Title
ALPHA DECAY PROPERTIES OF SOME TERBIUM AND DYSPORSIUM ISOTOPES NEAR THE 82-NEUTRON CLOSED SHELL

Permalink
https://escholarship.org/uc/item/1pv8r7nx

Authors
Macfarlane, Ronald D.
Seegmiller, David W.

Publication Date
1963-11-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

AEC Contract No. W-7405-eng-48

ALPHA DECAY PROPERTIES OF SOME TERBIUM AND DYSPROSIUM ISOTOPES NEAR THE 82-NEUTRON CLOSED SHELL

Ronald D. Macfarlane and David W. Seegmiller

November 1963
ALPHA DECAY PROPERTIES OF SOME TERBIUM AND DYSPROSIUM ISOTOPES NEAR THE 82-NEUTRON CLOSED SHELL

Ronald D. Macfarlane† and David W. Seegmiller‡

Lawrence Radiation Laboratory*
University of California
Berkeley, California

November, 1963

Abstract: The half-lives and alpha particle energies of Tb149m, Tb151, Dy150, Dy151, Dy152, and Dy153 have been measured with greater precision than previously reported. Alpha branching ratios for these nucleides were also obtained using direct counting techniques.

1. Introduction

Previous work by Rasmussen and co-workers on the alpha decay properties of terbium and dysprosium isotopes lying near the 82-neutron closed shell provided estimates of the alpha branching ratios of Tb151, Dy152, and Dy153 based on excitation function data 1). No information was obtained by them on the alpha branching ratios of the 84- and 85-neutron dysprosium alpha emitters, Dy150 and Dy151.

As more alpha decay data have become available in this region, the need for accurate alpha partial half-lives and alpha particle energies of these nucleides has become necessary in order to study the systematics in greater detail and provide data of sufficient accuracy to warrant theoretical analysis. The purpose of this paper is to report on some new measurements of the alpha branching ratios, alpha particle energies, and half-lives of the nucleides mentioned above as well as the recently observed 2) short-lived isomer of Tb149.

* This work was supported by the U. S. Atomic Energy Commission.
† Present Address: McMaster University, Hamilton, Ontario, Canada.
‡ Present Address: U. S. Air Force Academy, Colorado.
2. Experimental Details

2.1. Mode of Production of Nucleides

The high spin isomer of Tb149 was produced by bombarding a natural lanthanum oxide target (\sim2 mg/cm2) with 121 MeV 6He ions using the Berkeley heavy ion accelerator. This energy is near the peak of the excitation function for the production of this activity by an 6He, 6n reaction. The Tb151 activity was produced by bombarding a europium oxide sample enriched in Eu151 to 98% with 48 MeV 6He particles using the Berkeley sixty-inch cyclotron. This bombarding energy gives a favourable cross-section for an (6He,4n) reaction. The nucleides Dy150 and Dy151 were produced together by bombarding an enriched Ce140 oxide target with 105 to 120 MeV 6He ions. These nucleides are the products of (6He,6n) and (6He,5n) reactions. The nucleides Dy152 and Dy153 were produced by (6He,4n) and (6He,3n) reactions on an enriched Gd152 target at bombarding energies of 48 MeV and 37 MeV respectively.

2.2. Sample Preparation

Samples of the particular nucleide to be studied were prepared in carrier-free form suitable for alpha-particle counting with minimum self-absorption. The nucleides produced at the sixty-inch cyclotron were separated from the rare earth target material using cation exchange chromatography and 8-hydroxyisobutyric acid as the eluant. This procedure also separated the individual rare earth elements from each other.

The shorter-lived nucleides, Dy150, Dy151, and Tb149m, which were produced by heavy ion reactions, were separated from the target material by collecting recoils ejected from the target on to a palladium leaf catcher during the bombardment. After bombardment, the catcher was dissolved in nitric acid containing chloride ion and passed through an anion-exchange column to remove the palladium. The rare earth fraction was then co-precipitated as the oxalate with added strontium carrier. The oxalate was redissolved and
the oxalate ion destroyed with nitric acid. The rare earths were re-precipitated as the hydroxide on added Fe\(^{+3}\) carrier and the Fe\(^{+3}\) was finally removed by dissolving the precipitate in hydrochloric acid and passing through an anion-exchange column. The eluant contained the pure rare earth fraction in carrier-free form.

Alpha sources were prepared by solution-evaporation (usually ~50\(\mu\)l) on a 0.05 mm-thick platinum plate. Gamma sources were prepared by placing a small quantity of the solution (~10\(\mu\)l) in the bottom of a thin polyethylene test tube which fitted into the well-type scintillation crystal used for measurement of the combined E.C. + \(\beta^+\) branching ratio.

2.3. Alpha Particle Energy and Half-Life Determinations

Alphas particle energies were measured using a Frisch-grid ionization chamber connected to standard electronics and a 100-channel pulse-height analyzer. The alpha particles from Tb\(^{149}\) (3.95 MeV\(^{1}\)) and U\(^{234}\) (4.75 MeV (average))\(^{4}\) were used as energy standards.

Half-lives were obtained from alpha decay curves which were in most cases single component. Particular care was taken to obtain very accurate half-lives for Dy\(^{150}\) and Dy\(^{151}\) because of the usefulness of these nucleides for nuclear reaction studies. Single component alpha decay curves of these nucleides were obtained by measuring the decay of the Dy\(^{150}\) and Dy\(^{151}\) groups in the alpha particle spectra of a sample containing both activities. The data obtained were then analyzed by the method of least squares with each point weighted according to the statistical uncertainty of the measurement.

2.4. Alpha Branching Ratios

The alpha branching ratio, which is defined in this paper as the ratio of the alpha disintegration rate to the total disintegration rate, was obtained by measuring a simultaneous alpha disintegration rate and combined \(\beta^+\) + E.C. disintegration rate.
The alpha counter used in the measurements was a standard 2π geometry flow counter whose counting efficiency was periodically checked using alpha standards. The overall detection efficiency was taken as 52%. The alpha counting rate of a measured aliquot of a sample to be measured was obtained at a particular time - zero from an alpha decay curve. These decay curves were in each case single component with a negligible background contribution.

The corresponding β⁺+ β− disintegration rate was obtained indirectly by measuring the absolute photodisintegration rate. The nuclides studied, because of their position on the neutron - deficient side of the beta stability line, decay mainly by K-electron capture and positon emission. A 4π gamma detection system consisting of two shielded back-to-back NaI(Tl) scintillation crystals connected to photomultiplier tubes and standard slow electronics was used to detect radiations associated with positon and K-electron capture events. The output of each of the crystals were mixed and fed into a tube. The resolving time of the electronic system was 2 sec. To minimise the background, pulses whose amplitude corresponded to less than 30 keV energy were rejected.

One of the detectors was a 7.6 cm x 7.6 cm crystal containing a cylindrical well in the centre which was 1.2 cm in diameter and 4.7 cm deep (Harshaw Type 12AK12-S16). The aluminum wall around the well was 0.8 mm thick and this was coated with a layer of Al₂O₃ reflector (20 mg/cm²). The other crystal was a 3.8 cm x 3.8 cm flat type which fitted over the well of the larger crystal in order to complete the 4π geometry.

The efficiency for detecting positons and rare earth K-X-rays was studied using a Na²² standard which emits positon and Am²⁴¹ which has a prominent 60 keV gamma ray, and energy close to that of the K-X-rays of the rare earth elements. The system was found to be 76% efficient for detecting the Na²² activity. The γ/α ratio for Am²⁴¹, where photons greater than 30 keV were detected, was found to be 0.39 ± 0.02. The γ/α ratio for the 59.6 keV photons emitted in Am²⁴¹ alpha
decay was measured by Magnusson 5 to be 0.359). There are, however, a small fraction of gamma rays above 30 keV in the Am241 decay scheme in addition to the main 59.6 keV group which could slightly increase the γ/α ratio for photons above 30 keV. The value of 0.39 that we obtain seems reasonable and is an indication that the detection efficiency for radiations in the range of 60 keV is close to 100\% for our system.

The problem of estimating the overall efficiency for detecting the $\beta^+\text{E.C.}$ branch of the nucleides studied in this work is particularly difficult because the decay schemes of these nucleides are not known. In each case, the energy available for $\beta^+\text{E.C.}$ decay is sufficiently high that a complex decay scheme would be expected. In our method for detecting the $\beta^+\text{E.C.}$ branch, the greater the multiplicity of cascade gamma rays per decay, the greater is the efficiency for detecting the decay event. On the basis of our measurements with Na22 and Am241, and considering that, for the nucleides studied, the $\beta^+\text{E.C.}$ decay scheme is probably complex, we estimate that the overall efficiency for detecting the $\beta^+\text{E.C.}$ branch is 0.90 ± 0.10.

To obtain the absolute photodisintegration rate, a gross photon rate decay curve was obtained using an accurately measured portion of the same solution used in preparing the alpha source. The decay rate was measured until an essentially constant counting rate was obtained. This was then subtracted from the gross decay curve. For the Tb149m measurement, the decay curve after subtracting a constant background was a single component corresponding to a half-life of 4.3 min, a value in excellent agreement with that obtained from alpha decay measurements2. The decay curves for the other nucleides studied, after background subtraction, showed longer-lived components whose half-lives corresponded to known isotopes of Tb and Dy. In order to obtain the most accurate resolution of the desired component from the gross decay curve the following method was employed. An iterative procedure was used to subtract the background plus the contribution from other activities until a single component decay curve was obtained which was linear (log counting
rate or time) within the statistical uncertainty of all the date points and which yielded the identical half-life obtained from alpha counting results. From this curve, the photodisintegration rate at the time zero used for the alpha decay measurements was obtained.

The possibility of interference from Dy and Tb activities not yet discovered with half-life values near those of the ones measured in this work was considered. For Tb151, Dy152, and Dy153, this possibility seems to be remote because all the nucleides immediately in their vicinity have been studied and none has a half-life which would interfere with measurements on these nucleides. To provide a check on the possibility of interference from unknown activities in measurements of the shorter-lived nucleides, comparisons were made of results obtained using samples produced at different bombarding energies. If an interfering activity is present and its excitation function is different from the nucleide being studied, the value of the alpha branching ratio obtained will be different when the nucleide is produced at various bombarding energies. Within the statistical uncertainty of the measurements, the experimental values of the alpha branching ratios of Tb149m, Dy150, and Dy151 appeared to be unaltered by 10% changes in bombarding energy.

The expression used for the alpha branching ratio is given by:

$$\frac{C_{\alpha}}{C_{\gamma}} = \frac{\frac{\alpha}{\gamma}}{\frac{\alpha}{\gamma} + \frac{\gamma}{\gamma} \times \frac{V_{\gamma}}{V_{\alpha}}}$$

where

- C_{α} = alpha counting rate at $t = 0$
- C_{γ} = photodisintegration counting rate at $t = 0$
- α_{α} = alpha detection efficiency (0.52)
- α_{γ} = photodetection efficiency (0.90)
- V_{γ} = volume of solution used for gamma counting
- V_{α} = volume of solution used for alpha counting

It is assumed that C_{γ} is equivalent to the positon plus K-electron capture counting rate.
For \(\text{Tb}^{151} \), \(\text{Dy}^{152} \), and \(\text{Dy}^{153} \), duplicate samples for alpha and gamma counting were prepared and the initial activities of each measured. If satisfactory agreement was obtained between samples, the measurements of the decay curves were begun using one of them. For those nuclides, only one determination of the alpha branching ratio was made. For the shorter-lived nuclides, \(\text{Tb}^{149} \), \(\text{Dy}^{150} \), and \(\text{Dy}^{151} \), at least two separate measurements of the alpha branching ratio were made. The average values of the measurements are reported in table 1 which summarizes the results.

3. Results

The alpha decay curves from which half-lives and alpha branching ratios were obtained are shown in figs. 1 and 2. The gamma decay curves which were used to obtain the \(\beta^+ \) E.C. branch are shown in figs. 3 and 4. The final values of the alpha particle energies, half-lives and alpha branching ratios are summarized in table 1.

4. Discussion

Using the alpha branching ratios and half-lives obtained in this work, the corresponding alpha partial half-lives were calculated. These were then used to calculate alpha reduced widths (\(\delta^2 \)) which give an indication of the relative alpha decay probability after the energy dependence has been removed. It is defined by the expression

\[
\lambda = \frac{\delta^2 \rho}{\hbar}
\]

where \(\lambda \) is the alpha decay constant, \(\rho \) is the barrier penetrability factor, and \(\hbar \) is Planck's constant. Barrier penetrability factors were calculated using the method of Hasmussen 6). To account for electron screening effects, 0.02 MeV was added to each of the alpha decay energies 7). The calculated values of \(\delta^2 \) are listed in table 2. Except for \(\text{Tb}^{149} \), the reduced widths were calculated assuming \(\ell = 0 \) alpha waves only. For \(\text{Tb}^{149} \), the reduced width was calculated for an \(\ell = 3 \) alpha wave, which is the lowest possible \(\ell \)-wave if the postulated alpha decay scheme
of this nuclide is correct 2). This scheme assigns the metastable state to an $h_{11/2}$ level which alpha decays to a $d_{5/2} \, Pr^{145}$ ground state. The average value of δ^2 for an even-even nuclide in this region is 0.08. The low value of 3.6×10^{-3} for the reduced width of Tb149m indicates that alpha decay from this nuclide is considerably hindered. The reduced width for the Tb149 ground state alpha transitions is a factor of three larger than that for the metastable state 1). It is interesting to note that δ^2 for Tb151 has approximately the same value as for Tb149m.

The reduced widths for the dysprosium and terbium isotopes are somewhat smaller than those observed for the corresponding gadolinium, holmium and erbium nuclides. These differences are probably related to structural changes associated with the filling of the $d_{5/2}$ and $h_{11/2}$ proton states. Theoretical calculations are currently in progress in order to determine whether the low values of the alpha reduced widths of the terbium and dysprosium isotopes can be accounted for by shell model or pairing model effects.

We would like to acknowledge the contributions of Dr. John Alexander and Dr. Gabriel Simonoff, who assisted us with some of the measurements and Professors C. L. Keech and T. J. Kennett for helpful discussions, co-operation of the groups at the Berkeley sixty-inch cyclotron, the Hilac, and the Health Chemistry is also gratefully appreciated.
References

1) K. S. Toth and J. O. Rasmussen, Nuclear Physics 16 (1960) 474
2) J. D. Macfarlane, Phys. Rev. 126 (1962) 274
3) S. C. Thompson, B. G. Harvey, C. Choppin, and G. T. Seaborg, J. Am.
 Chem. Soc. 76 (1954) 6229
4) I. Perlman and F. Asaro, Lawrence Radiation Laboratory Report UCRL-9524
 (1961, unpublished)
5) L. B. Magnusson, Phys. Rev. 107 (1957) 161
6) J. O. Rasmussen, Phys. Rev. 113 (1959) 1593
7) I. Perlman and J. O. Rasmussen, in Handbuch der Physik, edited by
<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Results from this work</th>
<th>α-branching ratio</th>
<th>τ 1/2</th>
<th>E_α (meV)</th>
<th>α-branching ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb(^{149})m</td>
<td>4.3 ± 0.2 m</td>
<td>3.99 ± 0.03</td>
<td>(2.5 ± 0.5) \times 10^{-4}</td>
<td>4.3 ± 0.2</td>
<td>3.99 ± 0.03</td>
</tr>
<tr>
<td>Tb(^{151})</td>
<td>17.2 ± 0.5 h</td>
<td>3.42 ± 0.03</td>
<td>(4.8 ± 0.5) \times 10^{-6}</td>
<td>19 ± 1 h</td>
<td>3.44 ± 0.10</td>
</tr>
<tr>
<td>Dy(^{150})</td>
<td>7.20 ± 0.10 m</td>
<td>4.23 ± 0.02</td>
<td>0.18 ± 0.02</td>
<td>7 ± 2 m</td>
<td>4.21 ± 0.06</td>
</tr>
<tr>
<td>Dy(^{151})</td>
<td>18.0 ± 0.2 m</td>
<td>4.06 ± 0.02</td>
<td>0.059 ± 0.006</td>
<td>19 ± 4 m</td>
<td>4.06 ± 0.04</td>
</tr>
<tr>
<td>Dy(^{152})</td>
<td>2.3 ± 0.1 h</td>
<td>3.65 ± 0.02</td>
<td>(5 ± 1) \times 10^{-4}</td>
<td>2.3 ± 0.2 h</td>
<td>3.66 ± 0.05</td>
</tr>
<tr>
<td>Dy(^{153})</td>
<td>6.4 ± 0.2 h</td>
<td>3.48 ± 0.02</td>
<td>(3.0 ± 0.3) \times 10^{-5}</td>
<td>5 ± 0.5 h</td>
<td>3.48 ± 0.05</td>
</tr>
</tbody>
</table>
Table 2. Alpha reduced widths for Tb and Dy alpha emitters

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Alpha Partial Half-life (sec)</th>
<th>δ^2 (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb149m</td>
<td>1.0×10^6</td>
<td>3.6×10^{-3} ($\ell = 3$)</td>
</tr>
<tr>
<td>Tb151</td>
<td>1.29×10^{10}</td>
<td>1.19×10^{-3} ($\ell = 0$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.6×10^{-3} ($\ell = 3$)</td>
</tr>
<tr>
<td>Dy150</td>
<td>2.40×10^3</td>
<td>0.0517 ($\ell = 0$)</td>
</tr>
<tr>
<td>Dy151</td>
<td>1.83×10^4</td>
<td>0.0710 ($\ell = 0$)</td>
</tr>
<tr>
<td>Dy152</td>
<td>1.68×10^7</td>
<td>0.0392 ($\ell = 0$)</td>
</tr>
<tr>
<td>Dy153</td>
<td>7.68×10^8</td>
<td>0.0196 ($\ell = 0$)</td>
</tr>
</tbody>
</table>
Figure Captions.

Figure 1 Alpha decay curves for Dy150 and Dy151 from which the quoted half-lives were obtained.

Figure 2 Alpha decay curves for Dy152, Dy153, and Tb151 used in obtaining half-lives and alpha branching ratios.

Figure 3 Photodisintegration rate decay curves for A. Tb149m and B. Tb151 used in obtaining partial widths for $\beta^+ E.C.$ decay of these nuclides.

Figure 4 Photodisintegration rate decay curves for A. Dy150 + Dy151 B. Dy152 and C. Dy153 used in obtaining partial widths for $\beta^+ E.C.$ decay.
Fig. 1

Counts vs. Time (min)

- Dy150
 - $t_{1/2} = 7.20$ min

- Dy151
 - $t_{1/2} = 18.0$ min
Counts (arbitrary units)

Time (h)

Dy152
$t_{1/2} = 2.3 \text{ h}$

Dy153
$t_{1/2} = 6.4 \text{ h}$

Tb151
$t_{1/2} = 17.2 \text{ h}$
Fig. 3

A

Counts

Time (min)

100,000

10,000

1000

0 4 8 12 16 20 24 28

Tb^{149m}

$t_{1/2} = 4.3\text{ min}$

$Tb^{149m} + \text{other activities}$

Other activities

B

Counts

Time (h)

100,000

10,000

1000

0 10 20 30 40 50 60

Tb^{151}

$t_{1/2} = 17.2\text{ h}$

$Tb^{151} + \text{other activities}$

Other activities

Fig. 3
Fig. 4

A

\[\text{Dy}^{150} + \text{Dy}^{151} + \text{other activities} \]

- \[t_{1/2} = 18.0 \text{ min} \]
- \[t_{1/2} = 7.2 \text{ min} \]

B

\[\text{Dy}^{152} + \text{other activities} \]

- \[t_{1/2} = 2.3 \text{ h} \]

C

\[\text{Dy}^{153} + \text{other activities} \]

- \[t_{1/2} = 6.4 \text{ h} \]
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.