Lawrence Berkeley National Laboratory
Recent Work

Title
RELATIVE INTENSITY AND INTERPRETATION OF SOME ELECTRON LINES IN Cm243

Permalink
https://escholarship.org/uc/item/1pw1m5f2

Author
Schooley, James F.

Publication Date
1955-06-24
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
RELATIVE INTENSITY AND INTERPRETATION OF SOME ELECTRON LINES IN Cm243

James F. Schooley

June 24, 1955
Relative Intensity and Interpretation of Some Electron Lines in Cm243

James F. Schooley *
Department of Chemistry and Radiation Laboratory
University of California, Berkeley, California

June 24, 1955

I. K-LINES OF TRANSITIONS FROM THE 277-KEV LEVEL

Using the $\sqrt{2}\pi$ double-focusing beta ray spectrometer with an approximately 0.2 cm slit on the usual Geiger tube, the writer investigated the K lines of the transitions from the 277-kev level. The sample used was obtained from Dr. Frank Asaro. The activity was vaporized on a thick platinum backing. Approximately 12 percent of the alpha activity was due to Cm243, the remainder being Cm242 and Cm244.

Experimental Procedure

The normal procedure of demagnetization and running from low to high current was followed.

Treatment of Data

The data were plotted as counts divided by magnet current vs magnet current. The intensities, obtained by graphical integration of the peaks, were compared on a relative basis. Energies were obtained from an experimental curve of H_ρ vs current, using the intersection of the steep forward side of the peak with the background.
Results

K lines corresponding to the known transitions of 211 ± 2, 228 ± 2, and 278 ± 2 kev were seen. Their relative intensities are 1/2, 77/1.48, respectively. The L conversion lines were not clearly distinguishable from the background, but lower limits have been set on the K/L conversion ratios for the three transitions. These are K/L > 1.6 for the 211-kev transition, K/L > 6.4 (228), and K/L > 6.6 (278). The relative K line intensities and K/L ratios may be compared with those from work by Fulbright, who found relative K line intensities, 209:4:227:9:277:2:1:2:26:1:96, and K/L ratios of 5.6, 4.3, and 5.3, respectively.

Interpretation

Using the curves of Goldhaber and Sunyar, the K/L ratio limits indicate a most likely interpretation as M1 transitions with some E2 admixture not excluded, particularly in γ211.

II. L LINES OF THE TRANSITION FROM THE 321-KEV LEVEL TO THE 277-KEV LEVEL

Using the same source and experimental procedure as in I, data were obtained on the conversion lines of a 46.2 ± 1 kev transition. The data were handled in the same manner as in I.

Results

The intensities of the L1 plus LII to the LIII lines were found to be in a ratio of 2.8 to 1.
Interpretation

From the conversion coefficients of Gellman, et al., the transition would seem to be predominantly of M1 character. M1-E2 mixtures occur commonly for such rotational transitions.

III. ACKNOWLEDGMENTS

Many thanks are due Drs. J. O. Rasmussen, Jr. and F. Asaro for helpful suggestions and discussions during the course of this work and for the use of the latter’s excellent vaporized curium source. Mr. Jose Juliano rendered considerable assistance in taking some of the data. Thanks are also due the USAF Institute of Technology, through the cooperation of which this work was carried out.

This work was performed under the auspices of the U.S. Atomic Energy Commission.

*Lieutenant, U.S. Air Force

1 H. W. Fulbright, private communication from M. S. Freedman to F. Asaro. (See also Fulbright paper in Seaborg, Katz, and Manning, The Transuranium Elements, National Nuclear Energy Series, Vol. 14B, 1011.
