>1.00</td>
<td>1.00</td>
<td>2.00</td>
<td>1.77</td>
<td>2.24</td>
</tr>
<tr>
<td>Cooperative</td>
<td>234</td>
<td>1.03</td>
<td>0.18</td>
<td>1.00</td>
<td>0.50</td>
<td>1.50</td>
<td>0.71</td>
<td>4.72</td>
</tr>
<tr>
<td>Cooperative : Women</td>
<td>117</td>
<td>1.02</td>
<td>0.16</td>
<td>1.00</td>
<td>0.50</td>
<td>1.50</td>
<td>0.73</td>
<td>6.93</td>
</tr>
<tr>
<td>Cooperative : Men</td>
<td>117</td>
<td>1.03</td>
<td>0.19</td>
<td>1.00</td>
<td>0.50</td>
<td>1.50</td>
<td>0.64</td>
<td>3.46</td>
</tr>
<tr>
<td>Competitive</td>
<td>221</td>
<td>1.09</td>
<td>0.23</td>
<td>1.00</td>
<td>0.50</td>
<td>2.00</td>
<td>1.08</td>
<td>2.10</td>
</tr>
<tr>
<td>Competitive : Women</td>
<td>109</td>
<td>1.09</td>
<td>0.24</td>
<td>1.00</td>
<td>0.50</td>
<td>2.00</td>
<td>1.02</td>
<td>1.97</td>
</tr>
<tr>
<td>Competitive : Men</td>
<td>112</td>
<td>1.08</td>
<td>0.23</td>
<td>1.00</td>
<td>0.50</td>
<td>2.00</td>
<td>1.11</td>
<td>2.39</td>
</tr>
</tbody>
</table>

H2: There is stability in this variation of distinctiveness of construal.

H.2.1.A: Simple profile correlation normativity.

The average intercorrelation among a person’s general normativity of construal for the first interaction and his or her general normativity of construal in the second and third interactions was calculated, along with a randomization test for statistical significance. Combined $r = 0.316$, $p < 0.0001$, 95% CI [0.235, 0.458]; Women $r = 0.312$, $p < 0.0001$, 95% CI [0.169, 0.487]; Men $r = 0.325$, $p < 0.0001$, 95% CI [0.202, 0.514].

H.2.1.B: By-item z-scored overall construal.

The average intercorrelation among a person’s distinctiveness of construal for the first interaction and his or her distinctiveness of construal in the second and third interactions was calculated, along with a randomization test for statistical significance. This was first done within groups. Combined $r = 0.174$, $p = 0.00859$, 95% CI [0.045,
0.298]; Women $r = 0.131, p = 0.16612, 95\% \text{ CI } [-0.055, 0.308]$; Men $r = 0.218, p = 0.02017, 95\% \text{ CI } [0.035, 0.387]$. These values are much lower than the values seen in other studies, which may be the effect of the situations being more different given the unstable stimuli. However, there is still stability within individuals across situations in the degree to which they differ from their peers, even though these peers change from situation to situation.

The following values were calculated using the index of z-scored by-item construal constructed from across the set of trios rather than within each trio. Combined $r = 0.528, 95\% \text{ CI } [0.426, 0.616], p < 0.0001$; Women $r = 0.376, 95\% \text{ CI } [0.206, 0.525], p < 0.0001$; Men $r = 0.619, 95\% \text{ CI } [0.490, 0.721], p < 0.0001$. These values more closely resemble other values found that have been calculated across the whole set in studies 1 and 2.

H.2.1.C: Residuals.

The average intercorrelation among a person’s residuals from a linear regression prediction for the first interaction and his or her residuals from a linear regression prediction in the second and third interactions was calculated, along with a randomization test for statistical significance. Combined $r = 0.230, p < 0.0005, 95\% \text{ CI } [0.103, 0.350]$; Women $r = 0.233, p < 0.013, 95\% \text{ CI } [0.050, 0.400]$; Men $r = 0.228, p < 0.015, 95\% \text{ CI } [0.045, 0.396]$.

H.2.1.D: Accumulated residuals.

The average intercorrelation among a person’s accumulated residuals from a linear regression prediction for the first interaction and his or her accumulated residuals
from a linear regression prediction in the second and third interactions was calculated, along with a randomization test for statistical significance. Combined $r = 0.316$, 95% CI [0.197, 0.426], $p < 0.0001$; Women $r = 0.302$, 95% CI [0.131, 0.456], $p < 0.0001$; Men $r = 0.334$, 95% CI [0.163, 0.484], $p < 0.0001$.

H.2.1. E Median absolute deviations.

The correlation between a person’s median absolute deviations for the first interaction and his or her median absolute deviations in the second and third interactions was calculated, along with a randomization test for statistical significance. Combined $r = 0.216$, 95% CI [0.128, 0.301], $p < 0.0001$; Women $r = 0.197$, 95% CI [0.019, 0.363], $p = 0.00032$; Men $r = 0.242$, 95% CI [0.064, 0.404], $p = 0.00001$.

H2.2 These consistencies in construal are higher than an empirical baseline value

Instead of being content to compare to a null value of 0, using a randomization procedure, samples of the data can be taken and assigned to random orders, staying consistent with the same data structures as the other analyses.

For analysis A, the empirical baseline value calculated is $r = -0.0003$. The statistical test comparing the value to the sampled consistency of distinctiveness of construal in H2.1 is $z = 3.939$, $p < 0.0001$. For analysis B1, the empirical baseline value calculated is $r = 0.0016$. The statistical test comparing the value to the sampled consistency of distinctiveness of construal in H2.1 is $z = 1.844$, $p = 0.065$. For analysis B2, the empirical baseline value calculated is $r = 0.0018$. The statistical test comparing the value to the sampled consistency of distinctiveness of construal in H2.1 is $z = 6.196$, $p < 0.0001$. For analysis D, the empirical baseline value calculated is $r = 0.0005$. The
statistical test comparing the value to the sampled consistency of distinctiveness of construal in H2.1 is $z = 3.168$, $p = 0.0015$. For analysis E, the empirical baseline value calculated is $r = -0.0025$. The statistical test comparing the value to the sampled consistency of distinctiveness of construal in H2.1 is $z = 2.563$, $p = 0.0104$.

In all, the empirical baseline consistencies in construal calculated between unrelated persons are remarkably close to zero. Though perhaps unsurprising, this verification lends even more support to the consistency values found in section 2.1.

H3: Differences in individuals’ distinctiveness of construal are systematically related to personality.

In this section I will examine the set of correlates between CAQ-measured personality and averages of distinctiveness of construal. Initial analyses, including a randomization test (Sherman & Funder, 2009) of the set of correlates, indicate that a significant proportion of these relationships are unlikely to be due to chance alone. In the following five tables, # Significant is the observed number of statistically significant correlations in the 100x1 correlation matrix followed by the p-value associated with such a number. Avg. $|r|$ is the average absolute r in the 100x1 correlation matrix followed by its associated p-value.

H3.1.A Simple profile correlation normativity.

As Table 4.3.1.A. shows, for each of the interactions completed by participants the number of statistically significant correlations between personality traits and unique construals of situations, as well as the average absolute r between traits and unique construals of situations, is higher than expected by chance alone. This suggests that there
are many meaningful relationships between personality and unique perceptions of situations.

H3.1.B By-item z-scored overall construal.

Table 4.3.1.A.

Results from Randomization Tests Correlating 100 CAQ Items with Normativity of Construal for Study 3.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th># Significant</th>
<th>p</th>
<th>Avg.</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>226</td>
<td>18</td>
<td>0.001</td>
<td>0.078</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>113</td>
<td>13</td>
<td>0.012</td>
<td>0.091</td>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>113</td>
<td>11</td>
<td>0.036</td>
<td>0.075</td>
<td>0.004</td>
<td></td>
</tr>
</tbody>
</table>

For construal calculated based on comparisons made within the trio groups, then combined across the three situations, and assessed with randomization procedures to deal with the interdependence of the data, Table 4.3.1.B.1. displays the findings.

Table 4.3.1.B.1.

Results from Randomization Tests Correlating 100 CAQ Items with Distinctiveness of Within-Group By-Item Z-Scored Construal for Study 3.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th># Significant</th>
<th>p</th>
<th>Avg.</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>226</td>
<td>24</td>
<td><0.001</td>
<td>0.081</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Women</td>
<td>113</td>
<td>10</td>
<td>0.061</td>
<td>0.091</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>113</td>
<td>18</td>
<td>0.002</td>
<td>0.114</td>
<td>0.002</td>
<td></td>
</tr>
</tbody>
</table>

For the second method of calculating distinctiveness of construal using by-item z-scores, the values were calculated across the groups, from randomly-sampled thirds of the data, taking one member from each trio. These samples were repeated to create a distribution of independent values for construal, which were then correlated with individuals’ CAQ personality profiles. The results are below in Table 4.3.1.B.2.
Table 4.3.1.B.2.

Results from Randomization Tests Correlating 100 CAQ Items with Distinctiveness of Across-Group By-Item Z-Scored Construal for Study 3.

| Group | N | # Significant | p | Avg. $|r|$ | p |
|----------|-----|---------------|--------|--------|-----|-----|
| Combined | 226 | 29 | <0.001 | 0.108 | <0.001 |
| Women | 113 | 17 | 0.001 | 0.104 | 0.001 |
| Men | 113 | 25 | <0.001 | 0.133 | <0.001 |

H3.1.D Accumulated residuals.

Table 4.3.1.D.

Results from Randomization Tests Correlating 100 CAQ Items with Accumulated Residuals from a Linear Regression Prediction for Study 3.

| Group | N | # Significant | p | Avg. $|r|$ | p |
|----------|-----|---------------|--------|--------|-----|-----|
| Combined | 226 | 15 | 0.002 | 0.075 | <0.001 |
| Women | 113 | 9 | 0.096 | 0.083 | 0.133 |
| Men | 113 | 12 | 0.020 | 0.104 | 0.007 |

H3.1.E Median Absolute Deviations.

Table 4.3.1.E.

Results from Randomization Tests Correlating 100 CAQ Items with Median Absolute Deviations for Study 3.

| Group | N | # Significant | P | Avg. $|r|$ | p |
|----------|-----|---------------|-----|--------|-----|
| Combined | 226 | 17 | 0.004 | 0.078 | 0.002 |
| Women | 113 | 11 | 0.039 | 0.088 | 0.055 |
| Men | 113 | 14 | 0.012 | 0.104 | 0.006 |
H4: Construal relates to specific personality variables.

While the previous analysis suggests that personality in general is related to unique perceptions of situations, it is important to identify ways in which specific personality traits are related to perceptions of situations. Looking beyond the set of correlates to the actual CAQ items which relate to this normativity of construal, we find the following correlates that surpassed the r-value associated with a p-value of .10.

H4.1 CAQ correlates of distinctiveness of construal

Table 4.4.1.1.

Positive Self-Rated CAQ Personality Correlates of Distinctiveness of Construal of Lab Situations.

<table>
<thead>
<tr>
<th>CAQ Item</th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 Is subtly negativistic; tends to undermine and obstruct or sabotage.</td>
<td>0.115 **</td>
<td>0.160 ***</td>
<td>0.098 **</td>
<td>0.083 *</td>
</tr>
<tr>
<td>38 Has hostility toward others.</td>
<td>0.173 ***</td>
<td>0.145 ***</td>
<td>0.155 ***</td>
<td>0.182 ***</td>
</tr>
<tr>
<td>78 Feels cheated and victimized by life; self-pitying.</td>
<td>0.185 ***</td>
<td>0.133 ***</td>
<td>0.170 ***</td>
<td>0.147 ***</td>
</tr>
<tr>
<td>37 Is guILEul and deceitful, manipulative, opportunistic. Exploits and takes advantage of people and situations.</td>
<td>0.167 ***</td>
<td>0.132 ***</td>
<td>0.131 ***</td>
<td>0.156 ***</td>
</tr>
<tr>
<td>55 Is self-defeating. Acts in ways which undermine, sabotage, or frustrate his or her own goals and desires.</td>
<td>0.159 ***</td>
<td>0.122 ***</td>
<td>0.151 ***</td>
<td>0.128 ***</td>
</tr>
<tr>
<td>13 Is thin skinned.</td>
<td>0.130 ***</td>
<td>0.122 ***</td>
<td>0.133 ***</td>
<td>0.138 ***</td>
</tr>
<tr>
<td>23 Extrapunitive; tends to transfer or project blame.</td>
<td>0.045</td>
<td>0.116 **</td>
<td>0.040</td>
<td>0.036</td>
</tr>
<tr>
<td>27 Shows condescending behavior in relations with others</td>
<td>0.078 *</td>
<td>0.112 **</td>
<td>0.061 †</td>
<td>0.027</td>
</tr>
<tr>
<td>12 Tends to be self-defensive.</td>
<td>0.041</td>
<td>0.108 **</td>
<td>0.072 *</td>
<td>0.099 **</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>Score</td>
<td>p-value 1</td>
<td>Score</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>94</td>
<td>Expresses hostile feelings directly.</td>
<td>0.211</td>
<td>***</td>
<td>0.107</td>
</tr>
<tr>
<td>61</td>
<td>Creates and exploits dependency in people.</td>
<td>0.141</td>
<td>***</td>
<td>0.096</td>
</tr>
<tr>
<td>53</td>
<td>Various needs tend toward relatively direct and uncontrolled expression; unable to delay gratification.</td>
<td>0.024</td>
<td></td>
<td>0.096</td>
</tr>
<tr>
<td>01</td>
<td>Is critical, skeptical, not easily impressed.</td>
<td>0.018</td>
<td></td>
<td>0.073</td>
</tr>
<tr>
<td>76</td>
<td>Tends to project his/her own feelings and motivations onto others.</td>
<td>0.089</td>
<td>*</td>
<td>0.073</td>
</tr>
<tr>
<td>82</td>
<td>Has fluctuating moods.</td>
<td>0.124</td>
<td>***</td>
<td>0.071</td>
</tr>
<tr>
<td>34</td>
<td>Over-reactive to minor frustrations; irritable.</td>
<td>0.030</td>
<td></td>
<td>0.068</td>
</tr>
<tr>
<td>50</td>
<td>Is unpredictable and changeable in behavior and attitudes.</td>
<td>0.088</td>
<td>*</td>
<td>0.067</td>
</tr>
<tr>
<td>40</td>
<td>Is vulnerable to real or fancied threat, generally fearful.</td>
<td>0.030</td>
<td></td>
<td>0.058</td>
</tr>
<tr>
<td>14</td>
<td>Genuinely submissive</td>
<td>0.029</td>
<td></td>
<td>0.057</td>
</tr>
<tr>
<td>26</td>
<td>Is productive; gets things done.</td>
<td>0.032</td>
<td></td>
<td>0.051</td>
</tr>
<tr>
<td>79</td>
<td>Tends to ruminate and have persistent, preoccupying thoughts.</td>
<td>0.014</td>
<td></td>
<td>0.041</td>
</tr>
<tr>
<td>87</td>
<td>Interprets basically simple and clear-cut situations in complicated and particularizing ways.</td>
<td>0.087</td>
<td>*</td>
<td>0.041</td>
</tr>
<tr>
<td>39</td>
<td>Thinks and associates ideas in unusual ways; has unconventional thought processes.</td>
<td>0.025</td>
<td></td>
<td>0.040</td>
</tr>
<tr>
<td>21</td>
<td>Arouses nurturant feelings in others.</td>
<td>0.073</td>
<td>*</td>
<td>0.037</td>
</tr>
</tbody>
</table>
As with the previous two studies, there are a number of correlates of distinctiveness of construal which are undesirable traits. The top items are ones we have seen before, in “Is subtly negativistic; tends to undermine and obstruct or sabotage”, “Has
hostility toward others”, “Feels cheated and victimized by life; self-pitying”, “Is guileful and deceitful, manipulative, opportunistic. Exploits and takes advantage of people and situations.”

The negative personality correlates of the various degree of distinctiveness of construal, as measured by the four methods, can be seen in Table 4.4.1.2. below.

Table 4.4.1.2.
Negative Self-Rated CAQ Personality Correlates of Distinctiveness of Construal of Lab Situations.

<table>
<thead>
<tr>
<th>CAQ Item</th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>84 Is cheerful. Low Placement implies unhappiness or depression.</td>
<td>-0.089</td>
<td>-0.151</td>
<td>-0.083</td>
<td>-0.099</td>
</tr>
<tr>
<td>92 Has social poise and presence; appears socially at ease.</td>
<td>-0.024</td>
<td>-0.148</td>
<td>-0.037</td>
<td>-0.027</td>
</tr>
<tr>
<td>80 Interested in members of the opposite sex.</td>
<td>-0.056</td>
<td>-0.143</td>
<td>-0.055</td>
<td>-0.025</td>
</tr>
<tr>
<td>56 Responds to humor. Appreciates humor.</td>
<td>-0.207</td>
<td>-0.142</td>
<td>-0.176</td>
<td>-0.182</td>
</tr>
<tr>
<td>33 Is calm, relaxed in manner.</td>
<td>-0.032</td>
<td>-0.120</td>
<td>-0.054</td>
<td>-0.065</td>
</tr>
<tr>
<td>75 Has a clear cut internally consistent personality.</td>
<td>-0.071</td>
<td>-0.115</td>
<td>-0.080</td>
<td>-0.148</td>
</tr>
<tr>
<td>04 Is a talkative individual.</td>
<td>-0.076</td>
<td>-0.110</td>
<td>-0.062</td>
<td>-0.036</td>
</tr>
<tr>
<td>11 Is protective of those close to him or her.</td>
<td>-0.116</td>
<td>-0.108</td>
<td>-0.083</td>
<td>-0.070</td>
</tr>
<tr>
<td>32 Seems to be aware of the impression he or she makes on others.</td>
<td>-0.078</td>
<td>-0.103</td>
<td>-0.076</td>
<td>-0.060</td>
</tr>
<tr>
<td>70 Behaves in an ethically consistent manner; is consistent with own personal standards.</td>
<td>-0.069</td>
<td>-0.097</td>
<td>-0.049</td>
<td>-0.051</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>93</td>
<td>Behaves in a gender congruent style and manner.</td>
<td>-0.058 †</td>
<td>-0.090 **</td>
<td>-0.058 †</td>
</tr>
<tr>
<td>35</td>
<td>Has warmth; has the capacity for close relationships; compassionate.</td>
<td>-0.126 ***</td>
<td>-0.090 **</td>
<td>-0.107 **</td>
</tr>
<tr>
<td>54</td>
<td>Emphasizes being with others; gregarious. Characteristically prefers to be with others rather than alone.</td>
<td>-0.058 †</td>
<td>-0.081 *</td>
<td>-0.052 †</td>
</tr>
<tr>
<td>16</td>
<td>Is introspective and concerned with self as an object.</td>
<td>-0.128 ***</td>
<td>-0.078 *</td>
<td>-0.109 **</td>
</tr>
<tr>
<td>88</td>
<td>Is personally charming.</td>
<td>0.007</td>
<td>-0.075 *</td>
<td>-0.008</td>
</tr>
<tr>
<td>81</td>
<td>Is physically attractive; good looking.</td>
<td>0.007</td>
<td>-0.072 *</td>
<td>-0.002</td>
</tr>
<tr>
<td>00</td>
<td>Does not vary roles; relates to everyone in the same way.</td>
<td>-0.002</td>
<td>-0.072 *</td>
<td>-0.002</td>
</tr>
<tr>
<td>83</td>
<td>Able to see to the heart of important problems.</td>
<td>-0.082 *</td>
<td>-0.069 *</td>
<td>-0.077 *</td>
</tr>
<tr>
<td>74</td>
<td>Is subjectively unaware of self-concern; feels satisfied with self.</td>
<td>-0.110 **</td>
<td>-0.068 *</td>
<td>-0.110 **</td>
</tr>
<tr>
<td>98</td>
<td>Is verbally fluent; can express ideas well.</td>
<td>-0.041</td>
<td>-0.067 *</td>
<td>-0.038</td>
</tr>
<tr>
<td>05</td>
<td>Behaves in a giving way to others.</td>
<td>0.014</td>
<td>-0.065 *</td>
<td>0.028</td>
</tr>
<tr>
<td>29</td>
<td>Is turned to for advice and reassurance.</td>
<td>-0.096 **</td>
<td>-0.064 *</td>
<td>-0.080 *</td>
</tr>
<tr>
<td>62</td>
<td>Tends to be rebellious and non-conforming.</td>
<td>-0.021</td>
<td>-0.057 †</td>
<td>-0.020</td>
</tr>
</tbody>
</table>

102
<table>
<thead>
<tr>
<th>ID</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Is skilled in social techniques of imaginative play, pretending and humor.</td>
</tr>
<tr>
<td>59</td>
<td>Is concerned with own body and the adequacy of its physiological functioning.</td>
</tr>
<tr>
<td>31</td>
<td>Regards self as physically attractive.</td>
</tr>
<tr>
<td>18</td>
<td>Initiates humor. E.g., makes jokes or tells humorous stories.</td>
</tr>
<tr>
<td>42</td>
<td>Reluctant to commit self to any definite course of action; tends to delay or avoid action.</td>
</tr>
<tr>
<td>17</td>
<td>Behaves in a sympathetic or considerate manner.</td>
</tr>
<tr>
<td>57</td>
<td>Is an interesting, arresting person.</td>
</tr>
<tr>
<td>09</td>
<td>Is uncomfortable with uncertainty and complexities.</td>
</tr>
<tr>
<td>08</td>
<td>Appears to have a high degree of intellectual capacity.</td>
</tr>
<tr>
<td>51</td>
<td>Genuinely values intellectual and cognitive matters.</td>
</tr>
<tr>
<td>86</td>
<td>Handles anxiety and conflicts by, in effect, refusing to recognize their presence; repressive or dissociative tendencies.</td>
</tr>
<tr>
<td>43</td>
<td>Is facially and/or gesturally expressive.</td>
</tr>
<tr>
<td>89</td>
<td>Compares self to others.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>03</td>
<td>Has a wide range of interests.</td>
</tr>
<tr>
<td>64</td>
<td>Is socially perceptive of a wide range of interpersonal cues.</td>
</tr>
<tr>
<td>28</td>
<td>Tends to arouse liking and acceptance in people.</td>
</tr>
<tr>
<td>96</td>
<td>Values own independence and autonomy.</td>
</tr>
<tr>
<td>02</td>
<td>Is a genuinely dependable and responsible person.</td>
</tr>
<tr>
<td>46</td>
<td>Engages in personal fantasy and daydreams, fictional speculations.</td>
</tr>
<tr>
<td>68</td>
<td>Is basically anxious.</td>
</tr>
<tr>
<td>66</td>
<td>Enjoys esthetic impressions; is esthetically reactive.</td>
</tr>
<tr>
<td>71</td>
<td>Has high aspiration level for self.</td>
</tr>
<tr>
<td>44</td>
<td>Evaluates the motivation of others in interpreting situations.</td>
</tr>
<tr>
<td>58</td>
<td>Enjoys sensuous experiences (including touch, taste, smell, physical contact).</td>
</tr>
<tr>
<td>73</td>
<td>Tends to perceive many different contexts in sexual terms; eroticizes situations.</td>
</tr>
<tr>
<td>25</td>
<td>Tends toward over-control of needs and impulses.</td>
</tr>
</tbody>
</table>

Note. CAQ Item content abbreviated. *** = p < .001, ** = p < .01, * = p < .05, + = p < .10. Correlations are calculated by situation, then averaged. p-values determined via randomization test.
Much like in study one and two, the negative correlates of distinctiveness of construal include a variety of desirable items that relate to interpersonal warmth, interest in intellectual and aesthetic matters, and a clear-cut and stable personality. The less desirable anxiety-based and self-repressive items are also present in these data.

H4.2 BFI

Table 4.4.2.

Self-Rated Big-Five Personality Correlates of Distinctiveness of Construal of Lab Situations.

<table>
<thead>
<tr>
<th>Big-5 item</th>
<th>A</th>
<th>B</th>
<th>B2</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraversion</td>
<td>0.088 **</td>
<td>0.059 †</td>
<td>0.125 ***</td>
<td>0.091 **</td>
<td>0.121 ***</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>0.005</td>
<td>-0.099 **</td>
<td>-0.067 *</td>
<td>-0.017</td>
<td>-0.086 *</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>0.049</td>
<td>0.018</td>
<td>0.030</td>
<td>0.029</td>
<td>0.020</td>
</tr>
<tr>
<td>Openness</td>
<td>-0.056 †</td>
<td>-0.031</td>
<td>-0.076 *</td>
<td>-0.067 *</td>
<td>-0.042</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>0.038</td>
<td>0.103 **</td>
<td>0.120 ***</td>
<td>0.052 †</td>
<td>0.083 *</td>
</tr>
</tbody>
</table>

Note. Correlations are calculated by situation, then averaged. p-values determined via randomization test. *** = p < .001, ** = p < .01, * = p < .05, + = p < .10.

Once again we see a positive relationship between construal and extraversion, as well as a negative relationship between construal and openness. Neuroticism also appears to have a positive relationship here with distinctiveness of construal. Additionally, those who were found to construe situations to a greater degree were also more likely to score low on agreeableness.

H4.3 BDI

The final hypothesis tested in study three is regarding the relationship of depression to the various measures of distinctiveness of construal
Table 4.4.3.

Correlations between Distinctiveness of Construal of Lab Situations and self-rated Beck Depression Inventory.

<table>
<thead>
<tr>
<th>Construal Method</th>
<th>Depression r</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.063 †</td>
</tr>
<tr>
<td>B</td>
<td>0.081 *</td>
</tr>
<tr>
<td>B2</td>
<td>0.135 ***</td>
</tr>
<tr>
<td>D</td>
<td>0.076 *</td>
</tr>
<tr>
<td>E</td>
<td>0.057 †</td>
</tr>
</tbody>
</table>

Note. Correlations are calculated by situation, then averaged. p-values determined via randomization test. *** = $p < .001$, ** = $p < .01$, * = $p < .05$, + = $p < .10$.

For participants in the lab study, each of the indices of distinctiveness of construal was related to depression scores. Those participants with higher degrees of distinctiveness of construal were also more likely to have higher depression scores.
Chapter 5 – Conclusion

The goal of this chapter is to draw together broader conclusions concerning this dissertation as a whole. This will be accomplished in part by comparing the analyses from each of the studies, hypothesis by hypothesis.

H5: The patterns of these findings are consistent across three studies.

H1: People vary in the degree to which they distinctively construe situations.

The first place to start was in establishing a stable consensus for all the observers viewing a situation. In previous studies there has been plenty of evidence from our lab demonstrating that people come to a significant degree of agreement about what characterizes a situation. This was again demonstrated here, indexing the alpha-press properties of the situation for each of the three studies successfully, using multiple techniques. Though the field TAT image showed the least agreement, it was sufficient for further analyses. In hypothesis 1.2, analyses for each study indicated that agreement is above a baseline calculated empirically from unrelated situations across the U.S.

Once that agreement had been established, it was possible to examine distributions of construal using a variety of methods. Though the distributions of these patterns of construal weren’t perfectly normal, they did include a range and variability appropriate for further analyses. I expect that with a larger sample, these values would normalize further.

Beyond normality, the intercorrelations among the different methods were examined. The intercorrelations were first calculated within each stimuli. The range of these values was from $r = 0.526$ to $r = 0.961$. These correlations were then averaged
across stimuli within each of the three studies. After that they were averaged across the three studies to provide the values in Table 5.1.1. below.

Table 5.1.1.
Average Intercorrelations Among Methods of Quantifying Distinctiveness of Construal.

<table>
<thead>
<tr>
<th>Method</th>
<th>B</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.863</td>
<td>0.912</td>
<td>0.735</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td>0.846</td>
<td>0.734</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>-</td>
<td>0.772</td>
</tr>
</tbody>
</table>

As seen in the table above, the weakest relationships are between the median absolute deviations and the other methods. Even so, these values are quite high, showing a great deal of similarity among the different methods.

H2: People are consistent in the degree to which they distinctively construe different situations they experience.

Given that each of these studies includes at least two different situations across which we can compare, it is possible to look at the correlation between a person’s distinctiveness of construal for the first situation, and his or her distinctiveness of construal for the subsequent situations. This difference is also stable, at least across two or three situations, with high correlations between the distinctiveness of construal a person had for the first situation and the distinctiveness of construal a person had for the subsequent situations, suggesting that this distinctiveness of construal might be a consistent trait of an individual.
H2.1.A Simple profile correlations of normativity

Participants appear to have a remarkable level of stability in their distinctiveness of construal across situations, and this finding is replicated across three separate studies. In fact, when combining these values and doing a random-effects test for significance, even this small sample of three studies shows a reliable degree of solid consistency in degree of distinctiveness of construal.

Table 5.2.1.A.
Within-Person Consistencies of General Normativities of Construal, by Study.

<table>
<thead>
<tr>
<th></th>
<th>Video r</th>
<th>TAT r</th>
<th>Lab r</th>
<th>Random Effects $t_{(2)}$</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>.464</td>
<td>.593</td>
<td>.316</td>
<td>5.72</td>
<td>.015</td>
</tr>
<tr>
<td>Women</td>
<td>.406</td>
<td>.560</td>
<td>.312</td>
<td>5.90</td>
<td>.014</td>
</tr>
<tr>
<td>Men</td>
<td>.822</td>
<td>.625</td>
<td>.325</td>
<td>4.09</td>
<td>.028</td>
</tr>
</tbody>
</table>

When combining these findings into Table 5.2.1.A. we can see a pattern emerging. Men appear to be more consistent in their degree of distinctive construal across different situations. If they see things normatively in one situation, they tend to see things normatively in another. Women, on the other hand, tend to be somewhat lower on this dimension, showing more variability in how normatively they perceive a situation.

The method of indexing construal that appears to have the most similar values across the three studies is method B, wherein the deviations are calculated by z-scoring each RSQ item, and then accumulating those values across the set.
Table 5.2.1.B.

Within-Person Consistencies of By-Item Z-Scored Distinctiveness of Construal, by Study.

<table>
<thead>
<tr>
<th></th>
<th>Video r</th>
<th>TAT r</th>
<th>Lab r</th>
<th>Random Effects $t_{(2)}$</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>.409</td>
<td>.589</td>
<td>.531 (.150)</td>
<td>9.608</td>
<td>.005</td>
</tr>
<tr>
<td>Women</td>
<td>.425</td>
<td>.569</td>
<td>.358 (.109)</td>
<td>7.239</td>
<td>.009</td>
</tr>
<tr>
<td>Men</td>
<td>.441</td>
<td>.610</td>
<td>.592 (.186)</td>
<td>10.22</td>
<td>.005</td>
</tr>
</tbody>
</table>

Note. The parentheticals denote the within-group method of calculating construal, which is unique to the third study and not included in the t-test.

Method C, displayed in Table 5.2.1.C. leaves a set of residuals for each individual, rather than a single number for distinctiveness of construal, the correlation between a person’s residuals from a linear regression prediction for the first video and his or her residuals from a linear regression prediction in the second video would yield a correlation for each individual and is therefore somewhat different from the other methods. This method indexes whether the exact ratings’ deviations for the first situation match those of the second situation.

The fact that the values displayed in Table 5.2.1.C. are much lower than in the other methods is indicative of one property of a person’s construal; people do not necessarily construe individual situational properties in the same way from situation to situation, though they may be consistent in the degree to which theydistinctively construe situational properties overall.
Table 5.2.1.C.
Mean Within-Person Consistencies of Residuals from Linear Regression, by Study.

<table>
<thead>
<tr>
<th></th>
<th>Video r</th>
<th>TAT r</th>
<th>Lab r</th>
<th>Random Effects $t_{(2)}$</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>.089</td>
<td>.105</td>
<td>.230</td>
<td>3.17</td>
<td>.043</td>
</tr>
<tr>
<td>Women</td>
<td>.090</td>
<td>.095</td>
<td>.233</td>
<td>2.97</td>
<td>.048</td>
</tr>
<tr>
<td>Men</td>
<td>.086</td>
<td>.116</td>
<td>.228</td>
<td>3.32</td>
<td>.040</td>
</tr>
</tbody>
</table>

This may suggest that general situational construal, and the consistent construal of particular situational properties are two separate forces, each with their own unique correlates. Though these values are much smaller, they are still significant when tested meta-analytically as random-effects measures of the effect-size for the pattern of particular idiosyncratic construals that transcend the situation.

Table 5.2.1.D.
Within-Person Consistencies of Aggregated Residuals of Construal, by Study.

<table>
<thead>
<tr>
<th></th>
<th>Video r</th>
<th>TAT r</th>
<th>Lab r</th>
<th>Random Effects $t_{(2)}$</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>.455</td>
<td>.533</td>
<td>.316</td>
<td>6.85</td>
<td>.01</td>
</tr>
<tr>
<td>Women</td>
<td>.461</td>
<td>.507</td>
<td>.302</td>
<td>6.82</td>
<td>.01</td>
</tr>
<tr>
<td>Men</td>
<td>.458</td>
<td>.542</td>
<td>.334</td>
<td>7.36</td>
<td>.009</td>
</tr>
</tbody>
</table>

As seen in Table 5.2.1.D., when construal is indexed by aggregated residuals from a linear profile regression, participants appear to have a more similar levels of stability in their degree of distinctiveness of construal across situations. Finally, in Table 5.2.1.E. we
see the consistencies of within-person construal when construal is indexed by the median of absolute deviations.

Table 5.2.1E.

Within-Person Consistencies of Median Absolute Deviations of Construal, by Study.

<table>
<thead>
<tr>
<th></th>
<th>Video r</th>
<th>TAT r</th>
<th>Lab r</th>
<th>Random Effects $t_{(2)}$</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>.464</td>
<td>.488</td>
<td>.216</td>
<td>4.48</td>
<td>.023</td>
</tr>
<tr>
<td>Women</td>
<td>.404</td>
<td>.485</td>
<td>.197</td>
<td>4.22</td>
<td>.026</td>
</tr>
<tr>
<td>Men</td>
<td>.630</td>
<td>.522</td>
<td>.242</td>
<td>4.02</td>
<td>.028</td>
</tr>
</tbody>
</table>

Overall, participants appear to have a remarkable level of stability in their degree of distinctiveness of construal across situations, and this finding is replicated across three separate studies. Not only that, but hypothesis 2.2 in each study demonstrated that these levels of stability are higher than an empirically-calculated baseline. In all, the empirical baseline consistencies in construal are remarkably close to zero. This verification lends even more support to the consistency values found in sections 2.1 throughout these three studies.

When combining these findings in parallel in section 5.2, the pattern that became apparent in Table 5.2.1.A. appears to continue throughout the data, across the different measures and studies. Men appear to be more consistent in their degree of distinctive construal across different situations. If they see things normatively in one situation, they tend to see things normatively in another. Women, on the other hand, tend to be somewhat lower on this dimension, showing more flexibility in how normatively they perceive a situation.
H3: Differences in individuals’ distinctiveness of construal are systematically related to personality.

Since the CAQ is made up of 100 items, I summarized correlation findings using randomization procedures to look at a set of correlations at once. Additionally this allows me to be more confident in the p-values given that it is not based on assumptions of normality or independence among findings. Conducting these analyses for each of the studies produced thirteen different tables. Across each of the three studies, comparing the CAQ to the various measures of distinctiveness of construal via randomization test yielded significant results in twelve of the thirteen comparisons. This consistency lends credence to the idea that construal is systematically related to personality.

H4: How does personality relate to unique perceptions of situations?

H4.1 CAQ correlates of distinctiveness of construal

The remaining question is whether the same personality traits predict distinctiveness of construal across all three studies. Now that the data have been analyzed in each of the three studies, I can take the pattern of correlates from each of these studies and correlate them. This will allow me to assess, with a degree of consistency, the pattern of the relationship between personality and construal across a variety of types of situations.

Though the pattern is not entirely stable for all the measures of construal, there are some consistent indicators across the three studies. This is enough evidence to suggest that a general abnormality of perception is systematically related to specific personality variables. Those that are most consistently related to construal include “Shows
condescending behavior in relations with others”, “Is guileful and deceitful, manipulative, opportunistic”, “Feels cheated and victimized by life; self-pitying”, “Is unpredictable and changeable in behavior and attitudes,” and “Is power oriented; values power in self and others” among others that suggest a wary, negative general outlook among those who are most prone to distinctive construal.

Table 5.4.1.

Intercorrelations Across Three Studies Among CAQ Correlation Profiles with Distinctiveness of Construal.

<table>
<thead>
<tr>
<th>Method A</th>
<th>TAT</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video</td>
<td>0.200 [-.009, .329] †</td>
<td>0.210 [.002, 401]*</td>
</tr>
<tr>
<td>TAT</td>
<td>-</td>
<td>0.398 [.207, .560]***</td>
</tr>
</tbody>
</table>

Method B

| Video | 0.116 [-.095, .317] | 0.091 [-.120, .294] |
| TAT | - | 0.321 [.121, .496]** |

Method D

| Video | 0.254 [.048, .439]* | 0.263 [.058, .447]* |
| TAT | - | 0.335 [.136, .508]** |

Method E

| Video | 0.102 [-.109, .304] | 0.098 [-.113, .300] |
| TAT | - | 0.191 [-.018, .384] † |

*Note: 95% confidence intervals in brackets. *** = p < .001, ** = p < .01, * = p < .05, † = p < .10.*
Indeed this might even be a byproduct of having a high propensity towards distinctiveness of construal, a result of not seeing the world the way others do and being consistently at odds with the environment. Or perhaps it is the other way around, or a synergistic effect. Only studies of the development of personality and the trait of distinctiveness of construal could begin to answer this question.

Those CAQ items that were most consistently related to normativity include “Is socially perceptive of a wide range of interpersonal cues”, “Responds to humor. Appreciates humor”, “Behaves in a sympathetic or considerate manner,” and “Engages in personal fantasy and daydreams, fictional speculations”, along with the less desirable items “Tends toward over-control of needs and impulses”, “Reluctant to commit self to any definite course of action; tends to delay or avoid action,” suggesting that perhaps normativity in construal is not the product of conformity and social concern alone, but also of having an open mind.

H4.2 Correlates of distinctiveness of construal with self-rated Big-Five Inventory.

By placing the findings from each of the three studies together in Table 5.4.2, we can see consistency in the findings for extraversion in particular.

Openness to experience also appears as a relatively stable negative relationship to distinctiveness of construal, perhaps suggesting that those who tend to construe situations also tend to be set in their ways, unwilling to entertain any perspective other than the one they already hold. This is consistent with findings in hypothesis 4.1 throughout the three studies, which reveal specific CAQ personality traits that are relevant to openness as being relevant to construal in the same manner.
Table 5.4.2.

Correlations between Distinctiveness of Construal and Self-Rated Big-Five Personality, Combined Across Three Studies.

<table>
<thead>
<tr>
<th>Big-5 item</th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraversion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video</td>
<td>0.165 **</td>
<td>0.134 *</td>
<td>0.121 *</td>
<td>0.107 *</td>
</tr>
<tr>
<td>TAT</td>
<td>0.096 **</td>
<td>0.063 †</td>
<td>0.063 †</td>
<td>0.008</td>
</tr>
<tr>
<td>Lab</td>
<td>0.088 **</td>
<td>0.059 †</td>
<td>0.091 **</td>
<td>0.121 ***</td>
</tr>
<tr>
<td>Agreeableness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video</td>
<td>-0.023</td>
<td>-0.028</td>
<td>-0.042</td>
<td>-0.025</td>
</tr>
<tr>
<td>TAT</td>
<td>-0.025</td>
<td>-0.048</td>
<td>-0.009</td>
<td>-0.019</td>
</tr>
<tr>
<td>Lab</td>
<td>0.005</td>
<td>-0.099 **</td>
<td>-0.017</td>
<td>-0.086 *</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video</td>
<td>0.027</td>
<td>0.019</td>
<td>0.029</td>
<td>0.052</td>
</tr>
<tr>
<td>TAT</td>
<td>-0.138 ***</td>
<td>-0.148 ***</td>
<td>-0.058 †</td>
<td>-0.106</td>
</tr>
<tr>
<td>Lab</td>
<td>0.049</td>
<td>0.018</td>
<td>0.029</td>
<td>0.020</td>
</tr>
<tr>
<td>Openness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video</td>
<td>-0.023</td>
<td>0.014</td>
<td>0.054</td>
<td>0.035</td>
</tr>
<tr>
<td>TAT</td>
<td>-0.117 **</td>
<td>-0.128 ***</td>
<td>-0.099 *</td>
<td>-0.072 †</td>
</tr>
<tr>
<td>Lab</td>
<td>-0.056 †</td>
<td>-0.031</td>
<td>-0.067 *</td>
<td>-0.042</td>
</tr>
<tr>
<td>Neuroticism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video</td>
<td>0.019</td>
<td>0.027</td>
<td>0.021</td>
<td>-0.037</td>
</tr>
<tr>
<td>TAT</td>
<td>-0.062 †</td>
<td>-0.061 †</td>
<td>-0.063 †</td>
<td>-0.032</td>
</tr>
<tr>
<td>Lab</td>
<td>0.038</td>
<td>0.103 **</td>
<td>0.052 †</td>
<td>0.083 *</td>
</tr>
</tbody>
</table>

Note. Correlations are calculated by situation, then averaged. p-values determined via randomization test. *** = p < .001, ** = p < .01, * = p < .05, † = p < .10.
H4.3 Correlates of Distinctiveness of Construal with Self-Rated Beck Depression Inventory.

For the final analyses in this dissertation I will compare the findings about depression’s relationship to distinctiveness of construal.

Table 5.4.3.

Correlations Between Distinctiveness of Construal and Self-Rated Beck Depression Inventory, Combined Across Two Studies.

<table>
<thead>
<tr>
<th>Construal Method</th>
<th>Video r</th>
<th>Lab r</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.097 *</td>
<td>0.063 †</td>
</tr>
<tr>
<td>B</td>
<td>0.098 †</td>
<td>0.081 *</td>
</tr>
<tr>
<td>B2</td>
<td>-</td>
<td>0.135 ***</td>
</tr>
<tr>
<td>D</td>
<td>0.081</td>
<td>0.076 *</td>
</tr>
<tr>
<td>E</td>
<td>0.097 †</td>
<td>0.057 †</td>
</tr>
</tbody>
</table>

Note. Correlations are calculated by situation, then averaged. p-values determined via randomization test. **$\approx p < .001$, **$\approx p < .01$, *$\approx p < .05$, †$\approx p < .10$.

Though these correlations are small, they appear close to being reliable, demonstrating a small, positive relationship between indices of overall construal and depression scores. These findings are consistent between two studies, lending further strength to the relationship. This finding is consistent with similar findings about psychological wellbeing and construal in reports of everyday situations (Sherman, Nave, & Funder, 2013) which suggest that there are undesirable psychological wellbeing correlates of degree of discrepancy between self and observer’s ratings.
General Discussion

Amazingly, even in these limited situations, people construe the world around them, and they do it consistently. Not only this, but these reliable degrees of distinctiveness of construal are systematically related to their personalities in a number of ways.

While the aforementioned relationships between personality and unique perceptions of situations are relatively small compared to other effect sizes in personality and social psychological research, it would be a mistake to assume the relatively small effect sizes of the relationship between personality and unique perceptions of situations are unimportant. The context in which the effect occurs is a necessary frame of reference when considering the importance of any effect size. In this case, it is important to recognize that the relationship between personality and unique perceptions of situations seen here, which tends to hover around $r = .16$, is for individual situations or studies. In light of the fact that people face many different situations each day, the accumulation of personality’s effect on unique perceptions is likely quite large. These effects have to emerge above a necessary common perception of reality in order for us to function in day-to-day life. Lay experience suggests that this makes sense. In our everyday lives, people are not constantly entrenched in disagreements about their social worlds, but subtle differences in perception are apparent and consistent over time. While these relationships between personality and distinctiveness of construals of situations may be relatively small for a single situation, over the course of days, months, years, and lifetimes, the cumulative effects may become quite large.
My findings also counter some of the theory of researchers who suggest that people’s idiosyncracies are small enough or unique enough to only be apparent in individual if-then instances (e.g. CAPS: Shoda & Mischel, 1995). After conducting these three studies, I would conclude that if the focus is too narrow, the evidence of consistency of construal is going to be weak. Indeed, when the individual item residuals were correlated in hypothesis 2.2E it was clear that the specific items construed are, in part, dependent upon the situation. However, when a broader perspective is taken, such as the one taken throughout this dissertation, it is clear that there is a quantifiable and stable trait of distinctiveness of construal upon which individuals differ.

Limitations, Implications, and Future Directions

One major limitation of these data are that they have all been gathered from university students in the U.S. Though having data from two different universities on opposite ends of the country is better than one, it is still very limited in population. As with the whole of our science, this topic needs more representative samples drawn from populations outside of the higher education framework.

Another useful future direction would be to expand the contexts of the situations studied. For the most part, these studies include only stimuli that are interpersonal and low in intensity. Perhaps our most important construals happen in more exciting moments, where threats and opportunities are at their greatest.

The present findings have a number of implications for personality and social psychology. First, this study demonstrates the efficacy of the RSQ in quantifying both individuals’ perceptions of situations and consensual views to which these perceptions

119
can be compared. The beauty of this measure is that it is able to measure and compare a wide range of psychological properties. This tool can be applied to situations in real-world contexts where construal may have important outcomes. Therapists might be interested in finding ways to assess how much systematic discrepancy there is in how a patient perceives the situations they are experiencing, and begin to help that patient work towards a healthier world-view. Further research might explore template-matching approaches (Bem & Funder, 1978), assessing which particular construals might suit particular locations or vocations, allowing evaluations of person-situation fit in applied settings. Employers who are hiring for high-risk positions might want to understand what manner of construal might be most effective for their most successful employees. Though in this instance the goal was to assess distinctiveness of construal in an exploratory fashion, it is entirely possible that one’s hypotheses would not concern the full set of items if one was testing a particular theory, which is another useful feature of the RSQ. Alternatively one might be interested in a particular set of situations and wish to see which items were construed particularly, such as those that exhibit the least agreement, and whether that construal is related to personality traits. The application potential for this technique is large indeed.

Conclusion

More than fifty years ago Gordon Allport implied that our own personalities shape the way we view the world in which we live. Even further back, Murray (1938) hypothesized that every situation we describe is made up of the situation as it is, and the situation as we describe it to be. These are old ideas, long assumed but hardly tested.
What little previous research that exists has focused on how specific traits such as hostility (Dodge, 1993; Dodge & Frame, 1982) or rejection sensitivity (Downey & Feldman, 1996; Downey, Freitas, Michaelis & Khouri, 1998) relate to our perceptions of situations, with only a few recent steps into areas that include broader perceptions of situations (Sherman, Nave, & Funder, 2013; Serfass & Sherman, 2013). By taking this question on directly, this dissertation has demonstrated that we can, in fact, quantify a person’s distinctiveness of construal of situations. Additionally, this distinctiveness of construal’s stability has been demonstrated across multiple situations and persons. Even beyond that, its relationships to individual difference variables has been established and replicated, showing that there are important personality and mental health correlates of one’s tendencies towards distinctive construals of situations.

In sum, not only have I found support for Allport and Murray’s theories, but I have demonstrated that this construal can be captured, has meaningful and consistent correlates, and is worthy of further study and application.
References

Reconceptualizing situations, dispositions, dynamics, and invariance in personality

psychological perspective. A review. *European Journal of Personality, 13*, 337-
360.

Todd, E. R., & Funder, D. C. (2011) *Quantifying situations, the people in them, and their
behaviors*. Unpublished manuscript.

Bonarius, G.L. Van Heck, & N. Smid (Eds.), *Personality Psychology in Europe:
Theoretical and Empirical Developments* (pp. 149-164). Lisse: Swets and
Zeitlinger.

University of California, Riverside.

Cambridge Handbook of Personality. Cambridge: Cambridge University Press.

practice of psychological assessment by clinical psychologists. *Professional

Appendix A

Riverside Situational Q-Sort (version 3.15) Full Item Content

1. Situation is potentially enjoyable.
2. Situation is complex.
3. A job needs to be done.
4. Someone is trying to impress P.
5. Someone is trying to convince P of something.
6. P is counted on to do something.
7. Talking is permitted.
8. Talking is expected or demanded.
9. P is being asked for something.
10. Someone needs help.
11. Minor details are important.
12. Situation evokes values concerning lifestyles or politics.
13. Affords an opportunity to demonstrate intellectual capacity (e.g., an intellectual discussion, a complex problem needs to be solved).
14. Situation is uncertain.
15. Another person [present or discussed] is under threat.
16. P is being criticized, directly or indirectly.
17. Someone is attempting to dominate or “boss” P.
18. Situation is playful.
19. Introspection is possible (e.g., the atmosphere allows or encourages reflection upon deeply personal issues).

20. Things are happening quickly [low placement implies things are happening slowly.]

21. Someone (present or discussed) is unhappy or suffering.

22. A reassuring other person is present.

23. P is being blamed for something.

24. A decision needs to be made.

25. Rational thinking is called for.

27. Situation involves competition.

28. Affords an opportunity for P to do things that might make P liked or accepted.

29. Others are present who need or desire reassurance.

30. Situation entails frustration (e.g., a goal is blocked).

31. Physical attractiveness (of P) is relevant.

32. It is important for P to make a good impression.

33. Situation would make some people tense and upset.

34. Situation includes one or more small annoyances.

35. Situation might evoke warmth or compassion.

36. A person or activity could be undermined or sabotaged.

37. It is possible for P to deceive someone.

38. Someone else in this situation (other than P) might be deceitful.
39. Situation may cause feelings of hostility.

40. People are disagreeing about something.

41. Affords an opportunity to express unusual ideas or points of view.

42. Situation contains physical threats.

43. Situation contains emotional threats.

44. Situation raises moral or ethical issues (e.g., a moral dilemma is present; a discussion of morality).

45. A quick decision or quick action is called for.

46. Situation allows a free range of emotional expression.

47. Others present might have conflicting or hidden motives.

48. Situation entails or could entail stress or trauma.

49. Affords an opportunity to ruminate, daydream or fantasize.

50. Situation has potential to arouse guilt (in P).

51. Close personal relationships are present or have the potential to develop.

52. Someone (other than P) is counted on to do something.

53. Situation includes intellectual or cognitive stimuli (e.g., books, lectures, intellectual conversation).

54. Assertiveness is required to accomplish a goal.

55. Situation includes potential for immediate gratification of desires (e.g., food, shopping, sexual opportunities).

56. Social interaction is possible.
57. Situation is humorous or potentially humorous (if one finds that sort of thing funny).

58. P is the focus of attention.

59. Situation includes sensuous stimuli (e.g., touch, taste, smell, physical contact).

60. Situation is relevant to P’s bodily health (e.g., possibility of illness; a medical visit).

61. Success in this situation requires self-insight.

62. P controls resources needed by others.

63. Behavior of others presents a wide range of interpersonal cues.

64. Situation includes behavioral limits (that might or might not be challenged).

65. Situation includes aesthetic stimuli (e.g., art, music, drama, beauty).

66. Situation is potentially anxiety-inducing.

67. Situation includes explicit or implicit demands on P.

68. Affords an opportunity to express or demonstrate ambition.

69. Situation raises issues of personal adequacy (e.g., includes demands or expectations that P might not be able to meet).

70. Situation includes stimuli that could be construed sexually.

71. Situational demands are rapidly shifting.

72. P is being abused or victimized.

73. Members of the opposite sex are present.

74. Potential romantic partners (for P) are present.
75. Situation has potential to arouse internal conflicts and related anxiety (e.g., ambivalence, approach-avoidance, competing motivations).

76. Situation is basically simple and clear-cut.

77. Affords an opportunity to express one’s charm.

78. Situation involves social comparison.

79. Situation raises issues of power (for P or others present).

80. Affords an opportunity to express masculinity.

81. Others may need or are requesting advice from P.

82. P’s independence and autonomy is questioned or threatened.

83. Situation is potentially emotionally arousing.

84. Affords an opportunity for demonstrating verbal fluency (e.g., a debate, a monologue, an active conversation).

85. People who are present occupy different social roles or levels of status.

86. P is being pressured to conform to the actions of others.

87. Success requires cooperation.

88. P is being complimented or praised.

89. Affords an opportunity to express femininity.

Note. P refers to the Person in the situation.
Appendix B

Stimuli for Study 1

Figure B.1. Still frame from "Flirting" video

Figure B.2. Still frame from "Workplace" video.
Appendix C

Stimuli for Study 2

Figure C.1. The “Field” TAT image.

Figure C.2. The “Window” TAT image.
Appendix D

R code and functions developed specifically for this dissertation.

Because of the nature of q-sort data, traditional statistical analysis programs are often not capable of completing the analyses needed for questions like those asked in this dissertation. However, the R statistical package allows unique programming to be done to suit these questions. Since these specialized programs aren’t available elsewhere, however, I will provide the ones used in this dissertation here.

Though many of the analyses use base functions included in R, or functions written by Ryne Sherman, re: Sherman and Funder (2009), there are several completely new functions written for this dissertation. For the data in study 3, an issue of non-independence arises for two reasons. In addition to the multiple situational experiences each individual had, three people interacted within a group and contributed to each other’s data by serving as the outside perspectives on the situation. New functions were needed to address each of these issues and more. The R code functions are as follows:

```r
#########################################################
# Functions developed and adapted by Elysia R. Todd
# for a doctoral dissertation June 2014
#########################################################

#Non-independence Resamplers

#This function gathers samples of the data in independent randomly-sampled thirds
indep.trio <- function (groupingvar, set) {
  groupmin = min(groupingvar, na.rm = T)
  groupmax = max(groupingvar, na.rm = T)
  ngroups = length(unique(groupingvar))
  ncols = ncol(set)
  samp.mat = data.frame(matrix(, , ncol = ncols))
  for (i in 1:ngroups) {
    samp.mat[i, ] = set[which(groupingvar == groupmin + (i - 1) * (groupmax - groupmin) / ngroups), ]
  }
  return(samp.mat)
}
```

139
colnames(samp.mat) <- colnames(set)
for (i in groupmin:groupmax) {
 #print(head(subset(groupeddata, groupeddata$groupingvar == i)[
 (sample(1:3,1)),1]))
 blob = as.matrix(head(subset(set, groupingvar == i)[
 (sample(1:3,1)),1]))
 samp.mat[i,] <- blob
 #print(samp.mat)
}
fin.samp = subset(samp.mat,complete.cases(samp.mat)==T)
return(fin.samp)
}

###
Same as before, but maintains original structure
###
indre.trio <- function (groupingvar, set, ssid) {
 ncols = ncol(set)
 n = length(ssid)
 selector = c(1:n)
 glob <- cbind(ssid,set,groupingvar,selector)
 glober <- glob[complete.cases(glob) == T,]
 randomer = c(1,NA,NA)
 ordrand = sample(1:3,3, replace = F)
 randed = c()
 samp.mat = data.frame(matrix(, nrow = n, ncol = ncols+1))
 colnames(samp.mat) <- colnames(set)
 for(j in glober$groupingvar){
 ordrand = sample(1:3,3, replace = F)
 randed <- randomer[ordrand]
 flagger = c("blank")
 ifelse(complete.cases(glober[glober[,ncol(glober)-1]]==j,(ncol(glober)-1))[[1]]==T,
 glober[glober[,ncol(glober)-1]]==j,(ncol(glober))]<-
 randed[1:length(glober[glober[,ncol(glober)-1]]==j,(ncol(glober)-1))]],flagger<-
 c("Fail"))
 }
 for (i in 1:nrow(glober)) {
 ifelse(complete.cases(glober[i,ncol(glober)])==T, "Word", glober[i,-1]<-NA)
 }
 return(glober)
}
This function gathers independently
sampled contributions to a mean profile
#***

idtrio.mprof <- function(groupingvar, set, samplings = 500){
 print("note, even 100 samplings takes more than five minutes")
 ncols = ncol(set)
 sampmeans = data.frame(matrix(, , ncol = ncols))
 colnames(sampmeans) <- colnames(set)
 for (i in 1:samplings){
 sampmeans[i,] <- colMeans(indep.trio(groupingvar,set))
 }
 return(t(t(colMeans(sampmeans))))
}
#***

Collects an independently-sampled subset
of the data from within trios then
calculates and returns the
standard-deviations
#***

idtrio.sd <- function(groupingvar, set, samplings = 500){
 print("note, even 100 samplings takes more than five minutes")
 ncols = ncol(set)
 sampmeans = data.frame(matrix(, , ncol = ncols))
 colnames(sampmeans) <- colnames(set)
 for (i in 1:samplings){
 sampmeans[i,] <- colMeans(indep.trio(groupingvar,set))
 }
 return(t(t(sd(sampmeans))))
}
#***

This function takes an x vector and correlates it with a set of y variables
It does this by randomly sampling within one member of a trio of
nonindependent participants. Then calculating the correlations
Then repeating the process
#***
indep.triocor <- function(ssid, groupingvar, x, yset, samplings = 1000, sims = 10000) {
 groupmin = min(groupingvar, na.rm = T)
 groupmax = max(groupingvar, na.rm = T)
 groupeddata = data.frame(cbind(groupingvar, x, yset, ssid))
 ngroups = length(unique(groupingvar))

 ncols = ncol(groupeddata)

 samp.mat = data.frame(matrix(,, nrow = nrow(ssid), ncol = ncols(groupeddata)))
 colnames(samp.mat) <- colnames(groupeddata)
 results.mat = data.frame(matrix(,, nrow = samplings, ncol = ncols(yset)))
 colnames(results.mat) <- colnames(yset)

 samp.distr = c()
 samp.distsig = c()
 samp.distrsim = data.frame(matrix(,, ncol = sims))
 samp.distsigsim = data.frame(matrix(,, ncol = sims))
 results.mat = matrix(,, nrow = ncol(yset))

 # Set criticals
 critT = qt(.025, ngroups-2, lower.tail=FALSE) # Find the critical t (assumes alpha = .05) for each test
 critr = sqrt(critT^2 / (critT^2 + ngroups - 2)) # Find the critical r value

 # This part starts the sampling
 for (j in 1:samplings){
 # This part is the independent sampling, pulling the data from only one member of the trio
 # Returning a matrix of independent data
 samp.mat<- indrev.trio(groupingvar, cbind(x, yset, ssid))
 results.mat[j,] <- as.matrix(unlist(cor(samp.mat[,3], samp.mat[,4:(ncol(samp.mat)-2)], use = "pairwise")))

 # This part subsequently starts the randomization test within each completed sampling
 for (k in 1:sims) {
 samp.matcomp <- subset(samp.mat, complete.cases(samp.mat)==T)
 rand.order = sample(ngroups, ngroups, replace=FALSE) # Generate a sample of random orders
 cor.mat = (cor(samp.matcomp[rand.order,3], samp.matcomp[,4:(ncol(samp.mat)-2)]))
 samp.distr[j,k] = mean(abs(cor.mat)) # Store the absolute average simulated r's in samp.distr
 }
}
samp.distsig[j,k] = sum(abs(cor.mat) >= critr) #Store the number significant in samp.distsig

print("Distribution of independently-sampled correlations")
print(results.mat)
print("Average of independent samples")
print(colMeans(results.mat, na.rm = T))

#####################################
Independent Intercorrelations
#####################################

indep.intercors <- function(set,groupingvar,sims = 3){
 ncols = ncol(set)
 ngrp = length(unique(groupingvar))
 intercor = matrix(nrow = ngrp, ncol = ngrp)
 intercor2 = matrix(nrow = ngrp, ncol = ngrp)
 avintercor = c()
 setsamp = matrix(nrow = ngrp, ncol = ngrp)
 distintercors = c()
 for(j in 1:sims){
 setsamp <- indep.trio(groupingvar, set)
 intercor <- cor(t(setsamp), t(setsamp), use = "pairwise")
 intercor2 <- intercor
 intercor2[lower.tri(intercor2, diag = T)] <- NA
 avintercor <-round(mean(intercor2, na.rm = T),3)
 distintercors[j] <- avintercor
 }
 return(distintercors)
}

##
Basic Hypothesis Functions
##

Construal method B
ind.construalyness <- function (groupingvar, set, ssid, sims = 30){
 lob = cbind(ssid, groupingvar, set)
 flob = subset(lob,complete.cases(lob)==T)
n = nrow(flob)
result.set = matrix(nrow=n, ncol=(sims+1))
result.set[,1] <- flob[,1]
out = c()
for(i in 2:(sims+1)){
 indmat = matrix(nrow=n, ncol=ncol(flob))
 indset = matrix(nrow=n, ncol=ncol(set))
 indmat <- indrev.trio(groupingvar, set, ssid)
 indset <- indmat[,2:(ncol(set)+1)]
 indset.scaled <- t(t(rowMeans(abs(scale2(indset)))))
 result.set[,i] <- t(t(rowMeans(abs(indset.scaled))))
}
print(round(result.set,4))
out = data.frame(cbind(t(t(round(rowMeans(result.set[,1], na.rm = T),4))),indmat[,1]))
colnames(out) <- c("ness", "ssid")
return(out)

Construalyness within trios
trio.construalyness <- function (groupingvar, set, ssid, ssex){
n = nrow(set)
ness = c(1:n)
lob = cbind(ssid, groupingvar, ness, ssex, set)
flob = subset(lob,complete.cases(lob)==T)
out = matrix(nrow = n, ncol = 2)
print(flob)
for(j in flob$groupingvar){
 # print(j)
 # print(t(t(flob[flob[,2]==j,3])))
 #
}
out <- data.frame(cbind(round(t(t(flob[,3])),4),flob[,c(1,4)]))
colnames(out) <- c("ness", "ssid","ssex")
return(out)
}

###
Construal method C
###

###
Returns residuals from a profile-based
method of calculating a linear regression
using a set of rater values that correspond
to each individual's profile

```r
lm.setresids <- function(self.set, rater.set) {
  n = nrow(self.set)
  outsie = matrix(nrow = n, ncol = ncol(self.set))
  for(i in 1:nrow(self.set)) {
    nlob <- unlist(lm(unlist(self.set[i,]) ~ unlist(rater.set[i,]))$residuals)
    outsie[i,] <- nlob
  }
  return(outsie)
}
```

Same as before with one change: Including
the Subject ID to re-link data afterwards

```r
lm.setresidsid <- function(self.set, rater.set, ssid) {
  n = nrow(self.set)
  outsie = matrix(nrow = n, ncol = ncol(self.set))
  out = matrix(nrow = n, ncol = (1 + ncol(self.set)))
  for(i in 1:nrow(self.set)) {
    nlob <- unlist(lm(unlist(self.set[i,]) ~ unlist(rater.set[i,]))$residuals)
    outsie[i,] <- nlob
  }
  out <- cbind(ssid, outsie)
  return(out)
}
```

Construal method C/D

```r
lm.setmatch <- function(self.set, rater.set) {
  n = nrow(self.set)
  out = c()
```

Returns r-squared value from a profile-based
method of calculating a linear regression
using a set of rater values that correspond
to each individual's profile

```r
```
for(i in 1:n) {
 glarb <- unlist(summary(lm(unlist(self.set[i,]) ~ unlist(rater.set[i,]))))
 out[i] <- glarb$r.squared
}
out.shake <- round(unlist(t(t(out))),3)
return(out.shake)

Construal method E - Median Absolute Deviation

madprof <- function(dataset){
 n = nrow(dataset)
 cols = ncol(dataset)
 meanprofile = data.frame(matrix(, , ncol = cols))
 meandifs = c()
 madscore = c()
 for (i in 1:n){
 meanprofile = colMeans(dataset[-i,], na.rm = T)
 meandifs = (dataset[-i,] - meanprofile)
 madscore[i] <- median(abs(t(t(meandifs))))
 }
 return(t(t(madscore)))
}

Like before but takes two set, one of originals, one of associated means
madset <- function(set1,set2){
 n = nrow(set1)
 cols = ncol(set1)
 meanprofile = matrix(, , ncol = cols)
 meandifs = c()
 madscore = c()
 for (i in 1:n){
 meanprofile = set2[i,]
 meandifs = (set1[i,]-meanprofile)
 madscore[i] <- median(abs(t(t(meandifs))))
 }
 return(t(t(madscore)))
}

Like before but takes two set, one of originals, one of associated means.
Also including SSID for merging differently-sized sets

```r
madset.id <- function(set1, set2, ssid)
{
cols = ncol(set1)
meanprofile = matrix(, , ncol = cols)
meandifs = c()
madscore = c()
combo = cbind(set1, set2, ssid)
cleanset = subset(combo, complete.cases(combo) == T)
n = nrow(cleanset)
clean1 = cleanset[,1:ncol(set1)]
clean2 = cleanset[, (ncol(set1)+1):(ncol(set1)+ncol(set2))]
cleanid = cleanset[, ncol(cleanset)]
for (i in 1:n){
  meanprofile = clean2[i,]
  meandifs = (clean1[i,]-meanprofile)
  madscore[i] <- median(abs(t(t(meandifs))))
}
out <- cbind(cleanid, t(t(madscore)))
colnames(out) <- c("ssid","mad")
return(out)
}
```

Against the median profile

```r
madprof2 <- function(dataset){
n = nrow(dataset)
cols = ncol(dataset)
medprofile = data.frame(matrix(, , ncol = cols))
madscore = c()
for (i in 1:n){
  for (j in 1:cols){
    medprofile[i,j] = median(dataset[-i,j], na.rm = T)
  }
  madscore[i] <- median(abs((dataset[i,]-medprofile[i,])))
}
return(t(t(madscore)))
}
```

Construal method W - within person SS

```r
winss <- function(dataset){
n = nrow(dataset)
```
cols = ncol(dataset)
meanprofile = matrix(, , ncol = cols)
ssscore = c()

for (i in 1:n){
 meanprofile = colMeans(dataset[-i,], na.rm = T)
 #print(meanprofile)
 #print(((dataset[i,] - meanprofile)^2))
 ssscore[i] <- sum(((dataset[i,] - meanprofile)^2))
}
return(t(t(ssscore)))
}

Meta-Analytic combination functions

This function was designed to meta-analytically combine
the correlations of X and Y when the data come from
non-independent samples. It computes the correlation
for each of the 3 X-Y pairs and performs a randomization
test to determine the probability of observing such a
result under the null hypothesis of r = 0. In addition,
a histogram of the randomized results may be displayed
by the hist=TRUE option.
Base function created by Ryne Sherman
Edited to suit these data

cor.comb2E = function(y1, y2, x1, x2, sims=1000, rnd=5) {
 library(psych)
 sim.dist = matrix(nrow = max(c(ncol(x1),ncol(y1))), ncol = sims)
 n1 = nrow(y1)
 n2 = nrow(y2)

 Zr1 = fisherz(cor(y1,x1, use = "pairwise"))
 Zr2 = fisherz(cor(y2,x2, use = "pairwise"))
 comb = fisherz2r((Zr1 + Zr2) / 2)

 for (i in 1:sims) {
 order1 = sample(n1, n1, replace=FALSE) #Generate a sample of random orders
 order2 = sample(n2, n2, replace=FALSE)
sim1 = fisherz(cor(y1[order1,],x1, use = "pairwise"))
sim2 = fisherz(cor(y2[order2,],x2, use = "pairwise"))
SimAvg = fisherz2r((sim1 + sim2) / 2)
sim.dist[,i] = SimAvg

print(quantile(sim.dist,.90, na.rm = T))
print(quantile(sim.dist,.95, na.rm = T))
print(quantile(sim.dist,.99, na.rm = T))
print(quantile(sim.dist,.999, na.rm = T))
print(round(t(comb),4))

##
This function was designed to meta-analytically combine
the correlations of X and Y when the data come from
non-independent samples. It computes the correlation
for each of the 3 X-Y pairs and performs a randomization
test to determine the probability of observing such a
result under the null hypothesis of r = 0. In addition,
a histogram of the randomized results may be displayed
by the hist=TRUE option.
#Base function created by Ryne Sherman
#Edited to suit these data
##

cor.comb3E = function(y1, y2, y3, x1, x2, x3, sims=1000, rnd=5) {
 library(psych)
 sim.dist = matrix(nrow = max(c(ncol(x1),ncol(y1))), ncol = sims)
 n1 = nrow(y1)
 n2 = nrow(y2)
 n3 = nrow(y3)

 Zr1 = fisherz(cor(y1,x1, use = "pairwise"))
 Zr2 = fisherz(cor(y2,x2, use = "pairwise"))
 Zr3 = fisherz(cor(y3,x3, use = "pairwise"))

 comb = fisherz2r((Zr1 + Zr2 + Zr3) / 3)

 for (i in 1:sims) {
 order1 = sample(n1, n1, replace=FALSE) #Generate a sample of random orders
 order2 = sample(n2, n2, replace=FALSE)
 order3 = sample(n3, n3, replace=FALSE)
 sim1 = fisherz(cor(y1[order1,],x1, use = "pairwise"))
 sim2 = fisherz(cor(y2[order2,],x2, use = "pairwise"))
 }
}

##
#cor.comb3E = function(y1, y2, y3, x1, x2, x3, sims=1000, rnd=5) {
 library(psych)
 sim.dist = matrix(nrow = max(c(ncol(x1),ncol(y1))), ncol = sims)
 for (i in 1:sims) {
 order1 = sample(n1, n1, replace=FALSE)
 order2 = sample(n2, n2, replace=FALSE)
 order3 = sample(n3, n3, replace=FALSE)
 sim1 = fisherz(cor(y1[order1,],x1, use = "pairwise"))
 sim2 = fisherz(cor(y2[order2,],x2, use = "pairwise"))
 }
}
sim3 = fisherz(cor(y3[order3,],x3, use = "pairwise"))
SimAvg = fisherz2r((sim1 + sim2 + sim3) / 3)
sim.dist[i] = SimAvg

print(quantile(sim.dist,.90, na.rm = T))
print(quantile(sim.dist,.95, na.rm = T))
print(quantile(sim.dist,.99, na.rm = T))
print(quantile(sim.dist,.999, na.rm = T))
print(round(t(comb),4))

#For correlating two pairs of set and vector,
#along with a second set and vector
#Then by using fisher's z to r transformations,
#the correlations can be combined.

###
corzip2 = function(y1, y2, xset1, xset2) {
 library(psych)
 n = ncol(xset1)

 Zr1 = matrix(nrow = n, ncol = 1)
 Zr2 = matrix(nrow = n, ncol = 1)

 Zr1 <- (fisherz(cor(y1,xset1, use = "pairwise")))
 Zr2 <- (fisherz(cor(y2,xset2, use = "pairwise")))
 comb = matrix(nrow = n, ncol = 1)
 comb = round(fisherz2r((Zr1 + Zr2) / 2),4)

 return(comb)
}

corzip3 = function(y1, y2, y3, xset1, xset2, xset3) {
 library(psych)
 n = ncol(xset1)

 Zr1 = matrix(nrow = n, ncol = 1)
 Zr2 = matrix(nrow = n, ncol = 1)
 Zr3 = matrix(nrow = n, ncol = 1)

 Zr1 <- fisherz(cor(y1,xset1, use = "pairwise"))

 Zr2 <- fisherz(cor(y2,xset2, use = "pairwise"))
Zr2 <- fisherz(cor(y2,xset2, use = "pairwise"))
Zr3 <- fisherz(cor(y3,xset3, use = "pairwise"))

comb = matrix(nrow = n, ncol = 1)
comb = round(fisherz2r((Zr1 + Zr2 + Zr3) / 3),4)

return(comb)
}

###
Not-me means takes a matrix and calculates the means
from the columns. However, this function calculates
a mean of the matrix for each of n rows
with means not using that n's row's data
###

notmemeans <- function(set){
n.obs = nrow(set)
out = matrix(ncol = ncol(set), nrow = nrow(set))
#colnames(out) <- names(set)
for (i in 1:n.obs) {
 temp <- colMeans(set[-i,, na.rm = T)
 print(is.vector(temp))
 out[i,] = temp
}
 colnames(out) = colnames(set)
return(out)
}

###
H2.2 Intercorrelations Random Baseline
###

Calculates an average intercorrelation among
Three vectors, by randomly sampling the order
To compare unrelated values within the same
Data structure
###

intercorbase <- function(x1,x2,x3,sims = 10000){
nrows = length(x1)
Zr1 = c()
Zr2 = c()
Zr3 = c()
cordist = c()
for(i in 1:sims){
 order1 = sample(nrows, nrows, replace=FALSE)
 order2 = sample(nrows, nrows, replace=FALSE)
 order3 = sample(nrows, nrows, replace=FALSE)
 Zr1 <- fisherz(cor(x1,x2[order1,], use = "pairwise"))
 Zr2 <- fisherz(cor(x2,x3[order2,], use = "pairwise"))
 Zr3 <- fisherz(cor(x1,x3[order3,], use = "pairwise"))
 comb = fisherz2r((Zr1 + Zr2 + Zr3) / 3)
 cordist[i] <- comb
}
return(cordist)
}

##
Same as before but with only two vectors
##

intercorbase2 <- function(x1,x2,sims = 10000){
 nrows = length(x1)
 Zr1 = c()
 Zr2 = c()
cordist = c()
for(i in 1:sims){
 order1 = sample(nrows, nrows, replace=FALSE)
 Zr1 <- fisherz(cor(x1,x2[order1,], use = "pairwise"))
 comb = fisherz2r(Zr1)
 cordist[i] <- comb
}
return(cordist)
}

#Basic q-sort functions

##
revised q.cor function provides only the correlates
This function will compute the correlations between a variable and another set
of variables (e.g. the CAQ). Enter the variable first and the set second.
This function also computes the correlations broken down by gender (you must
specify the gender variable third. By default, it assumes females are coded
as a 1 and males as a 2, but you can simply change that to be whatever

##
you want.
Using a qtpye you can include labels and save time.
Code 1 = CAQ, 2 = RSQ89, 3 = RBQ 68, 4 = rsq88
This function outputs the results in the order of the items

shortq.cor = function(x, set, sex, qtype=0, fem=1, male=2, tails=2, rnd=2, sims=TRUE) {
 qlabs = c(1:ncol(set))
 qlabs <- qlabels(qtype)#Uses outside function
 new.data = data.frame(cbind(sex, x, set))
 Comb.N = nrow(subset(new.data, complete.cases(new.data)))
 female = subset(new.data, sex == fem)
 Fem.N = nrow(subset(female, complete.cases(female)))
 fem.cols = female[,1:2]
 male = subset(new.data, sex == male)
 Male.N = nrow(subset(male, complete.cases(male)))
 male.cols = male[,1:2]
 Ns = cbind(Comb.N, Fem.N, Male.N)
 rownames(Ns) = c("N")
 colnames(Ns) = c("Combined", "Female", "Male")
 comb.cor = data.frame(t(cor(x, set, use="pairwise")))
 names(comb.cor) = c("Combined")
 comb.sig = data.frame(sig.r(abs(comb.cor$Combined), Comb.N, tails))
 names(comb.sig) = c("p.C")
 comb.out = data.frame(cbind(qlabs, comb.out, fem.out, male.out))
 fem.cor = data.frame(t(cor(female$x, fem.cols, use="pairwise")))
 names(fem.cor) = c("Female")
 fem.sig = data.frame(sig.r(abs(fem.cor$Female), Fem.N, tails))
 names(fem.sig) = c("p.F")
 fem.out = data.frame(cbind(qlabs, fem.out, male.out))
 male.cor = data.frame(t(cor(male$x, male.cols, use="pairwise")))
 names(male.cor) = c("Male")
 male.sig = data.frame(sig.r(abs(male.cor$Male), Male.N, tails))
 names(male.sig) = c("p.M")
 male.out = data.frame(cbind(qlabs, comb.out, fem.out, male.out))
 out = data.frame(cbind(qlabs, comb.out, fem.out, male.out))
 print(out)
}

A scale function that is more convenient than the included one
Function courtesy of Ryne Sherman
scale2 <- function(x, center = TRUE, scale = TRUE) {
 x <- data.frame(x)
 miss <- colSums(is.na(x))
 valid <- nrow(x) - miss
 x.means <- colMeans(x, na.rm=T)
 x.sds <- sqrt((apply(x, 2, sd, na.rm=T)^2) * (valid-1) / (valid))

 if(center==T & scale==T) {
 out <- t((t(x) - x.means) / x.sds)
 }
 if(center==T & scale==F) {
 out <- t(t(x) - x.means)
 }
 if(center==F & scale==T) {
 out <- t(t(x) / x.sds)
 warning("Standardizing without centering is unconventional.")
 }
 if(center==F & scale==F) {
 out <- x
 warning("You realize you didn't do anything to your data right?")
 }
 return(out)
}

#Randomization Functions

This function courtesy of Ryne Sherman, with minor adjustments
rand.test2 = function(set1, set2, sims=5000, crit=.95, graph=TRUE, histcol1 = "turquoise", histcol2 = "turquoise", linecol1 = "black", linecol2 = "black") {
 samp.distr=c() #Create a sampling distribution vector for the average absolute r
 samp.distsig=c() #Create a sampling distribution vector for the number statistically significant
 complete = complete.cases(cbind(set1,set2)) # Combine the data sets and keep only complete cases
 set1.set = subset(set1, subset=complete) #Store the "complete" data sets
 set2.set = subset(set2, subset=complete)
 n = nrow(set1.set) #Find the sample size
 critT = qt(.025, n-2, lower.tail=FALSE) # Find the critical t (assumes alpha = .05) for each test
 critr = sqrt(critT^2 / (critT^2 + n - 2)) # Find the critical r value

AbsRObs = mean(abs(cor(set1.set, set2.set))) #Find the Avg. Absolute R Obs
SigObs = sum(abs(cor(set1.set, set2.set)) >= crit) #Find the number significant observed

This part starts the randomization
for (i in 1:sims) {
 rand.order = sample(n, n, replace=FALSE) #Generate a sample of random orders
 cor.mat = cor(set1.set[rand.order,, set2.set) #Get the simulated correlation matrix
 samp.distr[i] = mean(abs(cor.mat)) #Store the absolute average simulated r's in
 samp.distr
 samp.distsig[i] = sum(abs(cor.mat) >= crit) #Store the number sigificant in
 samp.distsig
}

This part computes the statistical properties of the two sampling distributions
SimMeanR = mean(samp.distr) #Compute the mean of the sampling distribution
SimSDr = sd(samp.distr) #And the SD
Crit95r = quantile(samp.distr, crit) #And the critical value (default 95th percentile)
pr = sum(samp.distr >= AbsRObs) / sims #Find the probability of the observed value
SimMeanSig = mean(samp.distsig) #Compute the mean
SimSDsig = sd(samp.distsig) # SD
Crit95Sig = quantile(samp.distsig, crit) # Critical value (default 95th percentile)
pSig = sum(samp.distsig >= SigObs) / sims # Compute a probability value

#Clean up and print the results
out.AbsR = round(rbind(n, AbsRObs, SimMeanR, SimSDr, pr, Crit95r),4)
colnames(out.AbsR) = c("Average Absolute r")
out.Sig = round(rbind(n, SigObs, SimMeanSig, SimSDsig, pSig, Crit95Sig),4)
colnames(out.Sig) = c("Number Significant")
print(out.AbsR)
print(out.Sig)

This part creates histogram graphics of the sampling distributions
if (graph == TRUE) {
 old.par = par(mfrow=c(2,1)) # Sets the PAR command two produce two vertical histograms
 hist(samp.distr, freq=TRUE, col=histcol1, #Create a histogram of the sampling
distribution
 main="Approximate Sampling Distribution \n For Average Absolute r",
xlab = "Average Absolute r", ylab="Frequency",}
```r
xlim = range(min(samp.distr) - .005, AbsRObs + .005) 
abline(v=(Crit95r), col=linecol1)  # Plot the critical value as a line
points(AbsRObs, 0, col=linecol1, pch=19)  # Plot the observed value point
hist(samp.distsig, freq=TRUE, col=histcol2,  # Create a histogram of the sampling
distribution

main="Approximate Sampling Distribution \n For Number Significant",
xlab = "Number Statistically Significant", ylab="Frequency",
xlim= range(min(samp.distsig)-1,(SigObs+1))
abline(v=(Crit95Sig), col=linecol2)  # Plot the critical value as a line
points(SigObs, 0, col=linecol2, pch=19)  # Plot the observed value point

#
# Called by other functions
#
sig.r <- function(r, n, tail) {
crit.p <- c(.05, .025, .005, .0005)
if (tail == 1) crit.p <- crit.p * 2
crit.t <- qt(crit.p, n-2, lower.tail=FALSE)  # assumes that n is a single number
crit.r <- sqrt( crit.t^2 / (crit.t^2 + (n-2)))
cut(r, c(-1, crit.r, 1.01), labels=c("   ", "+ ", "* ", "** ", "***"))
}

# Residual Functions
# Residual Functions

# Uses linear regression predicting a Y-profile from an X-profile
# for each person. Then it stores the residuals from the regression for each
# person in the data set. It names the output variables as "y-name.res"
# in a dataframe.
# Function courtesy of Ryne Sherman
profile.resid <- function(y.set, x.set) {
out <- matrix(nrow=nrow(y.set), ncol=nrow(y.set))
for(i in 1:nrow(y.set)) {
  ifelse(sum(is.na(unlist(y.set[i,]))) > length(unlist(y.set[i,]))*.2,
    out[i,] <- NA,
    out[i,] <- lm(unlist(y.set[i,]) ~ unlist(x.set[i,]))$residuals)
}
out.df <- data.frame(t(out))
names(out.df) <- paste(names(y.set), sep="", ".res")
return(out.df)
```
The same function as above, but this time when the x.set is only a
single vector that you would like to predict each row of y.set with.
Function courtesy of Ryne Sherman

match.resid <- function(y.set, template) {
 out <- matrix(nrow=nrow(y.set), ncol=nrow(y.set))
 for(i in 1:nrow(y.set)) {
 ifelse(sum(is.na(unlist(y.set[i,]))) > length(unlist(y.set[i,]))*.2,
 out[,i] <- NA,
 out[,i] <- lm(unlist(y.set[i,]) ~ unlist(template))$residuals)
 }
 out.df <- data.frame(t(out))
 names(out.df) <- paste(names(y.set), sep="", ".res")
 return(out.df)
}

#

lm.match <- function(y.set, template) {
 out <- matrix(nrow=nrow(y.set),)
 for(i in 1:nrow(y.set)) {
 glarb <- unlist(summary(lm(unlist(y.set[i,]) ~ unlist(template))))
 out[i] <- glarb[105]
 }
 out.shake <- round(unlist(t(t(out))),3)
 return(out.shake)
}

#

###
Misc. functions
###

bluecols <- c("deepskyblue4","steelblue4",
 "skyblue4","skyblue3","steelblue3","steelblue","deepskyblue3","steelblue2","deepskyblue2","deepskyblue1","deepsyblue1","steelblue1","skyblue","skyblue2","lightblue",
 "lightsteelblue","lightblue1", "lightsteelblue1","lightblue2",
 "lightsteelblue2","lightblue3","lightsteelblue3", "lightblue4",
 "lightsteelblue4","skyblue2", "slateblue","slateblue1","slateblue2","slateblue3","slateblue4")
qlabels <- function(qtype){
 qlab = c()
 caqlabs = c("Is critical, skeptical, not easily impressed.",
 "Is a genuinely dependable and responsible person. ",
 "Has a wide range of interests. ",
 "Is a talkative individual. ",
 "Behaves in a giving way to others.",
 "Is fastidious.",
 "Favors conservative values in a variety of areas. ",
 "Appears to have a high degree of intellectual capacity.",
 "Is uncomfortable with uncertainty and complexities. ",
 "Anxiety and tension find outlet in bodily symptoms. ",
 "Is protective of those close to him or her. ",
 "Tends to be self-defensive. ",
 "Is thin skinned.",
 "Genuinely submissive",
 "Is skilled in social techniques of imaginative play, pretending and humor. ",
 "Is introspective and concerned with self as an object.",
 "Behaves in a sympathetic or considerate manner. ",
 "Initiates humor. E.g., makes jokes or tells humorous stories. ",
 "Seeks reassurance from others. ",
 "Has a rapid personal tempo; behaves and acts quickly. ",
 "Arouses nurturant feelings in others. ",
 "Feels a lack of personal meaning in life. ",
 "Extrapunitive; tends to transfer or project blame.",
 "Prides self on being objective, rational. ",
 "Tends toward over-control of needs and impulses.",
 "Is productive; gets things done. ",
 "Shows condescending behavior in relations with others",
 "Tends to arouse liking and acceptance in people. ",
 "Is turned to for advice and reassurance. ",
 "Gives up and withdraws where possible in the face of frustration and adversity. ",
 "Regards self as physically attractive. ",
 "Seems to be aware of the impression he or she makes on others. ",
 "Is calm, relaxed in manner. ",
 "Over-reactive to minor frustrations; irritable. ",
 "Has warmth; has the capacity for close relationships; compassionate. ",
 "Is subtly negativistic; tends to undermine and obstruct or sabotage. ",
 "Is guileful and deceitful, manipulative, opportunistic. Exploits and takes advantage of people and situations. ",
 "Is critical, skeptical, not easily impressed. ",
 "Is a genuinely dependable and responsible person. ",
 "Has a wide range of interests. ",
 "Is a talkative individual. ",
 "Behaves in a giving way to others. ",
 "Is fastidious. ",
 "Favors conservative values in a variety of areas. ",
 "Appears to have a high degree of intellectual capacity. ",
 "Is uncomfortable with uncertainty and complexities. ",
 "Anxiety and tension find outlet in bodily symptoms. ",
 "Is protective of those close to him or her. ",
 "Tends to be self-defensive. ",
 "Is thin skinned. ",
 "Genuinely submissive."
)
"Has hostility toward others. ",
"Thinks and associates ideas in unusual ways; has unconventional thought processes. ",
"Is vulnerable to real or fancied threat, generally fearful. ",
"Is moralistic."
"Reluctant to commit self to any definite course of action; tends to delay or avoid action. ",
"Is facially and/or gesturally expressive. ",
"Evaluates the motivation of others in interpreting situations.",
"Has a brittle ego-defense system.",
"Engages in personal fantasy and daydreams, fictional speculations. ",
"Has a readiness to feel guilt. ",
"Keeps people at a distance; avoids close interpersonal relationships. ",
"Is basically distrustful of people in general; questions their motivations. ",
"Is unpredictable and changeable in behavior and attitudes. ",
"Genuinely values intellectual and cognitive matters.",
"Behaves in an assertive fashion. ",
"Various needs tend toward relatively direct and uncontrolled expression; unable to delay gratification. ",
"Emphasizes being with others; gregarious. Characteristically prefers to be with others rather than alone. ",
"Is self-defeating. Acts in ways which undermine, sabotage, or frustrate his or her own goals and desires. ",
"Responds to humor. Appreciates humor. ",
"Is an interesting, arresting person. ",
"Enjoys sensuous experiences (including touch, taste, smell, physical contact). ",
"Is concerned with own body and the adequacy of its physiological functioning. ",
"Has insight into own motives and behaviors. Knows and understands self well. ",
"Creates and exploits dependency in people.",
"Tends to be rebellious and non-conforming. ",
"Judges self and others in conventional terms like 'popularity', 'the correct thing to do,' social pressures, etc. ",
"Is socially perceptive of a wide range of interpersonal cues. ",
"Characteristically pushes and tries to stretch limits; sees what he/she can get away with. ",
"Enjoys esthetic impressions; is esthetically reactive.".
"Is self-indulgent."
"Is basically anxious. ",
"Is sensitive to anything that can be construed as a demand."
"Behaves in an ethically consistent manner; is consistent with own personal standards. ",
"Has high aspiration level for self. ",
"Concerned with own adequacy as a person, either at conscious or unconscious levels. ",
"Tends to perceive many different contexts in sexual terms; eroticizes situations.",
"Is subjectively unaware of self-concern; feels satisfied with self. ",
"Has a clear cut internally consistent personality.".
"Tends to project his/her own feelings and motivations onto others. ",
"Appears straightforward, forthright, and candid in dealing with others. ",
"Feels cheated and victimized by life; self-pitying. ",
"Tends to ruminate and have persistent, preoccupying thoughts. ",
"Interested in members of the opposite sex." ,
"Is physically attractive; good looking. ",
"Has fluctuating moods. ",
"Able to see to the heart of important problems. ",
"Is cheerful. Low Placement implies unhappiness or depression. ",
"Emphasizes communication through action and non-verbal behavior." ,
"Handles anxiety and conflicts by, in effect, refusing to recognize their presence; repressive or dissociative tendencies." ,
"Interprets basically simple and clear-cut situations in complicated and particularizing ways. ",
"Is personally charming. ",
"Compares self to others." ,
"Is concerned with philosophical problems." ,
"Is power oriented; values power in self and others. ",
"Has social poise and presence; appears socially at ease. ",
"Behaves in a gender congruent style and manner." ,
"Expresses hostile feelings directly. ",
"Tends to proffer advice. Proffer = offer or give. ",
"Values own independence and autonomy." ,
"Is emotionally bland; has flattened affect. ",
"Is verbally fluent; can express ideas well. ",
"Is self-dramatizing; histrionic." ,
"Does not vary roles; relates to everyone in the same way. ")

rsqlabs <- c("Situation is potentially enjoyable." ,
"Situation is complex." ,
"A job needs to be done." ,
"Someone is trying to impress P." ,
"Someone is trying to convince P of something." ,
"P is counted on to do something." ,
"Talking is permitted." ,
"Talking is expected or demanded." ,
"P is being asked for something." ,
"Someone needs help." ,
"Minor details are important." ,
"Situation evokes values concerning lifestyles or politics." ,
"Affords an opportunity to demonstrate intellectual capacity." ,
"Situation is uncertain." ,
"Another person [present or discussed] is under threat." ,
"P is being criticized, directly or indirectly." ,

160
"Someone is attempting to dominate or 'boss' P."
"Situation is playful."
"Introspection is possible."
"Things are happening quickly."
"Someone (present or discussed) is unhappy or suffering."
"A reassuring other person is present."
"P is being blamed for something."
"A decision needs to be made."
"Rational thinking is called for."
"Situation calls for self-restraint."
"Situation involves competition."
"Affords an opportunity for P to do things that might make P liked or accepted."
"Others are present who need or desire reassurance."
"Situation entails frustration."
"Physical attractiveness (of P) is relevant."
"It is important for P to make a good impression."
"Situation would make some people tense and upset."
"Situation includes one or more small annoyances."
"Situation might evoke warmth or compassion."
"A person or activity could be undermined or sabotaged."
"It is possible for P to deceive someone."
"Someone else in this situation (other than P) might be deceitful."
"Situation may cause feelings of hostility."
"People are disagreeing about something."
"Affords an opportunity to express unusual ideas or points of view."
"Situation contains physical threats."
"Situation contains emotional threats."
"Situation raises moral or ethical issues."
"A quick decision or quick action is called for."
"Situation allows a free range of emotional expression."
"Others present might have conflicting or hidden motives."
"Situation entails or could entail stress or trauma."
"Affords an opportunity to ruminate, daydream or fantasize."
"Situation has potential to arouse guilt (in P)."
"Close personal relationships are present or have the potential to develop."
"Someone (other than P) is counted on to do something."
"Situation includes intellectual or cognitive stimuli."
"Assertiveness is required to accomplish a goal."
"Situation includes potential for immediate gratification of desires."
"Social interaction is possible."
"Situation is humorous or potentially humorous."
"P is the focus of attention."
"Situation includes sensuous stimuli."
"Situation is relevant to P's bodily health."
"Success in this situation requires self-insight. ",
"P controls resources needed by others. ",
"Behavior of others presents a wide range of interpersonal cues. ",
"Situation includes behavioral limits. ",
"Situation includes aesthetic stimuli. ",
"Situation is potentially anxiety-inducing. ",
"Situation includes explicit or implicit demands on P. ",
"Affords an opportunity to express or demonstrate ambition. ",
"Situation raises issues of personal adequacy. ",
"Situation includes stimuli that could be construed sexually. ",
"Situational demands are rapidly shifting. ",
"P is being abused or victimized. ",
"Members of the opposite sex are present. ",
"Potential romantic partners (for P) are present. ",
"Situation has potential to arouse internal conflicts and related anxiety. ",
"Situation is basically simple and clear-cut. ",
"Affords an opportunity to express one's charm. ",
"Situation involves social comparison. ",
"Situation raises issues of power (for P or others present). ",
"Affords an opportunity to express masculinity. ",
"Others may need or are requesting advice from P. ",
"P's independence and autonomy is questioned or threatened. ",
"Situation is potentially emotionally arousing. ",
"Affords an opportunity for demonstrating verbal fluency. ",
"People who are present occupy different social roles or levels of status. ",
"P is being pressured to conform to the actions of others. ",
"Success requires cooperation. ",
"P is being complimented or praised. ",
"Affords an opportunity to express femininity.")

rbqlabs <- c("Interviews others (if present). ",
"Volunteers a large amount of information about self. ",
"Seems interested in what someone had to say. ",
"Tries to control the situation. ",
"Dominates the situation. ",
"Appears to be relaxed and comfortable. ",
"Exhibits social skills. ",
"Is reserved and unexpressive. ",
"Laughs frequently. ",
"Smiles frequently. ",
"Is physically animated; moves around. ",
"Seems to like other(s) present. ",
"Exhibits an awkward interpersonal style. ",
"Compares self to other(s). ")
"Shows high enthusiasm and a high energy level."
"Shows a wide range of interests."
"Talks at rather than with other(s)."
"Expresses agreement frequently."
"Expresses criticism. (of anybody or anything)"
"Is talkative."
"Expresses insecurity."
"Show physical signs of tension or anxiety."
"Exhibits a high degree of intelligence"
"Expresses sympathy."
"Initiates humor."
"Seeks reassurance."
"Exhibits condescending behavior."
"Seems likable. (to other(s) present)"
"Seeks advice."
"Appears to regard self as physically attractive."
"Acts irritated."
"Expresses warmth."
"Tries to undermine, sabotage or obstruct."
"Expresses hostility. (no matter toward whom or what)"
"Is unusual or unconventional in appearance."
"Behaves in a fearful or timid manner."
"Is expressive in face, voice or gestures."
"Expresses interest in fantasy or daydreams."
"Expresses guilt."
"Keeps other(s) at a distance; avoids development of any sort of interpersonal relationship."
"Shows interest in intellectual or cognitive matters."
"Seems to enjoy the situation."
"Says or does something interesting."
"Says negative things about self."
"Displays ambition."
"Blames others."
"Expresses self-pity or feelings of victimization."
"Expresses sexual interest."
"Behaves in a cheerful manner."
"Gives up when faced with obstacles."
"Behaves in a stereotypically masculine style or manner."
"Offers advice."
"Speaks fluently and expresses ideas well."
"Emphasizes accomplishments of self, family or acquaintances."
"Behaves in a competitive manner."
" Speaks in a loud voice."
"Speaks sarcastically."
"Makes or approaches physical contact with other(s). ",
"Engages in constant eye contact with someone. ",
"Seems detached from the situation. ",
"Speaks quickly. ",
"Acts playful. ",
"Other(s) seeks advice from P. ",
"Concentrates on or works hard at a task. ",
"Engages in physical activity. ",
"Acts in a self-indulgent manner. ",
"Exhibits physical discomfort or pain. ",
"Behaves in a stereotypically feminine style or manner. ")

rsq88labs <- rsqlabs[1:88]

ifelse(qtype == 1, qlab <- caqlabs,
 ifelse(qtype == 2, qlab <- rsq8labs,
 ifelse(qtype == 3, qlab <- rbqlabs,
 ifelse(qtype == 4, qlab <- rsq88labs, qlab<-NA))))
return(qlab)
Appendix E

Additional figures for Study 1

Figure 2.1.3.A.2. Distributions of Distinctiveness of construal for Video Situations as Measured by Fisher’s Z-Transformed Correlation with Mean Profile.

Figure 2.1.3.B. Distributions of Distinctiveness of construal for Video Situations as Measured by Sum of Absolute Z-Score Deviations from Item Means.

165
Figure 2.1.3.D. Distributions of Distinctiveness of construal for Video Situations as Measured by Aggregated Residuals of Linear Regressions from the Mean RSQ Profile.

Figure 2.1.3.E. Distributions of Distinctiveness of construal for Video Situations as Measured by Median Absolute Deviations from the Mean RSQ Profile.
Appendix F

Additional figures for Study 2

Figure 3.1.3.A. Distributions of Distinctiveness of construal for TAT Situations as Measured by Degree of Correlation with Mean Profile.
Figure 3.1.3.B. Distributions of Distinctiveness of construal for TAT Situations as Measured by Sum of Absolute Z-Score Deviations from Item Means.
Figure 3.1.3.D. Distributions of Distinctiveness of construal for TAT Images as Measured by Aggregated Residuals of Linear Regressions from the Mean RSQ Profile.
Figure 3.1.3.E. Distributions of Distinctiveness of construal for TAT Images as Measured by Median Absolute Deviations from the Mean RSQ Profile.
Appendix G

Additional figures for Study 3

Figure 4.1.3.A. Distributions of Distinctiveness of construal for Lab Situations as Measured by Degree of Correlation with Mean Profile.
Figure 4.1.3.B.1. Distributions of Distinctiveness of construal for Lab Situations as Measured by Sum of Absolute Z-Score Deviations from Item Means, Within Groups.
Figure 4.1.3.B.2. Distributions of Distinctiveness of construal for Lab Situations as Measured by Sum of Absolute Z-Score Deviations from Item Means, Across Groups.
Figure 4.1.3.D. Distributions of Distinctiveness of construal for Lab Situations as Measured by Aggregated Residuals of Linear Regressions from the Mean RSQ Profile.
Figure 4.1.3.E. Distributions of Distinctiveness of construal for Lab Situations as Measured by Median Absolute Deviations from the Mean RSQ Profile.
Appendix H

Calculation Details for Methods of Quantification of Distinctiveness of Construal

Definitions
rsqset - a matrix with n rows, and k q-item columns made of RSQ data
nmrsqset - a matrix of n rows and k q-item columns made of Mean RSQ
data calculated from the sample of n participants, without the
participant's data in the row in question.

Non-base Functions called:
notmemeans
scale2
lm.setresids
madprof
All non-base functions included in appendix D

Method A
methodA <- t(t(diag(t(cor(t(rsqset), t(nmrsqset), use = "pairwise")))))

Method B
rsqset.scaled <- scale2(rsqset)
methodB <- t(t(rowSums(abs(rsqset.scaled))))

Method C
methodC <- lm.setresids(rsqset,nmrsqset)

Method D
Calls on method C's result
methodD <- t(t(rowSums(abs(methodC))))

Method E
methodE <- madprof(rsqset)