Title
Vulvodynia: What We Know and Where We Should Be Going

Permalink
https://escholarship.org/uc/item/1rf6x9ch

Journal
JOURNAL OF LOWER GENITAL TRACT DISEASE, 21(2)

ISSN
1089-2591

Authors
Havemann, LM
Cool, DR
Gagneux, P
et al.

Publication Date
2017-04-01

DOI
10.1097/LGT.0000000000000289

Peer reviewed
Vulvodynia: What We Know and Where We Should Be Going

Logan M. Havemann, BA,1 David R. Cool, PhD,1,2 Pascal Gagneux, PhD,3 Michael P. Markey, PhD,4 Jerome L. Yaklic, MD, MBA,1 Rose A. Maxwell, PhD, MBA,1 Ashvin Iyer, MS,2 and Steven R. Lindheim, MD, MMM4

Objective: The aim of the study was to review the current nomenclature and literature examining microbiome cytokine, genomic, proteomic, and glycomic molecular biomarkers in identifying markers related to the understanding of the pathophysiology and diagnosis of vulvodynia (VVD).

Materials and Methods: Computerized searches of MEDLINE and PubMed were conducted focused on terminology, classification, and “omics” variations of VVD. Specific MESH terms used were VVD, vestibulodynia, metagenomics, vaginal fungi, cytokines, gene, protein, inflammation, glycomic, proteomic, secretomic, and genomic from 2001 to 2016. Using combined VVD and vestibulodynia MESH terms, 7 references were identified related to vaginal fungi, 15 to cytokines, 18 to gene, 43 to protein, 38 to inflammation, and 2 to genomic. References from identified publications were manually searched and cross-referenced to identify additional relevant articles. A narrative synthesis of the articles was conducted; however, meta-analysis was not conducted because of substantial heterogeneity in the studies and limited numbers of control-matched studies.

Results: Varying definitions of VVD complicate a meta-analysis, and standard definitions will better allow for comparisons of studies and enhance the applicability of evidence to patient populations. Although data are still limited, genomic and molecular diagnostic tests continue to be investigated as potential tools for the diagnosis of VVD.

Conclusions: Standardized nomenclature will allow for comparability of studies and progress in research related to the pathophysiology of VVD and to facilitate clinical decision making and treatment choices. Although the current understanding of the pathogenesis of VVD is limited, there are new opportunities to explore potential diagnostic markers differences in women with VVD, which may lead to targeted therapy.

Key Words: vulvodynia, microbiome, genomics, proteomics, glycomics

Vulvodynia (VVD) is a chronic, heterogeneous, and multifactorial disease that has remained an elusive and complex condition despite years of focused research.1–3 Vulvodynia is highly prevalent with lifetime estimates ranging from 10% to 28% among reproductive-aged women in the general population.4,5 Diagnosis requires a comprehensive history, physical examination, and specific diagnostic tests.6,7 However, the diagnosis is one of exclusion, only reached after testing results are negative for bacterial and fungal infections and after ruling out other causes for pain and discomfort.8 Treatment options are varied and targeted toward managing symptoms rather than toward a specific cause for the condition.7,8

Our understanding of VVD has been hindered by the use of varied terminology in the literature complicating research, evolving definitions, and unidentified pathogenesis of disease. The pathogenesis of VVD remains largely unknown and is likely multifactorial. Recent research has focused largely on an inflammatory pathogenesis, and our current understanding suggests an initial vaginal insult with infection1 followed by an inflammatory response10 that may result in peripheral and central pain sensitization, mucosal nerve fiber proliferation, hypertrophy, hyperplasia, and enhanced systemic pain perception.11 With advancements in our ability to measure transcriptomic markers of disease, as well as the progress in mapping the human genome and how variations affect disease states, new avenues of research in the pathogenesis of VVD can now be explored including the potential role for molecular markers in diagnosis, including microbiome cytokine, genomic, proteomic, and glycomic markers of disease.

Thus, we performed computerized searches of MEDLINE and PubMed from 2001 to 2016 focused on nomenclature and potential novel markers of diagnosis in VVD including vaginal microbiome, inflammatory cell composition, cytokines, genomic, proteomic, and glycomic markers.

STANDARDIZED NOMENCLATURE AND ITS RELEVANCE

Research in the area VVD has been hindered by inconsistent terminology use in the literature. The lack of consistent terms and definitions precludes the comparisons of studies and limits the use and applicability of evidence to patient populations whose diagnosis is based on variable criteria. In 1981, the International Society for Study of Vulvovaginal Disease (ISSVD) set up the first task force on vulvar pain. In an attempt to unite researchers, the ISSVD proposed a terminology and classification in 1999 with the universal use of the term “vulvodynia” to define chronic vulvar discomfort, mainly as burning, occurring in the absence of visible relevant findings.12 The definition has been revised multiple times because research into the causation and treatments modalities of VVD has evolved.12

Most recently in 2015, the ISSVD, the International Society for the Study of Women’s Sexual Health, and the International Pelvic Pain Society came to a consensus and replaced the original title of the terminology “Terminology and Classification of Vulvodynia” with “Terminology and Classification of Persistent Vulvar Pain” because the new terminology does not pertain to acute vulvar pain or only to VVD.10 Persistent vulvar pain is now categorized as “vulvar pain caused by a specific disorder” or “vulvodynia.”10 Vulvodynia is now more clearly defined as vulvar pain of at least 3-month duration, without clear identifiable cause and further subcategorized by the following descriptors: (1) localized (e.g., vestibulodynia, clitorodynia) or generalized or mixed (localized and generalized), (2) provoked (e.g., insertional, contact) or spontaneous or mixed (provoked and spontaneous), (3) onset (e.g., primary or secondary), and (4) temporal pattern (e.g., intermittent, persistent, constant, immediate, delayed).9

Now with standardized nomenclature, this should allow for progress in the understanding of the pathology of VVD including the comparability of future studies to facilitate clinical decision making and treatment choices. This is based on comprehensive

1Department of Obstetrics and Gynecology, Wright State University, Boonshoft School of Medicine, Dayton, OH; 2Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH; 3Department of Pathology, University of California San Diego, San Diego, CA; and 4Department of Biochemistry and Molecular Biology, Wright State University, Boonshoft School of Medicine, Dayton, OH

Reprint requests to: Steven R. Lindheim, MD, MMM, 128 Apple Street, Suite 3800, Weber CHE, Dayton, OH, 45409. E-mail: steven.lindheim@wright.edu

The authors have declared they have no conflicts of interest.

© 2016, American Society for Colposcopy and Cervical Pathology. DOI: 10.1097/LGT.0000000000000289

Journal of Lower Genital Tract Disease • Volume 21, Number 2, April 2017
The diagnosis of VVD at this time is inherently and a study from The Vaginal Researchers hypothesized it has additionally been shown that the vaginal microbial environment is usually dominated by 1 or 2 Lactobacillus species, most frequently Lactobacillus iners, Lactobacillus crispatus, Lactobacillus gasseri, or Lactobacillus jensenii, which can fluctuate in some patients on the basis of the woman’s menstrual cycle. A review of the literature suggests that the vaginal microbiome may be different in women with different geographical ancestry and suggests that these differences may alter predisposition to infection. Specifically, a portion of asymptomatic, healthy women, particularly African American and Hispanic women, host a polymicrobial vaginal environment dominated by bacteria other than Lactobacilli, including Prevotella, Gardnerella, Atopobium, and Megapathphaeus species. A study from The Vaginal Human Microbiome Project at Virginia Commonwealth University compared the microbiomes of vaginal samples from 1,268 African American women and 416 European American women. The findings revealed that in African American women, the most common vaginal microbe was L. iners, followed by Gardnerella vaginalis, BVAB1, “other,” and L. crispatus. In contrast, the most common vaginal microbe in women of European ancestry was L. crispatus, followed by L. iners and G. vaginalis, and that the BVAB1 microbial profile was only found in 5 samples. There are indications of a potential difference in the vaginal microbiome of women with VVD compared with control women. In a double-blind study, vaginal samples for bacterial flora and cytokines of patients with VVD were compared with controls, and cultures from control women showed the presence of L. crispatus, which was not present in samples from women with symptomatic VVD or VVD in remission, who alternatively demonstrated the presence of L. gasseri. Researchers hypothesized

Vaginal Microbiome
Recent initiatives including the 2007 Human Microbiome Project have directed efforts toward understanding and better identifying and characterizing microorganisms, deemed to be our “second genome.” Many genomes of our symbiotic microbes encode a plethora of genes with important roles for human health.

In analysis of the baseline vaginal microbiome in the physiologic healthy women, the Human Microbiome Project using 16S rRNA sequencing found that the Lactobacillus genus dominated the vaginal microbiome at the vaginal introitus, midpoint, and posterior fornix. It has additionally been shown that the vaginal microbial environment is usually dominated by 1 or 2 Lactobacillus species, most frequently Lactobacillus iners, Lactobacillus crispatus, Lactobacillus gasseri, or Lactobacillus jensenii, which can fluctuate in some patients on the basis of the woman’s menstrual cycle. A review of the literature suggests that the vaginal microbiome may be different in women with different geographical ancestry and suggests that these differences may alter predisposition to infection. Specifically, a portion of asymptomatic, healthy women, particularly African American and Hispanic women, host a polymicrobial vaginal environment dominated by bacteria other than Lactobacilli, including Prevotella, Gardnerella, Atopobium, and Megapathphaeus species. A study from The Vaginal Human Microbiome Project at Virginia Commonwealth University compared the microbiomes of vaginal samples from 1,268 African American women and 416 European American women. The findings revealed that in African American women, the most common vaginal microbe was L. iners, followed by Gardnerella vaginalis, BVAB1, “other,” and L. crispatus. In contrast, the most common vaginal microbe in women of European ancestry was L. crispatus, followed by L. iners and G. vaginalis, and that the BVAB1 microbial profile was only found in 5 samples. There are indications of a potential difference in the vaginal microbiome of women with VVD compared with control women. In a double-blind study, vaginal samples for bacterial flora and cytokines of patients with VVD were compared with controls, and cultures from control women showed the presence of L. crispatus, which was not present in samples from women with symptomatic VVD or VVD in remission, who alternatively demonstrated the presence of L. gasseri. Researchers hypothesized

Current strategies in the pathogenesis and diagnosis of VVD
Women with VVD often describe vulvar pain as a burning, stinging, irritation, rawness, and dyspareunia (difficult or painful intercourse). The diagnosis of VVD at this time is inherently one of exclusion, because the ISSVD requires that the vulvar pain exists without clear and identifiable cause. Currently, there are no specific tests for markers of disease, and the diagnosis requires a comprehensive history and physical examination and exclusion of other etiologies of vulvar pain (see Table 1). A better understanding of the pathogenesis of VVD is an important step in developing better and more specific diagnostic tests for VVD. As medicine moves toward the universal classification and diagnosis of patients, and nuanced parameters that will now be enhanced with the universal classification and diagnosis of patients.

Table 1. Differential Diagnosis of VVD

<table>
<thead>
<tr>
<th>Category</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious</td>
<td>Candidiasis trichomonas, herpes</td>
</tr>
<tr>
<td>Inflammatory</td>
<td>Allergic vulvitis, lichen planus, lichen sclerosus</td>
</tr>
<tr>
<td>Neoplastic</td>
<td>Paget disease, vulvar intraepithelial neoplasia, squamous cell carcinoma, vulvar melanoma, sarcomas of the vulva</td>
</tr>
<tr>
<td>Neurologic</td>
<td>Neuraoma, postherpetic neuralgia, pudendal canal syndrome, other nerve compression injury</td>
</tr>
<tr>
<td>Trauma</td>
<td>Female genital cutting, forced entry, obstetrical</td>
</tr>
<tr>
<td>Iatrogenic</td>
<td>Postoperative, chemotherapy, radiation</td>
</tr>
<tr>
<td>Hormonal deficiencies</td>
<td>Menopause, vulvar atrophy, lactational amenorrhea</td>
</tr>
<tr>
<td>Psychiatric</td>
<td>Vaginism</td>
</tr>
</tbody>
</table>

Based on the studies by Bornstein et al. and Reed.

And nuanced parameters that will now be enhanced with the universal classification and diagnosis of patients.

Figure 1. Overview of the -omics of diagnostic testing. The -omics of diagnostic testing can be categorized as genomic, transcriptomic, proteomic, glycomic, and metagenomic, and each of these levels can be affected by inflammation and infection. In each of the -omics, specific markers of disease including variations in DNA coding, RNA transcription, protein structure, glycoprotein composition, and composition of the microbiome are sought after to determine definitive markers for diagnosis and to direct treatment strategies.
that this difference in vaginal flora may be the result of an initial vaginal insult causing inflammation that results in abnormal cytokine production. However, metagenomic comparisons are needed to expand these results and identify microbiome differences in an unbiased and comprehensive fashion, expanding on the knowledge of variations in vaginal microbiome composition including ethnic and lifestyle differences.

Inflammatory Pathogenesis

Population-based epidemiologic studies have identified an association between a history of vulvovaginal infections and the subsequent development of VVD. A history of bacterial vaginosis (BV), genital warts, trichomoniasis, urinary tract infections, and yeast infections have all been associated with an increased risk for VVD, with multiple recurrences compounded by the risk. Mechanisms that link infection to the development of VVD have been widely hypothesized. The current dogma is that during or after an initial vaginal insult with infection, a “susceptible” individual has an inflammatory response that is potentially composed of an abnormally heightened release of proinflammatory cytokines, neurokines, and/or chemokines. The individual is then either unable to successfully clear the inflammation or the infectious process alters and sensitizes the neural tissue in the vulvovaginal area, resulting in localized or generalized allodynia and hyperalgesia.

A significant amount of research has focused on a proposed link between repeat infections with *C. albicans* and VVD. Farmer et al. found that laboratory mice subjected to recurrent infection with *C. albicans* were found to have developed mechanical allodynia localized to the vulva and that upon histological examination, these mice also had hyperinnervation with peptidergic nociceptor and sympathetic fibers compared with controls, with hypersensitivity and hyperinnervation both present for more than 3 weeks after the resolution of infection. Ramirez et al. tested a similar theory through patch testing on humans, and they found that patients reporting VVD were significantly more likely to react to *C. albicans* compared with controls and that lower concentrations of *C. albicans* caused more positive results than higher concentrations. This altered response to lower levels of *C. albicans* has been demonstrated more recently in a matched-control study where vestibular cells may possess an “immunological memory” and produce increased amounts of IL-6 and PGE-2. Moreover, this altered response to lower levels of *C. albicans* was also present in control samples, the response was greatly accentuated in VVD samples, producing 5 times more IL-6 transcript than vestibular fibroblasts from healthy controls. This suggests that patients with VVD may be responding clinically through production of proinflammatory cytokines to concentrations of *C. albicans* that are normal in the normal vaginal flora.

Additional data demonstrate that the Dectin-1 receptors on fibroblasts, which are innate immune receptors involved in the recognition of fungal β-glucans, similar to those found in the cell walls of *C. albicans* required for maximal proinflammatory mediator response, are comparatively elevated in vestibular compared with external vulvar fibroblasts in women with VVD compared with controls. They seem to work through the NFκB pathway, which is associated with the production of IL-6 and PGE-2. Moreover, *C. albicans* activates the NFκB pathways more effectively than nonpathogenic *S. cerevisiae*, resulting in more abundant production of IL-6 and PGE-2. This suggests that Dectin-1 receptor and NFκB pathway may be implicated in the greater response to *C. albicans* in patients with VVD and might serve as targets for selective treatment options.

Other research on the inflammatory pathogenesis of VVD has focused on histopathologic differences and markers of chronic inflammation. Findings demonstrate an increased density of lymphocytes and lymphocytic infiltration, specifically that CD4-positive T cells have been found more predominantly in vestibular biopsies of women with VVD. In addition, the presence of organized vestibule-associated lymphoid tissue characterized by germinal centers with B lymphocytes and mature mucosal Immunoglobulin A-plasma cells are present in women with VVD compared with controls. This may signify that vestibular tissue is undergoing chronic inflammatory changes in response to antigens that are triggering lymphocyte migration and activation in VVD and perhaps resulting in the chronic pain.

The roles of mast cells and protease inhibitors in nerve proliferation and hyperinnervation have also been investigated. Tender sites, in the absence of clinically visible inflammation, in those with VVD have been found to have greater numbers of mast cells, compared with controls. Two proinflammatory mediators released by mast cells, tumor necrosis factor α (TNF-α) and nerve growth factor, have been demonstrated to stimulate nerve proliferation leading to hyperinnervation of nerves. It has been suggested that upon their release, they directly act on nociceptive pain fibers and lower pain thresholds, leading to neurogenic vasodilation and erythema. An increase in nerve thickness and density in painful vestibular regions is also supported by findings from other studies. In addition, NGF acts as a chemoattractant for mast cells and binds to NGF receptors on mast cell membranes and nerves, stimulating its own synthesis, perpetuating the response.

Nociceptive pain fibers have also been found to contain a surface protease-activated receptor 2 that upon cleavage induces long-lasting allodynia and hyperalgesia. This coupled with significantly lower concentrations of protease inhibitors in vaginal secretions from women with VVD may lead to an increase in pain sensitivity as well.

Overall, the literature demonstrates a potential link between infection, inflammation, and VVD through association with repeat vaginal infections, heightened sensitivity and proinflammatory response to *C. albicans*, and histopathologic changes with increased lymphocyte and mast cell density. Some investigators have reported increased levels of mucosal proinflammatory cytokines including IL-6, PGE-2, TNF-α, and NGF. However, the culmination of these findings is not conclusive in elucidating the pathogenesis of VVD because the literature does not identify any consistent inflammatory markers or histologic changes that can be considered pathognomonic for VVD. Furthermore, these findings have yet to lead to adequate treatment modalities. In the absence of pathognomonic findings and targeted treatments, the link between infection, inflammation, and VVD has yet to be definitively elucidated, and further research is needed to elucidate the role of the infection and inflammatory changes in the development of VVD.

Cytokine Markers

Cytokines are detectable and measurable biochemical mediators of inflammation, and an abnormal inflammatory cell response in patients with VVD may subsequently lead to abnormal production and secretion of cytokines in that region. Previous studies discussed previously have only looked at individual cytokines, IL-6, PGE-2, and TNF-α, but recent studies have examined a wide array of cytokines in patients with VVD. In a double-blinded study using the 27-plex cytokine assay, patients with VVD had a 35-fold increase of IL-17, a 7-fold
These results suggest the involvement of an immunological response involving various cytokines; however, there is disagreement in the literature of the role of specific cytokines in VVD. The dramatic increase in IL-17 observed by Ventolini et al. was not seen by Baker et al. because their recent study found a decrease in IL-17. Further research is needed to extrapolate the importance of these cytokine markers and their potential in the diagnosis of VVD.

Genomic Markers

Separate from repeated infectious assaults predisposing women to VVD, studies have found that the genetic profile of women with VVD includes polymorphisms in genes coding for cytokines, IL-1β receptor antagonist, IL-1β, and mannose-binding lectin (MBL). and proposed that these genetic polymorphisms may lead to an enhanced inflammatory response after an assault with trauma or infection and a reduced capacity to terminate inflammation.

Studies suggest that women who were homozygous for allele 2 in the IL-1β receptor antagonist and for allele 2 in the IL-1β gene were more likely to be affected with VVD. These variant alleles result in lower levels of production of the anti-inflammatory mediator, IL-1 receptor antagonist, and higher levels of production of the pro-inflammatory cytokine, IL-1β, the latter resulting in a heightened inflammatory response and the former in difficulty in terminating it. Homozygosity for these alleles has been associated with an enhanced inflammatory response and is hypothesized to predispose women to VVD.

Buccal swabs from women with and without VVD tested for codons 54 MBL2 gene polymorphisms revealed that the variant MBL2 codon 54, allele B, was more frequent in women with recurrent episodes of vulvovaginal candidiasis and BV than in the women with acute episodes or control women. Additional findings suggest that the MBL2 allele variant is more prevalent in women with primary VVD and that these women with the allele variant also had a reduced ability to produce TNF-α in response to a Candida insult. Mannose-binding lectin 2 is another important innate immune receptor that recognizes high-mannose N-glycans characteristic of fungi and other pathogens, and a genetic polymorphism in it may make one more susceptible to various bacterial and C. albicans infections.

Another area of interest is in the role of single nucleotide polymorphisms in patients with VVD. Ideally, future studies will be able to examine large numbers of patients versus controls by high-throughput NGS to identify single nucleotide polymorphisms and quantitative trait loci that predispose to VVD, giving insight to the etiology of VVD and inform therapeutic targeting.

In addition to genomic DNA markers, we can also define RNA expression differences between VVD and control patients to identify transcriptomic markers of disease. We would expect to see differences in the mRNA expression locally (in biopsies) as well as potential changes in circulating small RNAs. Several studies have identified various circulating small RNAs as noninvasive diagnostic biomarkers of gynecological disease that can serve as a “liquid biopsy” (see Figure 2). For example, in the disease state of endometriosis, a genome-wide analysis of lncRNAs in serum identified 5 such lncRNAs that may serve as biomarkers of endometriosis. In addition, mRNA targets of microRNAs may generate new hypotheses about the genes and pathways involved in many disease states. Unfortunately, no such study has yet been undertaken for VVD.

Similar to the principles of the “liquid biopsy” of circulating RNAs, new research has identified DNA-based biomarkers from cell-free circulating DNA (cfcDNA) in the bloodstream, which originate from the normal cells of the body as well as from tumor cells, sparking much research into their use as cancer biomarkers. Work in tumors has demonstrated that cfDNA from the disease tissue not only carries mutations found in the disease but also carries the methylation pattern (negatively regulate the expression of that gene, even without mutation of the DNA sequence) at the CpG islands within the promoters of disease-related genes. Studies have demonstrated the ability to detect various cancers such as prostate, breast, gastric, testicular, and bladder cancer on the basis of abnormal methylation patterns of the same set of promoters for various diseases in cfDNA, which are unique to the individual cancer. This suggests that if DNA methylation patterns are unique in individual disease states, we may potentially be able to identify abnormal methylation patterns unique to VVD. To date, no studies have examined correlation between VVD and abnormal methylation patterns, but unique variations in promoter region methylation could potentially serve as a biomarker for VVD.

In addition to DNA methylation, posttranslational modifications of chromatin via chemical modification of histone tails can
have large influence on gene regulation. These include histone methylation, phosphorylation, acetylation, ubiquitination and the addition of a single sugar known as O-GlcNAcylation. Comprehensive studies of such chromatin modification are in their infancy, but it is becoming clear that these are important contributors to regulation of genome function in health and disease.54

Proteomic Markers
Alterations in protein expression have been a major target of research since the completion of the Human Genome Project, opening up opportunities to discover novel protein markers for use in diagnosis of human diseases. Although there may be polymorphisms at the gene level, protein expression and their functionality ultimately determine the disease state, and thus, there has been a surge in proteomic studies for the past decade to decipher the proteomic milieu in diseases.55 This area has identified proteomic markers in obstetrical and gynecologic disease states including pre-eclampsia,6,57 perinatal infection,55 preterm birth,59 preterm intrauterine growth restriction,61 gestational diabetes,62 ectopic pregnancy,63 endometriosis,64 as well as cervical,65 ovarian and breast cancers.66 However, to date, no studies have examined the proteomic differences characterizing patients with VVD and may provide novel biomarkers that are sensitive and specific enough to be used for developing diagnostic tools and treatment strategies in the area of VVD.68

Glycomic Markers
One of the most common posttranslational modifications of proteins is glycosylation with various glycans that occurs in more than 70% of all human proteins.69 The distinct composition and proportion of various glycans located on specific glycoproteins is cell specific, varies depending on the physiologic state, and can be altered by different disease states.69 Although glycome and glycomic markers have been studied primarily in the field of cancer,70 newer methods including mass spectrometry, High Performance Liquid Chromatography, as well as glycan arrays and glycan-binding (lectin) arrays have allowed for analysis of novel glycomic markers, particularly because they relate to their role in inflammation.69,71,72

The glycans on glycoproteins can be further modified by the addition of sialic acids, which are found abundantly on all human (and other vertebrate) cell surfaces but not on plants or fungi. Sialic acids play a role in the immune system by regulating the alternative pathway of the complement activation, modulating leukocyte trafficking, and controlling innate cell activation, and some organisms, including group B streptococcus, have developed human-like sialylated trisaccharide terminals, mimicking the sialic acids on human cells, that serve to block recognition of underlying glycans by naturally occurring antibodies in humans, thus effectively fooling the immune system.73

Given that the glycomic structure of cells can be impacted by disease,55 it is certainly reasonable that they could also be altered in the vagina by vaginal microbiome.74 In a study of women with and without BV, samples from women with BV had lower levels of both sialic acid and 2 high-mannose glycans that are known to be targeted by innate (antiviral and antifungal) immune lectins such as DC-SIGN.74 These alterations associated with the presence of abnormal microbiome may have effects on the innate immune system, making these women more susceptible to infection and subsequent inflammation.

Currently, no research has been published on glycomic markers specific to VVD. However, a strong connection between glycomic markers and inflammation is plausible. In general, it seems that women with VVD seem to have a lower threshold reaction to C. albicans. Inflammation in patients with VVD is also linked with previous Candida infections. However, Candida does not express sialic acids, but like other fungal pathogens, it contains cell wall structures that consist of high-mannose, β-glucans and chitin, and human hosts have a variety of innate receptors for these tell-tale fungal glycans, including Dectin, mannose receptors, TLRs 2, 4, and 6, and DC-SIGN.75–79 Because Candida expresses β-glucans in its cell wall, the link between glycomic markers and inflammation may be a contributing factor in the hypersensitivity of patients with VVD to yeast. Further research is needed to determine whether Candida and its effects through alteration of the vaginal microbiome may provide glycomic markers in women that could potentially predispose them to the development of VVD. Additional research is needed specifically to elucidate the glycomics profile in women with VVD compared with healthy control women to determine whether certain glycomic markers are specific to VVD and can be used as markers of disease, similar to investigations in various cancers.

CONCLUSIONS
Progress has been made toward creating standardized nomenclature where the current understanding of VVD has been limited by use of inconsistent terms and definitions, prohibiting comparison of studies and limiting the application of evidence to patient populations whose diagnosis is based on variable criteria. Hopefully, this will allow for progress in facilitating the use of evidence-based medicine in clinical decision making for patients and elucidating the pathogenesis of VVD.

To date, there is limited work in cytokine, genomic, proteomic, and glycomic biomarkers in helping us clarify the pathogenesis of VVD and identifying genetic and molecular diagnostic markers that may ultimately lead to targeted therapeutic interventions. Continued work in the area of secretomics will help clarify this, because the future in research into the pathogenesis and diagnosis of VVD may lie within the cytokine, genomic, proteomic, and glycomic variations in patients.

REFERENCES

