Title
Source Provenance of Obsidian Artifacts from the Dillard Site (5MT10647) and the Switchback Site (5MT2032), Montezuma County, Southwest Colorado

Permalink
https://escholarship.org/uc/item/1pz0255x

Author
Shackley, M. Steven

Publication Date
2015-08-21

Supplemental Material
https://escholarship.org/uc/item/1pz0255x#supplemental

License
CC BY-NC 4.0
SOURCE PROVENANCE OF OBSIDIAN ARTIFACTS FROM THE DILLARD
SITE (5MT10647) AND THE SWITCHBACK SITE (5MT2032), MONTEZUMA
COUNTY, SOUTHWEST COLORADO

by

M. Steven Shackley, Ph.D., Director
Geoarchaeological XRF Laboratory
Albuquerque, New Mexico

Report Prepared for
Crow Canyon Archaeological Center
Cortez, Colorado

21 August 2015
INTRODUCTION

The analysis here of 6 obsidian artifacts from two sites in Montezuma County in southwest Colorado exhibits a mix of Jemez Mountains, and Mount Taylor, New Mexico sources similar to earlier studies, including the earlier Dillard Site study (Shackley 2013; Table 1 and Figure 1 here). No discussion is offered here, but refer to Shackley (2013, 2014).

LABORATORY SAMPLING, ANALYSIS AND INSTRUMENTATION

All archaeological samples are analyzed whole. The results presented here are quantitative in that they are derived from "filtered" intensity values ratioed to the appropriate x-ray continuum regions through a least squares fitting formula rather than plotting the proportions of the net intensities in a ternary system (McCarthy and Schamber 1981; Schamber 1977). Or more essentially, these data through the analysis of international rock standards, allow for inter-instrument comparison with a predictable degree of certainty (Hampel 1984; Shackley 2011).

All analyses for this study were conducted on a ThermoScientific Quant’X EDXRF spectrometer, located at the University of California, Berkeley. It is equipped with a thermoelectrically Peltier cooled solid-state Si(Li) X-ray detector, with a 50 kV, 50 W, ultra-high-flux end window bremsstrahlung, Rh target X-ray tube and a 76 μm (3 mil) beryllium (Be) window (air cooled), that runs on a power supply operating 4-50 kV/0.02-1.0 mA at 0.02 increments. The spectrometer is equipped with a 200 l min⁻¹ Edwards vacuum pump, allowing for the analysis of lower-atomic-weight elements between sodium (Na) and titanium (Ti). Data acquisition is accomplished with a pulse processor and an analogue-to-digital converter. Elemental composition is identified with digital filter background removal, least squares empirical peak deconvolution, gross peak intensities and net peak intensities above background.

The analysis for mid Zb condition elements Ti-Nb, Pb, Th, the x-ray tube is operated at 30 kV, using a 0.05 mm (medium) Pd primary beam filter in an air path at 200 seconds livetime.
to generate x-ray intensity Ka-line data for elements titanium (Ti), manganese (Mn), iron (as Fe₂O₃), cobalt (Co), nickel (Ni), copper, (Cu), zinc, (Zn), gallium (Ga), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), lead (Pb), and thorium (Th). Not all these elements are reported since their values in many volcanic rocks are very low. Trace element intensities were converted to concentration estimates by employing a quadratic calibration line ratioed to the Compton scatter established for each element from the analysis of international rock standards certified by the National Institute of Standards and Technology (NIST), the US. Geological Survey (USGS), Canadian Centre for Mineral and Energy Technology, and the Centre de Recherches Pétrographiques et Géochimiques in France (Govindaraju 1994). Line fitting is linear (XML) for all elements but Fe where a derivative fitting is used to improve the fit for iron and thus for all the other elements. When barium (Ba) is analyzed in the High Zb condition, the Rh tube is operated at 50 kV and up to 1.0 mA, ratioed to the bremsstrahlung region (see Davis 2010; Shackley 2011). Further details concerning the petrological choice of these elements in Southwest obsidians is available in Shackley (1988, 1995, 2005; also Mahood and Stimac 1991; and Hughes and Smith 1993). Nineteen specific pressed powder standards are used for the best fit regression calibration for elements Ti-Nb, Pb, Th, and Ba, include G-2 (basalt), AGV-2 (andesite), GSP-2 (granodiorite), SY-2 (syenite), BHVO-2 (hawaiite), STM-1 (syenite), QLO-1 (quartz latite), RGM-1 (obsidian), W-2 (diabase), BIR-1 (basalt), SDC-1 (mica schist), TLM-1 (tonalite), SCO-1 (shale), NOD-A-1 and NOD-P-1 (manganese) all US Geological Survey standards, NIST-278 (obsidian), U.S. National Institute of Standards and Technology, BE-N (basalt) from the Centre de Recherches Pétrographiques et Géochimiques in France, and JR-1 and JR-2 (obsidian) from the Geological Survey of Japan (Govindaraju 1994).
The data from the WinTrace software were translated directly into Excel for Windows software for manipulation and on into SPSS for Windows for statistical analyses. In order to evaluate these quantitative determinations, machine data were compared to measurements of known standards during each run. RGM-1 a USGS obsidian standard is analyzed during each sample run of 20 for obsidian artifacts to check machine calibration (Table 1).

Source assignments were made by reference to the laboratory data base (see Shackley 1995, 2005). Further information on the laboratory instrumentation can be found at: http://www.swxrflab.net/. Trace element data exhibited in Table 1 are reported in parts per million (ppm), a quantitative measure by weight (see also Figure 1).

REFERENCES CITED

Davis, M.K., T.L. Jackson, M.S. Shackley, T. Teague, and J. Hampel

Govindaraju, K.

Hampel, Joachim H.

Hildreth, W.

Hughes, Richard E., and Robert L. Smith

Mahood, Gail A., and James A. Stimac
McCarthy, J.J., and F.H. Schamber

Schamber, F.H.

Shackley, M. Steven

Table 1. Elemental concentrations and source assignments for the archaeological specimens and USGS RGM-1 obsidian standard. All measurements in parts per million (ppm).

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>SITE</th>
<th>Ti</th>
<th>Mn</th>
<th>Fe</th>
<th>Rb</th>
<th>Sr</th>
<th>Y</th>
<th>Zr</th>
<th>Nb</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>149-10</td>
<td>5MT10647</td>
<td>620</td>
<td>413</td>
<td>10315</td>
<td>156</td>
<td>14</td>
<td>22</td>
<td>68</td>
<td>44</td>
<td>El Rechuelos</td>
</tr>
<tr>
<td>317-3</td>
<td>5MT10647</td>
<td>446</td>
<td>654</td>
<td>12188</td>
<td>548</td>
<td>9</td>
<td>89</td>
<td>131</td>
<td>221</td>
<td>Horace/La Ja</td>
</tr>
<tr>
<td>404-3</td>
<td>5MT10647</td>
<td>352</td>
<td>810</td>
<td>11044</td>
<td>583</td>
<td>13</td>
<td>78</td>
<td>115</td>
<td>192</td>
<td>Grants Ridge</td>
</tr>
<tr>
<td>704-13</td>
<td>5MT10647</td>
<td>284</td>
<td>520</td>
<td>11266</td>
<td>492</td>
<td>12</td>
<td>90</td>
<td>134</td>
<td>229</td>
<td>Horace/La Ja</td>
</tr>
<tr>
<td>942-15</td>
<td>5MT10647</td>
<td>532</td>
<td>395</td>
<td>10111</td>
<td>155</td>
<td>14</td>
<td>22</td>
<td>74</td>
<td>47</td>
<td>El Rechuelos</td>
</tr>
<tr>
<td>111-6</td>
<td>5MT2032</td>
<td>613</td>
<td>400</td>
<td>9977</td>
<td>147</td>
<td>12</td>
<td>21</td>
<td>64</td>
<td>43</td>
<td>El Rechuelos</td>
</tr>
<tr>
<td>RGM1-S4</td>
<td></td>
<td>1673</td>
<td>279</td>
<td>13675</td>
<td>141</td>
<td>109</td>
<td>28</td>
<td>214</td>
<td>9</td>
<td>standard</td>
</tr>
</tbody>
</table>
Figure 1. Nb versus Y bivariate plot of the elemental concentrations for all archaeological specimens.