Organic Nitrates Contribution to New Particle Formation and Growth in Secondary Organic Aerosols from $\alpha$-Pinene Ozonolysis

Thomas Berkemeier,† Markus Ammann,‡ Thomas F. Mentel,§ Ulrich Pöschl,† and Manabu Shiraiwa*†

†Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
‡Laboratory of Environmental Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
§Institute of Energy and Climate Research, IEK-8, Forschungszentrum Jülich, Jülich 52425, Germany

ABSTRACT: The chemical kinetics of organic nitrates production during new particle formation and growth of secondary organic aerosols (SOA) were investigated using the short-lived radioactive tracer $^{15}$N in flow-reactor studies of $\alpha$-pinene oxidation with ozone. Direct and quantitative measurements of the nitrogen content indicate that organic nitrates accounted for ~40% of SOA mass during initial particle formation, decreasing to ~15% upon particle growth to the accumulation-mode size range (>100 nm). Experiments with OH scavengers and kinetic model results suggest that organic peroxy radicals formed by $\alpha$-pinene reacting with secondary OH from ozonolysis are key intermediates in the organic nitrate formation process. The direct reaction of $\alpha$-pinene with NO$_3$ was found to be less important for particle-phase organic nitrate formation. The nitrogen content of SOA particles decreased slightly upon increase of relative humidity up to 80%. The experiments show a tight correlation between organic nitrate content and SOA particle-number concentrations, implying that the condensing organic nitrates are among the extremely low volatility organic compounds (ELVOC) that may play an important role in the nucleation and growth of atmospheric nanoparticles.

INTRODUCTION

Organic aerosol particles constitute a major fraction of air particulate matter, affecting climate and posing adverse effects on human health.$^{1−5}$ These particles are either emitted directly by wood and fossil-fuel combustion, cooking, and natural sources$^6$ or formed by oxidation of volatile organic compounds (VOCs) by atmospheric oxidants such as ozone (O$_3$), nitrate (NO$_3$), and hydroxyl (OH) radicals.$^{7−10}$ NO$_3$ is an important night-time oxidant for VOCs but rapidly undergoes photolysis during initial particle formation, decreasing to ~15% upon particle growth to the accumulation-mode size range (>100 nm). Experiments with OH scavengers and kinetic model results suggest that organic peroxy radicals formed by $\alpha$-pinene reacting with secondary OH from ozonolysis are key intermediates in the organic nitrate formation process. The direct reaction of $\alpha$-pinene with NO$_3$ was found to be less important for particle-phase organic nitrate formation. The nitrogen content of SOA particles decreased slightly upon increase of relative humidity up to 80%. The experiments show a tight correlation between organic nitrate content and SOA particle-number concentrations, implying that the condensing organic nitrates are among the extremely low volatility organic compounds (ELVOC) that may play an important role in the nucleation and growth of atmospheric nanoparticles.

Received: February 24, 2016
Revised: May 18, 2016
Accepted: May 24, 2016
Published: May 24, 2016

DOI: 10.1021/acs.est.6b00961
flight mass spectrometry (HR-ToF-MS) have been used as offline techniques to determine organic nitrogen contents. An overview on previous studies determining the nitrate content in various laboratory aerosol samples is given in Table 1.

In this study, we applied the short-lived radioactive tracer $^{13}$N to quantify the amount of organic nitrates produced and retained in SOA particles. This online technique gives an accurate estimate of the total $^{13}$N that entered the particle phase combined was detected with a packed Co-oxide trap that traps particles and also efficiently binds all gas-phase NO$_x$ species ($\equiv$NO$_y$, NO$_3$, HNO$_3$, N$_2$O$_5$, and organic nitrates). The Co-oxide (dominated by Co$_3$O$_4$) packing was obtained by soaking firebricks in saturated Co-nitrate solution followed by baking at 700 °C. For the quantification of $^{13}$N in the particle phase alone, particles were collected on a glass-fiber filter after removing all gas-phase species by a charcoal denuder. CsI scintillation counters (Carroll and Ramsey) were placed behind both a Co-oxide trap and glass fiber filter, and the flux of $^{13}$N into both traps was measured at 1 min time resolution. $^{13}$N is a well-known positron ($\beta^+$) emitter, and the generated positrons annihilate with an electron under the emission of two $\gamma$-photons, which were measured by the scintillation counters. The inversion method to derive incoming $^{13}$N from integrated $\gamma$-ray signals is described in detail elsewhere. All experiments were performed at room temperature (295 K).

Mass Fraction of Organic Nitrates. The mass fraction of organic nitrates RONO$_2$ in the particle phase ($\omega_{\text{RONO}_2}$) was determined by comparison of the measured particle phase $^{13}$N signal intensity ($I_p$) to the gas-phase $^{13}$N signal intensity in the absence of the $\alpha$-pinene ozonolysis reaction ($I_{p0}$), measured at the Co-oxide trap. $I_p/I_{p0}$ constitutes the entirety of undecayed $^{13}$N at the end of the flow reactor and can easily be correlated to the initial NO gas-phase concentration $c_{\text{NO}_x}$ ($I_p/I_{p0}$ $\propto$ $c_{\text{NO}_x}$) hence provides an absolute number concentration of nitrogen atoms in the particle phase. We assume that particle-phase nitrogen was dominated by organic nitrates and the contribution of inorganic nitrogen (e.g., HNO$_3$ and N$_2$O$_5$) was very small, as confirmed by RH-dependent experiments. Increase in humidity

<table>
<thead>
<tr>
<th>ON/OA precursor</th>
<th>method</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>15–40% $\alpha$-pinene</td>
<td>$^{13}$N tracer</td>
<td>AFT</td>
</tr>
<tr>
<td>50–80% $\alpha$-pinene</td>
<td>$^{13}$N tracer</td>
<td>AFT</td>
</tr>
<tr>
<td>6–18% $\alpha$-pinene</td>
<td>TD–LIF</td>
<td>AFT</td>
</tr>
<tr>
<td>9–27% $\alpha$-pinene</td>
<td>FTIR</td>
<td>EC</td>
</tr>
<tr>
<td>45–74% $\beta$-pinene</td>
<td>HR-ToF-AMS</td>
<td>EC</td>
</tr>
<tr>
<td>56% $\beta$-pinene</td>
<td>TD–LIF</td>
<td>EC</td>
</tr>
<tr>
<td>32–41% $\beta$-pinene</td>
<td>HR-ToF-AMS</td>
<td>EC</td>
</tr>
<tr>
<td>36% limonene</td>
<td>TD–LIF</td>
<td>AFT</td>
</tr>
<tr>
<td>82% limonene</td>
<td>TD–LIF</td>
<td>EC</td>
</tr>
<tr>
<td>25% $\Delta$-carene</td>
<td>TD–LIF</td>
<td>AFT</td>
</tr>
<tr>
<td>56% $\Delta$-carene</td>
<td>TD–LIF</td>
<td>EC</td>
</tr>
<tr>
<td>22–23% HR-ToF-AMS</td>
<td>field</td>
<td>Lee et al.</td>
</tr>
<tr>
<td>27–40% TD–LIF</td>
<td>field</td>
<td>Rollins et al.</td>
</tr>
<tr>
<td>23–44% HR-ToF-AMS</td>
<td>field</td>
<td>Ayres et al.</td>
</tr>
<tr>
<td>19–32% HR-ToF-AMS</td>
<td>field</td>
<td>Xu et al.</td>
</tr>
<tr>
<td>5–12% HR-ToF-AMS</td>
<td>field</td>
<td>Xu et al.</td>
</tr>
</tbody>
</table>

Note that the ON fractions reported in this study are for dark ozonolysis of $\alpha$-pinene, while most other laboratory studies looked into oxidation by NO$_x$, or photooxidation by OH, respectively. From NO$_3$ oxidation. From OH photooxidation.
should favor inorganic nitrate formation by N₂O₅ hydrolysis to form HNO₃, which was not observed with the ¹³N signal. Moreover, the box-model simulations have shown that N₂O₅ did not accumulate in significant amounts, as outlined below. In fact, the ¹³N signals at both detectors were reduced at elevated relative humidity, probably due to the more efficient loss of HNO₃ and N₂O₅ to the flow-reactor walls under humid conditions. There are also potential wall loss effects of O₃, NO₂, and NOₓ which have been considered in the kinetic box model described below. Raw data from a typical experiment is showcased in Figure S1. For each data point, the flow tube system was flushed with synthetic air for 20–30 min until the ¹³N signal intensity (I_{SO} black solid line in Figure S1) stabilized. After the simultaneous addition of all reactants, I_p (black solid line in Figure S1) was determined once a steady state in SMPS and scintillation counter signal was reached. With knowledge of the aerosol mass concentration, m_{SOA}, and assuming that each organic nitrate molecule contains only a single -ONO₂ function, w_{ON} can be determined by

\[ w_{ON} = \frac{I_p M_{ON} N_A}{B A I_{SO}} \tag{1} \]

where N_A is Avogadro’s number. The molar mass M_{SOA} was assumed to be 250 ± 50 g mol⁻¹, which was chosen considering the high abundance of nitrated products in the range of 200–250 g mol⁻¹. The reaction pathways in MCM are shown in Table S2. A simplification mechanism of SOA formation, which is based on MCM but lumps individual compounds into bins of compound classes with similar properties. The added mechanism consists of seven additional reactants in 23 chemical reactions (Table 2 and Figure S2). These reactants include two types of reactive oxygen intermediates (ROI), in the form of organic peroxy radicals (RO₂) and alkoxy radicals (RO), which are formed upon initial reaction of α-pinene with O₃ and OH and can be interconverted. All stable, non-nitrated products are lumped into an organics bin and assumed inert toward further oxidation. Molecules in an organic nitrates bin are formed either via the oxidation of α-pinene with NO₃ or via the reaction of RO₂ with NO. Following the major reaction pathways in MCM, we distinguish three different RO₂ radicals: RO₂ is produced from α-pinene ozonolysis and are not able to form organic nitrates, and RO₂ is mainly formed from OH oxidation of α-pinene and RO₂. RO₂ contains a nitrate group. OH is produced secondarily during α-pinene ozonolysis, RO₂. Branching between R1 and R2 returns a production efficiency of OH of 85%, which is in line with previous observations. RO radicals are formed by the reaction of RO₂ with NO, NOₓ, or RO₂, leading to recycling of HO₂ via reaction R21. We distinguish non-nitrated (RO₂) and nitrated (RO₂) forms of RO radicals. When possible, reaction rates were directly adopted from MCM. When reaction rates differed between individual species in a compound class (R8, R9, and R15–R20 in Table 2), an intermediate or representative reaction rate was used in the lumped model.

The formation of peroxyacyl nitrates (PANs) has been neglected for simplicity because these reactions would have prompted an even more detailed oxidation mechanism, and PANs are not expected to contribute to SOA mass significantly due to their high vapor pressures. The wall loss of a subset of compounds (i.e., O₃, NO₂, NOₓ, HNO₃, and N₂O₅) was accounted for using an uptake coefficient γ (Table S3). A substantial fraction of the low-volatility oxidation products (organics and organic nitrates) may also be lost to the reactor walls (as the reactor-wall surface exceeds the aerosol surface considerably), but inclusion of these losses does not affect the merely qualitative result of the calculations and has thus been

<table>
<thead>
<tr>
<th>no.</th>
<th>reaction</th>
<th>reaction rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>O₃ + α-pinene → RO₂ + OH</td>
<td>k₁ = 0.85 × 9.2 × 10⁻¹⁷ cm³ s⁻¹</td>
</tr>
<tr>
<td>R2</td>
<td>O₃ + α-pinene → RO₂</td>
<td>k₂ = 0.15 × 9.2 × 10⁻¹⁷ cm³ s⁻¹</td>
</tr>
<tr>
<td>R3</td>
<td>OH + α-pinene → RO₂</td>
<td>k₃ = 5.3 × 10⁻¹⁰ cm³ s⁻¹</td>
</tr>
<tr>
<td>R4</td>
<td>NO + α-pinene → RO₂</td>
<td>k₄ = 6.3 × 10⁻¹⁰ cm³ s⁻¹</td>
</tr>
<tr>
<td>R5</td>
<td>NO + RO₂ → NO₃ + RO</td>
<td>k₅ = 9.1 × 10⁻¹² cm³ s⁻¹</td>
</tr>
<tr>
<td>R6</td>
<td>NO₂ + RO₂ → NO₃ + RO</td>
<td>k₆ = 2.3 × 10⁻¹² cm³ s⁻¹</td>
</tr>
<tr>
<td>R7</td>
<td>HO₂ + RO₂ → organics</td>
<td>k₇ = 2.2 × 10⁻¹¹ cm³ s⁻¹</td>
</tr>
<tr>
<td>R8</td>
<td>NO + RO₂ → organic nitrates</td>
<td>k₈ = 0.17 × 9.1 × 10⁻¹₂ cm³ s⁻¹</td>
</tr>
<tr>
<td>R9</td>
<td>NO + NO₂ → NO₂ + RO</td>
<td>k₉ = 9.1 × 10⁻¹² cm³ s⁻¹</td>
</tr>
<tr>
<td>R10</td>
<td>NO₃ + RO₂ → NO₂ + RO</td>
<td>k₁₀ = 2.3 × 10⁻¹² cm³ s⁻¹</td>
</tr>
<tr>
<td>R11</td>
<td>HO₂ + RO₂ → organics</td>
<td>k₁₁ = 2.2 × 10⁻¹¹ cm³ s⁻¹</td>
</tr>
<tr>
<td>R12</td>
<td>NO + RO₂ → NO₂ + RO</td>
<td>k₁₂ = 9.1 × 10⁻¹² cm³ s⁻¹</td>
</tr>
<tr>
<td>R13</td>
<td>NO₃ + RO₂ → NO₂ + RO</td>
<td>k₁₃ = 2.3 × 10⁻¹² cm³ s⁻¹</td>
</tr>
<tr>
<td>R14</td>
<td>Ho₂ + RO₂ → organic nitrates</td>
<td>k₁₄ = 2.2 × 10⁻¹¹ cm³ s⁻¹</td>
</tr>
<tr>
<td>R15</td>
<td>RO₂ → RO</td>
<td>k₁₅ = [RO₂] × 0.7 × 10⁻¹³ cm³ s⁻¹</td>
</tr>
<tr>
<td>R16</td>
<td>RO₂ → organics</td>
<td>k₁₆ = [RO₂] × 0.3 × 10⁻¹⁰ cm³ s⁻¹</td>
</tr>
<tr>
<td>R17</td>
<td>RO₂ → RO</td>
<td>k₁₇ = [RO₂] × 0.7 × 10⁻¹⁰ cm³ s⁻¹</td>
</tr>
<tr>
<td>R18</td>
<td>RO₂ → organics</td>
<td>k₁₈ = [RO₂] × 0.3 × 10⁻¹⁰ cm³ s⁻¹</td>
</tr>
<tr>
<td>R19</td>
<td>RO₂ → RO</td>
<td>k₁₉ = [RO₂] × 0.8 × 10⁻¹⁰ cm³ s⁻¹</td>
</tr>
<tr>
<td>R20</td>
<td>RO₂ → organic nitrates</td>
<td>k₂₀ = [RO₂] × 0.2 × 10⁻¹⁰ cm³ s⁻¹</td>
</tr>
<tr>
<td>R21</td>
<td>RO → organics + HO₂</td>
<td>k₂₁ = 1 × 10⁶ s⁻¹</td>
</tr>
<tr>
<td>R22</td>
<td>RO → RO₂</td>
<td>k₂₂ = 1 × 10⁶ s⁻¹</td>
</tr>
<tr>
<td>R23</td>
<td>RO → organics + NO₂</td>
<td>k₂₃ = 1 × 10⁶ s⁻¹</td>
</tr>
<tr>
<td>R24</td>
<td>RO → RO₂</td>
<td>k₂₄ = 1 × 10⁶ s⁻¹</td>
</tr>
</tbody>
</table>
neglected. Limitations due to mixing of gas flows and condensation onto particles was also neglected in the calculation.

To validate the lumped model, we performed calculations including the full MCM mechanism, which returned a good correlation between both approaches (Figure S3). The lumped model with only 23 distinct reactions is thus a valid approximation of the complex explicit mechanism with 894 reactions and suffices for the general mechanistic considerations in this study. Given the comparability of both calculations, such a simplified mechanism may increase the feasibility of more resource intensive calculations such as multiphase chemistry models or regional climate models in future studies.

## RESULTS AND DISCUSSION

### Quantification of Organic Nitrate

Figure 2a shows the time evolution of particle-number concentration (blue circles) and aerosol mass concentration (orange hexagons) as determined by the SMPS system, assuming an average density of 1.25 g cm$^{-3}$ for SOA compounds. The intensity of the $^{13}$N particle-phase signal (green squares) was normalized by the $^{13}$N gas-phase signal intensity in the absence of the $\alpha$-pinene ozonolysis, and the numerical value of the normalized signal thus directly represents the fraction of original NO$_x$ that entered the particle phase. In this typical experiment, 1.6 ppm ozone was added in 2-fold excess to 800 ppb NO because both species react quickly on the time scale of a few seconds, in situ forming NO$_2$. $\alpha$-Pinene was added in slight excess (1 ppm) to minimize potential nonozonolysis reactions between ozone and organics. Typical experiments reached SOA mass concentrations of up to 500 μg m$^{-3}$, with a number mean diameter of $\sim$120 nm and a mass mean diameter of $\sim$250 nm. Note that due to experimental constraints on the reaction time and detection sensitivity, the concentrations used in this experiment are larger than typically observed in the atmosphere.

As shown in Figure 2a, the SOA mass increased almost linearly with time throughout the experiment. The $^{13}$N particle-phase signal increased strongest in the early stages of the experiment when the SOA concentration was still very low, indicating that the nitrated products must exhibit a low volatility. The $^{13}$N signal ceased to increase after $\sim$200 s, correlating well with the particle number concentration. This behavior was reproduced in several experiments (cf. Figure S4), suggesting a relationship between the formation of nitrogen-containing compounds and new particle formation. This observation is in line with previous suggestions that organic nitrates may contribute significantly to atmospheric new-particle-formation events, especially over forested regions.

Figure 2b shows the time evolution of the particle-phase nitrogen content in the particle-phase $w_{\text{ON}}$. $w_{\text{ON}}$ was as high as 40% in the beginning and reduced to 15% toward the end of the experiment as the production of organic nitrates ceased and the total SOA mass continued to increase. These are the first measurements of $w_{\text{ON}}$ for dark ozonolysis in the literature so far but can be compared to experiments of OH photooxidation and NO$_2$-induced oxidation, which have been extensively studied, as is summarized in Table 1. Individual reported nitrate contents span wide ranges, representing experimental uncertainty. Compared to other precursors such as limonene and $\beta$-pinene, $\alpha$-pinene produces significantly less organic nitrate. Field studies confirm the high contribution of organic nitrate formation to SOA mass, reaching as high as 44%, which is in line with the organic nitrate content of freshly nucleated SOA in this study.

As discussed below, the deceleration in organic nitrate production during the course of the experiments is most likely due to depletion of NO in the reactor. In the atmosphere, NO is unlikely to be totally scavenged by ozone during daytime due to the continuous emission of NO$_2$ and photolysis of NO$_2$. This scenario could not be simulated in the flow-tube experiments because the high ozone concentrations, which are necessary to produce a large enough amount of organic aerosol, drives the equilibrium strongly toward NO$_2$, even under the light conditions possible in our flow-tube setup. Irradiation with UV light (centered around 354 nm) had, in fact, no significant effect within experimental error on both produced SOA mass and strength of the $^{13}$N signal (Figure S4).

The addition of an excess of 50 ppm cyclohexane as OH scavenger led to a complete shutdown of new particle formation. Experiments including ammonium sulfate seed particles revealed a strong suppression of SOA mass and the $^{13}$N signal once cyclohexane was added. SOA production could be recovered upon increase of ozone concentrations, but the $^{13}$N signal stayed low at an elevated background level, as shown...
in Table S4. This suggests that the major pathway of organic nitrate formation occurs via the \( \alpha \)-pinene–OH reaction, which is in line with the reaction mechanism proposed in Table 2.

We thus expect organic nitrate formation to be strong under day light conditions, i.e., during OH photooxidation. We performed a separate set of OH photooxidation experiments by in situ photolysis of HONO (see Figure S5 for experimental details). As outlined in Figure SSB, the organic nitrate mass fractions stabilized at \(~50\%\) in the flow-tube reactor. This augmented value is higher than previously determined for the OH photooxidation of \( \alpha \)-pinene\(^{34,53}\) but in line with the proposed reaction mechanism because only \( \text{RO}_2 \) radicals produced in OH oxidation (\( \text{RO}_2 \),\(^{45}\)) contribute to organic nitrate formation.\(^{45,46}\) A possible reason for the discrepancy between previous studies and this study might be the larger concentration of NO in our experiments, as it is also in situ produced from HONO photolysis, which was expected to limit organic nitrate formation in previous studies.\(^{34}\) In the atmosphere and under daylight conditions, NO exists in a photostationary state and is only scavenged at high ozone concentrations. Hence, the high organic nitrate contents of up to 44% found in field samples (Table 1) can be understood as a result of both ozonolysis and photooxidation but will also include organic nitrates produced via nighttime NO\(_3\) oxidation. Although oxidation of \( \alpha \)-pinene by NO\(_3\) is known to produce anomalously low amounts of SOA and was thus less relevant in the experiments of this study, this reaction pathway can contribute strongly to the production of organic nitrates for other biogenic precursors.\(^{25,38}\) Note that in the OH photooxidation experiment, as opposed to the ozonolysis experiments, new particle formation could not be directly correlated to the \( ^{15} \text{N} \) signal (Figure S5a).

**Dependence on Environmental Parameters.** We investigated the dependence of particle-phase nitrogen on relative humidity, NO\(_3\), and O\(_3\) concentrations. Organic nitrates are known to undergo hydrolysis under humid conditions.\(^{15,16}\) Figure 3a shows the \( ^{15} \text{N} \) signal measured at three different relative humidities: 0, 30 and 80% RH. The \( ^{15} \text{N} \) particle-phase signal was further normalized by the produced SOA mass because both signals showed the same scattering pattern between repetitions of the same experiment, indicating uniform nitrogen content. For every humidity displayed in Figure 3a, three full time dependencies have been measured, and the data points represent averages from all runs. Increased relative humidity led to a slight but significant decrease in the \( ^{15} \text{N} \) signal. It has to be noted that the duration of the experiment is shorter than the expected atmospheric lifetime of tertiary organic nitrates toward hydrolysis of several hours.\(^{16,47,54}\) Primary and secondary nitrates are not expected to hydrolyze at atmospheric time scales.\(^{55}\) The small dependence of the \( ^{15} \text{N} \) signal on relative humidity found in this study is thus expected to be more pronounced at atmospheric time scales.\(^{17}\)

In a similar fashion, the NO\(_3\) concentrations were varied systematically between 1–100 ppb, yielding practically no difference in SOA mass, particle number, and \( ^{15} \text{N} \) signal, as shown in Figure 3b. Note that in these experiments, the concentrations of NO\(_3\) were much smaller than the \( \text{O}_3 \) concentration (1350 ppb), so that \( \text{O}_3 \) remained largely unaffected from immediate titration with NO upon mixing in the flow tube. Varying the \( \text{O}_3 \) concentration in our experiments strongly affected the mass of non-nitrat-ed organics and, only to a slighter extent, the particle-number concentration and particle-phase nitrogen signal (Figure S6). Note that those experiments were performed under low-NO\(_3\) conditions, where only trace amounts of labeled nitrogen were present in the system.

**Box-Model Calculations.** We applied the kinetic box model to showcase that the data can be qualitatively described by a simple kinetic mechanism. Panels a and b of Figure 4a show the concentration profiles of all major gas-phase species under typical experimental conditions with initial concentrations of 1600 ppb \( \text{O}_3\), 1000 ppb \( \alpha \)-pinene, and 800 ppb NO. NO (light blue solid line, Figure 4a) is quickly titrated by ozone and \( \text{RO}_2 \) and drops below 1 ppb after 25 s of the experiment. In this period, a large fraction of the total organic nitrate is formed through the \( \text{RO}_2 + \text{NO} \) channel (light green dashed line, Figure 4b), with most \( \text{RO}_2 \) originating from the \( \alpha \)-pinene + OH reaction. After this point, organic nitrates are mostly produced through the \( \alpha \)-pinene + \( \text{NO}_3 \) channel, leading to a slow but steady increase of the total organic nitrate concentration (dark green solid line). The concentration of in-situ-produced NO\(_3\) stays in the low ppt range. These modeling results are consistent with the experimental observations, where formation of organic nitrates almost ceased after an initial period of fast growth. Predominant formation of organic nitrates via the \( \alpha \)-pinene + OH channel at the beginning of the experiment may explain the correlation to new particle formation seen in Figure 2a: organic compounds formed via \( \text{RO}_2 \) radicals are known to
form highly oxidized multifunctional molecules by autoxidation, which may play a major role in new particle formation. In the model calculations, organic nitrates constituted up to ~26% of the total number of stable organic molecules in the gas phase (red solid line, Figure 4b), which is on the same order as the particle-phase composition determined in the \(^{13}\)N tracer experiments, and shows the same temporal evolution as it drops to ~7% after 2 min of reaction time. The calculation results deviate from the experiment as organic nitrates were continuously produced via the alpha-pinene + NO\(_3\) channel in the calculations (dark green solid line, Figure 4b), while in the experiments, no further organic nitrate was detected (Figure 2a), but rather, they followed the behavior of organic nitrates produced via the RO\(_2\) + NO channel (light green dashed line, Figure 4b). Note that the time-dependent particle-phase composition depends not only on the concentrations and vapor pressure of the reaction products but also on their gas and bulk diffusivities in the case of nonequilibrium SOA partitioning: the nitrate-rich organic material condensed onto particles in the early stages of the experiment might not partition back to the gas phase on the time scale of the experiment if organic particles adopt an amorphous solid state. In MCM, many stable organic nitrates formed via the alpha-pinene + NO\(_3\) channel are first-generation products, which may be too volatile to partition into the particle phase in significant amounts and are assumed to play only a minor role in the initial particle nucleation. This observation is consistent with previous results, such as those by Fry et al. and Draper et al., who observed no aerosol formation from NO\(_3\) oxidation of alpha-pinene. Further evidence against the significant contribution of the alpha-pinene + NO\(_3\) channel to SOA mass comes from experiments under UV irradiation, showing a negligible effect of UV light on the \(^{13}\)N signal during experiments (Figure S4). NO\(_3\) photolyses readily at wavelengths in the visible part of the light spectrum. Organic nitrates from the alpha-pinene + NO\(_3\) channel are thus expected to decrease upon irradiation with UV light.

Future studies would benefit from a more detailed kinetic model, which includes a comprehensive chemical mechanism and also treats the full process of gas-phase oxidation, partitioning into the particle phase, and potential subsequent particle-phase chemistry. Such complex models would, however, need a much larger set of kinetic data than that available in this study to constrain the multitude of model input parameters necessary to describe all important processes. The lumped model developed in this study may help to describe the multiphase chemistry of SOA formation in future studies because it strongly reduces the complexity of the chemical mechanism while correctly describing the concentrations of all important gas-phase reactants.

In conclusion, nitrogen containing compounds account for a significant fraction of alpha-pinene SOA. Using a radioactive tracer method, we found that organic nitrates constitute up to 40% of aerosol mass, with a pronounced influence during the initial formation period of particles. Experiments using OH scavengers showed low particle-phase nitrogen, suggesting that organic nitrate formation is mostly achieved through oxidation with OH to form RO\(_2\) radicals and subsequent reaction with NO\(_3\), as summarized in Figure 5. Organic nitrates originating from OH oxidation may be extremely low-volatility compounds (ELVOCs), as suggested by the strong abundance of particle-phase nitrates at low aerosol-mass loadings and the tight correlation between organic nitrate content and particle number: strongly reduced particle formation rates in the presence of OH scavengers suggest that organic nitrates and other non-nitrated ELVOCs from OH-initiated oxidation may play an important role in facilitating particle nucleation and initial nanoparticle growth.

Strong formation of organic nitrates can significantly affect the atmospheric NO\(_3\) budget by reacting as reservoir species or

---

**Figure 4.** Modeling results showing the gas-phase concentrations of a selection of important (A) inorganic and (B) organic compounds tracked by the lumped chemistry box model. The dark green line represents all organic nitrates produced, whereas the dashed light green line shows only organic nitrates produced via the RO\(_2\) + NO channel, hence excluding the alpha-pinene + NO\(_3\) channel.

**Figure 5.** Schematic representation of the key processes explaining the experimental observations. Alpha-pinene reacts with ozone to Criegee intermediates (CI), which, under elimination of OH, decompose into semivolatile and low-volatile organic compounds (SVOC and LVOC). OH also reacts with alpha-pinene under the formation of RO\(_2\) radicals that may react with NO to form organic nitrates (RONO\(_2\)), which are assumed to be of extremely low volatility, or non-nitrated low-volatility and extremely low volatility compounds (LVOC and ELVOC). ELVOCs from the OH oxidation of alpha-pinene might facilitate particle nucleation and, along with other oxidation products, lead to particle growth through condensation. The organic nitrate content ranges between 40% for freshly nucleated particles and 15% for particles in the accumulation-mode size range.
by providing a pathway for the deposition of particles and, hence, the removal of NO\textsubscript{2}.	extsuperscript{1,2} Because they are present in large amounts in organic aerosol, organic nitrates deposited in the lungs might have implications for human health because they release nitric acid upon hydrolysis. This is especially true in regions with a large contribution of biogenic SOA from monoterpene ozonolysis to the total aerosol burden, such as the Pacific Northwest, Mountain West, and the southeastern United States.\textsuperscript{64,65}

- ASSOCIATED CONTENT

1 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.6b00961.

Experimental details on OH photooxidation experiments and calculations with the extended gas-phase chemistry mechanism. Molar mass of typical nitrated products for α-pinene ozonolysis (Table S1); HO\textsubscript{x} and NO\textsubscript{x} gas phase chemistry mechanism (Table S2); uptake coefficients for reactor wall losses (Table S3); and experimental data on OH scavenger experiments (Table S4). Experimental raw data from a typical experiment in the flow tube reactor (Figure S1); schematic representation of the reaction mechanism (Figure S2); comparison between lumped and explicit chemistry model (Figure S3); experimental data on UV irradiation experiments (Figure S4); experimental data on OH photooxidation (Figure S5); and experimental data on ozone concentration dependence experiments (Figure S6). (PDF)

- AUTHOR INFORMATION

Corresponding Author

*Tel: 0049-6131-305-7401; e-mail: m.shiraiwa@mpic.de.

Notes

The authors declare no competing financial interest.

- ACKNOWLEDGMENTS

This work was funded by the Max Planck Society (MPG) and the EU project PEGASOS. T.B. was supported by the Max Planck Graduate Center with the Johannes Gutenberg-Universität Mainz (MPGC). M.A. appreciates support by the Swiss National Science Foundation (grant no. 149492). We thank Goran Gržinić, Andrea M. Arangio, and Dogushan Kılıç for their help in conducting the experiments and Mario Birrer for technical support as well as Josef Dommen, Thorsten Bartels-Rausch, and Jason D. Surratt for helpful discussions.

- REFERENCES

(3) IPCC. Climate Change 2013, The Physical Science Basis; Cambridge University Press: Cambridge, United Kingdom, 2013.


