Lawrence Berkeley National Laboratory
Recent Work

Title
ON THE THREE-BODY SCATTERING AMPLITUDE: III. SCATTERING ON A BOUND STATE

Permalink
https://escholarship.org/uc/item/1qf0089z

Author
Omnes, Roland L.

Publication Date
1964-01-16
University of California

Ernest O. Lawrence Radiation Laboratory

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

ON THE THREE-BODY SCATTERING AMPLITUDE:

III. SCATTERING ON A BOUND STATE

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ON THE THREE-BODY SCATTERING AMPLITUDE:

III. SCATTERING ON A BOUND STATE

Roland L. Omnes
January 16, 1964
ON THE THREE-BODY SCATTERING AMPLITUDE

III. SCATTERING ON A BOUND STATE

Roland L. Omnes

Lawrence Radiation Laboratory
University of California
Berkeley, California

January 16, 1964

ABSTRACT

The results of two previous papers are carried on to a formulation of the Fadeev equations due to C. Lovelace. This allows showing that the nonrelativistic scattering amplitude for an elementary particle on a bound state is a meromorphic function of the total angular momentum. An extension of the helicity amplitudes to complex values of the total angular momentum and of the spin of the bound state is indicated. One is thus able to define the scattering amplitude for a particle on a Regge pole when the energy of the Regge pole is in the physical sheet.
In two previous papers\(^1\) we have shown how the scattering amplitude for a three-particle collision can be extended to complex values of the total angular momentum \(J\). We found that this extended amplitude satisfies an integral equation whose kernel has elements that are analytic functions of \(J\). Obviously, this is not enough to prove that the amplitude is a meromorphic function of \(J\) and this problem needs further investigation. However, if we reduce the kernel to values of the magnetic quantum numbers \(M\) and \(M'\) smaller than, say, an integer \(N\), this truncated kernel is operator-analytic as a function of \(J\). On the other hand, the scattering amplitude deduced from the truncated kernel is a meromorphic function of \(J\) which coincides with the physical amplitude for all integral values of \(J\) smaller than \(M\). This is, in our opinion, a very strong hint that the true amplitude itself is meromorphic although one must recognize that the convergence of these truncated amplitudes has to be considered carefully. Anyway, we shall in the present paper accept as an ansätz that the three-body scattering amplitude is meromorphic.

This discussion in papers I and II has been restricted to the case in which no pair of particles can give rise to a bound state. This leaves out of the discussion the fundamental problem of the scattering of a particle on a bound state. Arguments have been advanced by Udgaonkar and Gell-Mann\(^2\) on the basis of a model, and by Newton\(^3\) in a work which we have already discussed, that the corresponding amplitude has cuts. On the other hand, J. B. Hartle\(^4\), in a work which closely parallels that of Newton, did not find any evidence for these cuts.\(^5\) Applying the method of the two preceding papers, we shall show that, actually, the amplitude is a meromorphic function \(J\).

In order to formulate the equations for this problem, we use an extension of the Fadeev equations\(^6\) which have been given by C. Lovelace\(^7\). The necessary background is provided in Sec. 2. In Sec. 3, one shows how to extend the
scattering amplitude of a particle on a bound state to a complex value of the angular momentum. In Sec. 4, one considers the extension to complex values of J of the Born approximation to which the results of Sec. 3 do not apply directly. In Sec. 5, we show how the helicity amplitude for physical or complex values of J can be extended to complex values of the spins of the bound states, i.e., we define the scattering amplitude for a particle on a Regge pole in nonrelativistic theory.
2. THE LOVELACE EQUATIONS

In the two preceding papers, we have used the Fadeev equations as they were originally written by Fadeev himself and we have indicated how the results compare to another set of equations found by Weinberg. When one wants to consider explicitly the possibility of bound states, it is convenient to work with a third formulation of the problem, due to Lovelace, which is very close to the original Fadeev equations. Needless to say, all these formulations are actually equivalent.

Whereas we considered only a scattering amplitude for the reaction 3 particles + 3 particles which we called $T(z)$, we now consider also states made up by one particle and a bound state of the two others. We label by an index 0 a state of three particles and by an index 1, for instance, the state made up by particle 1 and a bound state of the pair (23). Accordingly, we introduce a set of sixteen amplitudes $T_{\alpha\beta}(z)$, where $\alpha, \beta = 0, 1, 2, 3$; it is convenient to call V_1 the potential of particles 2 and 3 and V_0 a three-body potential which we shall suppose to be identically zero. Accordingly, we call $T_1(z)$ the two-body scattering amplitude of particles 2 and 3 and $T_0 = 0$. Lovelace has shown that one can write the following set of equations,

$$T_{\alpha\beta}(z) = \sum_{\delta \neq \beta} V_{\delta} - \sum_{\gamma \neq \alpha} T_{\gamma}(z) G_0(z) T_{\gamma\beta}(z),$$

where T_{00} is the three-body scattering amplitude. The amplitude for the scattering of particle 1 on a bound state of particles 2 and 3 with wave function $\varphi(g_{23})$ is equal to
\[\int \frac{d^3q_{23}}{2\pi} \frac{d^3q'_{23}}{2\pi} \phi^*(q'_{23}) \left\langle p'_1 \ p'_2 \ p'_3 \mid \mathcal{S}_{11}(z) \mid p_1 \ p_2 \ p_3 \right\rangle \phi(q_{23}). \tag{2} \]

(all notations unexplained here are to be found in the two preceding papers.)
3. EXTENSION TO COMPLEX VALUES OF J

The kernel of the Lovelace Eq. (1) is in fact identical to the kernel of the Fadeev equations, so that our preceding analysis applies to this equation. It is therefore possible to state a system of integral equations for the amplitudes $T_{\alpha \beta}^{(z)} = \sum_{\delta \neq \beta} V_{\delta}$ projected on well-defined values J of the total angular momentum. The inhomogeneous terms of these equations as well as the terms of the kernel are holomorphic functions of J. Although this is not enough to make sure that the solution is a meromorphic function of J, we shall accept this result as an ansatz. We shall therefore define reduced matrix elements $\mathcal{T}_{\alpha \beta}^{J}(\omega, \omega)$, which we shall split into the first Born approximation \mathcal{B} and the rest \mathcal{U}, as follows:

$$\mathcal{T}_{\alpha \beta}^{J}(\omega, \omega) = \mathcal{B}_{\alpha \beta}^{J}(\omega, \omega) + \mathcal{U}_{\alpha \beta}^{J}(\omega, \omega).$$

Let us recall that ω stands for the set $(\omega_1, \omega_2, \omega_3)$ of the kinetic energies of the three particles in the total center-of-mass system, and M and M' are respectively the projections of the total angular momentum J on two axes invariantly related to the momenta (p_1, p_2, p_3) and (p'_1, p'_2, p'_3). In practice, in the following, these axes will be chosen along p_1 and p'_1 so that, when we consider the scattering of particle 1 on a bound state of particles 2 and 3, M and M' will be the initial and final helicities of the bound states. (For simplicity, we always suppose that the three particles 1, 2, 3 are spinless.)

As shown in II, the momentum-space matrix elements are related to the reduced matrix elements by
\(\langle \vec{p}_1' \cdot \vec{p}_2' \cdot \vec{p}_3' | \sum_{a\beta} \alpha_{\beta}(z) | \vec{p}_1 \cdot \vec{p}_2 \cdot \vec{p}_3 \rangle \)

\[= \text{constant} \sum_{JM'J'} (2J + 1) \sum_{\alpha M' \alpha M} (\omega', \omega) \cdot M' J(\psi, \theta, \phi), \quad (4) \]

where \((\psi, \theta, \phi)\) are the Euler angles of the rotation, which carries a reference system linked to \((p_1, p_2, p_3)\) to a system linked to \((p_1', p_2', p_3')\).

Let us now consider in more detail the scattering of particle 1 on a bound state of particles 2 and 3. We choose the initial reference system as having its \(z\) axis along \(\vec{p}_1 \) and its \(x\) axis in the plane determined by \((\vec{p}_1, \vec{p}_2, \vec{p}_3)\). If one calls \(\sigma\) the spin of the bound state, then the wave function is given by

\[\psi(q_{23}) = \phi(\sigma_{23}) \vec{P}_\sigma \cdot (\cos \gamma_1), \quad (5) \]

where \(q_{23}\) is the relative momentum of particles 2 and 3 in the center-of-mass system of the bound state and \(\gamma_1\) is the angle between \(\vec{p}_1\) and \(q_{23}\). The formulas that more precisely define these kinematical variables can be found in I.

If one introduces a fixed reference system with its \(z\) axis along \(\vec{p}_1\), calling \(\chi\) and \(\chi'\) the azimuthal angles of \(q_{23}\) and \(q_{23}'\), noticing that \(\theta\) and \(\phi\) are the polar angles of \(\vec{P}_1\), and that everything is invariant with respect to a rotation along \(\vec{p}_1\), then, introducing Eqs. (2) and (5) into Eq. (4), one gets...
\[
\langle \mathcal{P}_1, J^+, M' \mid \mathcal{T}_{11}(z) \mid \mathcal{P}_1, J, M \rangle
\]

\[
= \text{constant} \sum_J (2J + 1) e^{i(M-M')} \delta_{M' M} J(\theta) A_{MM', \sigma,}\ J(\omega_1, \omega_1, z) \quad (6a)
\]

where
\[
A_{MM', \sigma,}\ J(\omega_1, \omega_1, z) = \int \Phi_{\sigma}(q'_{23}) P_{\sigma}^M (\cos \gamma_1)
\]

\[
\mathcal{T}_{11M'M}(\omega', \omega) \Phi_{\sigma}(q'_{23}) P_{\sigma}^M (\cos \gamma_1) d^2 q'_{23} d^2 q_{23}, \quad (6b)
\]

where, for instance, \(d^2 q_{23} = q^2_{23} d q_{23} d \cos \gamma_1 \). Comparing this result with the Jacob-Wick formula shows that the integral in Eq. (6b) is the helicity amplitude for the scattering of particle 1 on the bound state.

Now, the matrix \(\mathcal{T}_{11} \) that appears in Eq. (6b) consists of the two parts \(\mathcal{O}_{11} \) and \(\mathcal{U}_{11} \). We have agreed that \(\mathcal{U}_{11} \) is a meromorphic function of \(J \). Moreover, the position of its poles depends only on \(z \).

Therefore, the contribution of \(\mathcal{U} \) to the helicity amplitude is a meromorphic function of \(J \) as long as the integral in Eq. (6b) converges uniformly. The domain of convergence will depend on the asymptotic properties of \(\mathcal{U}^J \) as well as the value of \(J \). However, we don't know enough yet about these asymptotic properties to find out the convergence domain.
4. ANALYTIC PROPERTIES OF THE BORN APPROXIMATION

The foregoing discussion does not apply to \(\mathcal{B}_{11} \), namely to the matrix element of the potentials \(V_2 \) and \(V_3 \). We shall now show directly that the contribution of \(V_2 \), for instance, is a meromorphic function of \(J \).

Let us use the same fixed reference system where the polar angles of \(p_1, q_2, p_3, p_1 \) are \((0,0) (a, x), (a', x'), (\theta, \phi)\), with \(\gamma_1 = a \) and

\[
\cos \gamma_1 = \cos a' \cos \theta + \sin a' \sin \theta \cos (\phi - x').
\]

Let us consider, for simplicity, the case in which the potential \(V_2 \) is a pure Yukawa potential with range \(u^{-1} \). Its contribution to the helicity amplitude is given, according to Jacob and Wick, by

\[
\int \phi_0(q_{23}) \frac{M}{\sigma} \left(\gamma_1 \right) e^{-iM'x'} e^{-i(M-M')\phi} d_{M'M} J(\theta)
\]

\[
\times \frac{1}{|q_2 - q_3|^2 + u^2} \phi_0(q_{23}) \frac{M}{\sigma} \left(\gamma_1 \right) e^{iMx'}
\]

\[
\times d^3 q_{23} d^3 q_2 d \cos \theta d\phi.
\]

Noticing that the quantity to be integrated depends only upon \(u = x - \phi \) and \(u' = x' - \phi' \), one gets
\[
\int \phi_\sigma(q_{23}) \mathcal{P}_\sigma^M(\gamma_1') e^{-iM'u'} d\mathcal{M}'(q_{23}) e^{iMu} \phi_\sigma(q_{23}) \mathcal{P}_\sigma^M(\gamma_1)
\]

\[
x \left[|q_{13} - q_{13}'|^2 + \mu^2 \right]^{-1} (q_{23} q_{23}')^2 dq_{23} dq_{23}'
\]

\[
x \, d\alpha \, d\cos \alpha \, d\cos \alpha' \, d\cos \theta \, du \, du',
\]

where, in the case of equal masses,

\[
|q_{13} - q_{13}'|^2 = \left[\frac{3}{2}(p_1 - p_1') - (q_{23} - q_{23}') \right]^2
\]

\[
= \frac{9}{4}(p_1^2 + p_1'^2) + q_{23}^2 + q_{23}'^2 - \frac{9}{2} p_1 p_1' \cos \theta
\]

\[
- \frac{3}{2} p_1 q_{23} \cos \alpha + \frac{3}{2} p_1 q_{23}' \cos \alpha'
\]

\[
+ 2 q_{23} q_{23}' \left[\cos \alpha \cos \alpha' + \sin \alpha \sin \alpha' \cos (u - u') \right]
\]

\[
+ 3 p_1' q_{23} \left[\cos \alpha \cos \theta + \sin \alpha \sin \theta \cos u \right]
\]

\[- 3 p_1' q_{23}' \left[\cos \alpha' \cos \theta + \sin \alpha' \sin \theta \cos u' \right]. \tag{10}
\]

Let us consider Eq. (9). The integrations upon \(u\) and \(u'\) can be split into an integration upon \(\frac{1}{2}(u + u')\) and upon \(\frac{1}{2}(u - u')\). The integration upon \(\frac{1}{2}(u + u')\), taking Eqs. (7) and (10) into account will give

\[
\left| \sin \theta \right|^{M-M'}
\]
times a function analytic in \(\cos \theta \) in a neighborhood of the segment \((-1, +1)\). This is precisely the factor that allows one to apply the reciprocity formula between Jacobi functions of the first and second kinds (Eqs. A-10 and A-12 of II). Therefore, when \(J \) is an integer, Eq. (9) can be replaced by

\[
\int \phi \left(q_{23} \right) P_\sigma (\gamma_1) e^{-iMu} e^{J(\theta) e^{iMu}} \phi \left(q_{23} \right) P_\sigma (\alpha)
\]

\[
x \left[|q_{13} - q_{13'}|^2 + \mu^2 \right]^{-1} (q_{23} q_{23'}) dq_{23} dq_{23'}
\]

(11)

\[
x d \cos \alpha d \cos \alpha' d \cos \theta du du',
\]

where the integration upon \(\cos \theta \) is now made along a contour \(\Gamma \) which encloses the singularity of \(\left[|q_{13} - q_{13'}|^2 + \mu^2 \right]^{-1} \). The integral (11) converges for any value of \(J \), since the singularities enclosed by \(\Gamma \) are only simple poles.
5. EXTENSION TO CONTINUOUS VALUES OF σ

Let us see if it is possible to extend Eq. (6b) to values of σ and σ' which are not the spins of physical bound states but any number, the wave-function \(\phi_\sigma \) being the wave function of a Regge pole with spin σ. First, in order not to spoil the convergence of the integrations upon \(q_{23} \) and \(q'_{23} \), one will have to keep \(\phi_\sigma(q_{23}) \) and \(\phi_\sigma(q'_{23}) \) square-integrable. This means that the mass \(m \) of the bound state will have to be taken in the physical sheet (namely in the complex kinetic energy plane cut from 0 to infinity), while σ will take its values on the Regge pole trajectory. Since σ(\(m \)) is bounded in that sheet of \(m \) in which the potential is a superposition of Yukawa potentials, there does not seem to be any reason to pass from formula (6b) to an analogous formula with the Legendre functions \(P_\sigma^M \) replaced by functions of the second kind \(\phi_\sigma^M \), as in the Froissart-Gribov formula.

(Moreover, there is no evidence that such a transformation is possible here.)

A new difficulty that appears when σ takes on continuous values is that the point \(\cos \gamma = -1 \) in \(P_\sigma^M(\gamma) \) becomes a singular point where \(P_\sigma^M \) behaves like \((\sin \gamma)^{-M/2} \). We have then to show that the integral (6b) keeps a meaning. We shall give a different justification for the contributions to (6b) of \(U_{1l} \) and of \(B_{1l} \).

Let us first consider the contribution of \(U_{1l} \). If Eq. (1) is written in the same form as Eq. (2) of II, where the terms of the kernel as well as the inhomogeneous terms have a form analogous to Eq. (25) of II, then one can see that the kernel contains a factor \(d_{MM'}^{J(-\theta_{ij})} \) and the inhomogeneous term contains a factor like \(d_{MM'}^{J(\theta_{ij})} \), where \(\theta_{ij} \), for instance, is the angle between the reference axis i and \(p_j \). For physical values of \(J \), one can solve the one iterated Fadeev equations by iteration, since the kernel is completely continuous. Taking into account the foregoing remark and the
explicit form (14) of II of the rotation matrices, one sees that $U_{11M'M}^J$ is proportional to $(\sin \Theta_{ij})^M (\sin \Theta_{ij}')^M$ when the triangle $P_1 \ P_2 \ P_3$ collapses. Then Eqs. (20a) and (20b) of I show that $U_{11M'M}^J$ is proportional to $(\sin \gamma_1)^M \sin \gamma_1'^J$ when γ_1 or γ_1' tends to zero. This behavior can be extended by continuity to complex values of J, and it allows the integration upon γ_1 and γ_1' in Eq. (6b) to converge.

The same result can be shown for the contribution by B_{11}, namely: use Eq. (9) and integrate upon u, according to Eq. (11); it will give $(\sin \alpha)^M$ times an analytic function of $\cos \alpha$, which is what we need.
6. CONCLUSIONS

We have shown that if our ansatz of meromorphy for the solution of the extended Fadeev equations is correct, the scattering amplitude of a particle on a bound state is a meromorphic function of the total angular momentum J. Moreover, it is possible to define the scattering amplitude of a particle on a Regge pole as long as the energy of this Regge pole is kept within the physical sheet. This is not enough to be able to define the scattering of a particle on a resonance, as was proposed by Zwanziger.\(^1\)

There remain two important mathematical problems to solve:

(a) to justify correctly the meromorphy of the solution,

(b) to investigate the limit process when z, the complex energy, tends to the physical energy.

These two problems will eventually be difficult but, according to the importance of the applications one can get from the notion of scattering of a particle on a Regge pole, it seems worthwhile to investigate them in order to work on a firmer basis.

A fundamental question would be why the scattering of two elementary particles and the scattering on a bound state, which are described by such different equations, have so similar analytic properties. The elucidation of the property and its connection with the basic groups (like the Galilean group) could shed new light on the problem of the formulation of good axioms for S-matrix theory.
FOOTNOTES AND REFERENCES

1. R. Omnes, On the Three-body Scattering Amplitude I and II (in this journal), hereafter referred to as I and II.

5. Quite recently, R. Newton published a preprint in which he avers that, with another choice of boundary conditions, the cuts are absent. He did not give any particular proof for that statement nor did he ameliorate his formalism.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.