Title
Localization of cognitive processes using Stroke patients and fMRI

Permalink
https://escholarship.org/uc/item/1qp7m0bp

Journal

ISSN
1069-7977

Authors
Prabhakaran, V.
Raman, S.P.
Grunwald, M.R.
et al.

Publication Date
2004

Peer reviewed
Localization of cognitive processes using Stroke patients and fMRI


Johns Hopkins University School of Medicine, Rutgers University*, Kennedy Krieger Institute†

Localization of cognitive processes to brain regions have mainly utilized the location of infarcted brain regions in stroke patients or fMRI in normal subjects. The BOLD effect in fMRI studies may be difficult to interpret in stroke patients who have areas of hypoperfusion (with resultant reduction in hemodynamic response) due to arterial stenosis. This study was undertaken to examine the influence of hypoperfused regions, in addition to the area of infarct itself, on cognitive processes and fMRI in stroke patients.

Methods

Subjects with subcortical strokes in the left MCA or right-MCA territories, along with normal controls, were imaged while performing a verbal fluency task. The experiments were performed on a 1.5 T whole-body scanner (Philips Medical System, Best, The Netherlands). The study population included six normal participants (3M, 3F, ages 24-57) and six stroke patients (3M, 3F, ages 28-58) with MCA distribution subcortical infarcts. Patients were given a verbal fluency task of 1 min. in duration, compared to rest of 30 secs, organized in an alternating block design, while being scanned with a whole brain fMRI/Stroke MRI-Protocol that included perfusion weighted imaging (PWI) that reveals areas of hypoperfusion as well as structural scans (FLAIR, DWI, T2 sequences)

Results

While normal subjects displayed a left-lateralized frontal-temporal and bilateral cingulo- striatal-thalamic-cerebellar network, the activation pattern of stroke patients was determined both by the hypoperfused regions and/or infarcted areas of the brain. Specifically, the left frontal-temporal network showed diminution of activity in our left MCA patients that had cortical hypoperfusion in the corresponding regions, although their infarcted areas were subcortical.

Table 1:

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Sex</th>
<th>Left MCA Stroke</th>
<th>Right MCA Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>50</td>
<td>M</td>
<td>Left frontal</td>
<td>Right frontal</td>
</tr>
<tr>
<td>MB</td>
<td>45</td>
<td>M</td>
<td>Left temporal</td>
<td>Right temporal</td>
</tr>
<tr>
<td>ZR</td>
<td>52</td>
<td>F</td>
<td>Left posterior</td>
<td>Right posterior</td>
</tr>
<tr>
<td>HR</td>
<td>58</td>
<td>M</td>
<td>Left temporal</td>
<td>Right temporal</td>
</tr>
<tr>
<td>HS</td>
<td>50</td>
<td>F</td>
<td>Left temporal</td>
<td>Right temporal</td>
</tr>
<tr>
<td>HH</td>
<td>55</td>
<td>M</td>
<td>Left temporal</td>
<td>Right temporal</td>
</tr>
</tbody>
</table>

Conclusions

The observation of a diminished BOLD signal in hypoperfused regions of cortex could either reflect reduced activation in these areas due to tissue dysfunction or reflect normal activation accompanied by increased oxygen extraction without a normal hemodynamic response. The results raise the possibility that localization studies should take into account brain regions that are hypoperfused, as well as infarcted brain regions, in trying to map cognitive processes to brain regions.

References:

