Lawrence Berkeley National Laboratory
Recent Work

Title
TEMPERATURE LIMITATION OF PRIMARY AND SECONDARY ALKALINE BATTERY ELECTRODES

Permalink
https://escholarship.org/uc/item/1s41h4tz

Author
McKubre, M.C.H.

Publication Date
1983-05-01
TEMPERATURE LIMITATION OF PRIMARY AND SECONDARY ALKALINE BATTERY ELECTRODES

M.C.H. McKubre

May 1983

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
TEMPERATURE LIMITATION
OF PRIMARY AND SECONDARY
ALKALINE BATTERY ELECTRODES

M.C.H. McKubre
Materials Research Laboratory
SRI International
Menlo Park, California 94025

May 1983

Final Report
to
Energy and Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Subcontract No. 4510610

This work was supported by the Assistant Secretary for
Conservation and Renewable Energy, Office of Energy Systems Research,
Division of Energy Storage, U.S. Department of Energy under Contract
Number DE-AC03-76SF00098.
When used in electric vehicles, alkaline batteries may be subjected to ambient temperatures below 0°C, and temperatures in excess of 100°C may be reached within the cells by IR heating under conditions of rapid charge or discharge. The purpose of this project was to determine what failure mechanisms or operating limitations will be imposed on Ni/Fe and Ni/Zn battery operation due to thermodynamic or kinetic effects at Ni, Fe, and Zn electrodes in the temperature range 0° to 100°C.

This report contains the results of studies of the mechanisms of dissolution and passivation of Fe and Zn electrodes in concentrated KOH, as these processes effect the charge/discharge characteristics of alkaline batteries. The experimental techniques principally employed were: potentiodynamic sweep voltammetry and coulometry, rotating disk and rotating ring disk electrode studies under constant velocity and constant acceleration rotation conditions, and AC impedance studies.

The results obtained on Fe electrodes have enabled us to postulate a detailed mechanism for the formation and discharge of an oxide film on iron via a number of dissolved intermediate species. The mechanisms are different at high and low temperatures, but at all temperatures pathways via dissolved phase intermediates result in substantial dissolution of metal and oxide. At 75°C dissolution processes account for more than 7.5% of the total charge stored per cycle.
AC impedance measurements were used to characterize the nature of the oxide film, and to determine an effective exchange current density for the Fe/Fe(II) Redox process. It is apparent from the measured values of i_0 that the kinetic constraints for the charge/discharge process are reduced with increasing temperature. However, the principal kinetic limitations of charge and discharge originate within the oxide film, not with the interfacial charge-transfer reaction process.

Experiments were performed to study the influence of convection and zincate concentration on the discharge (dissolution and passivation) kinetics of zinc electrodes in concentrated KOH. AC impedance and rotating ring disk studies were performed to determine the mechanism of dissolution, and the nature of the dissolved product. The model proposed for the discharge of zinc electrodes in KOH, taking into account a number of unusual and seemingly contradictory observations briefly is as follows. Dissolution proceeds via two subsequent one electron transfer processes, via a Zn^+ adsorbed species. The initial discharge product is Zn(OH)_2 which is porous and loosely adherent. We postulate that, at potentials below the passivation potential, Zn(OH)_2 sloughs from the electrode as a colloid, and is in chemical equilibrium with the Zincate ion. This equilibrium is determined by the local concentration of OH^- ions. Dissolution is catalyzed by the final product (zincate) and the rate is controlled by the diffusion of the zincate ion to the electrode. Discharge is thus autocatalytic with respect to the zincate concentration, which is confirmed by the presence of inductive loops in the impedance locus plots. The autocatalytic nature of discharge provides a plausible mechanism for "shape change" of zinc electrodes.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i11</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Summary of NaOH Results</td>
<td>3</td>
</tr>
<tr>
<td>Nickel</td>
<td>3</td>
</tr>
<tr>
<td>Iron</td>
<td>5</td>
</tr>
<tr>
<td>Zinc</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Conclusions from NaOH Studies</td>
<td>11</td>
</tr>
<tr>
<td>1.4 Report Organization</td>
<td>14</td>
</tr>
<tr>
<td>2 EXPERIMENTAL METHODS</td>
<td>15</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Electrolyte Preparation, Electrode and Cell Construction</td>
<td>16</td>
</tr>
<tr>
<td>2.3 Instrumentation</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Measurement Techniques</td>
<td>23</td>
</tr>
<tr>
<td>3 MEASUREMENTS ON IRON</td>
<td>33</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>33</td>
</tr>
<tr>
<td>3.2 Potentiodynamic Studies of Iron</td>
<td>34</td>
</tr>
<tr>
<td>3.3 RRDE Collection Efficiency Calibration</td>
<td>47</td>
</tr>
<tr>
<td>3.4 RRDE Studies of Iron</td>
<td>49</td>
</tr>
<tr>
<td>3.5 AC Impedance Studies of Iron</td>
<td>61</td>
</tr>
<tr>
<td>3.6 Conclusions</td>
<td>65</td>
</tr>
<tr>
<td>4 MEASUREMENTS ON ZINC</td>
<td>77</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>77</td>
</tr>
<tr>
<td>4.2 Potentiodynamic Studies of Zinc</td>
<td>78</td>
</tr>
<tr>
<td>4.3 Rotating Ring Disc Studies of Zinc</td>
<td>83</td>
</tr>
<tr>
<td>4.4 The Influence of Zincate Concentration</td>
<td>96</td>
</tr>
<tr>
<td>4.5 AC Impedance Results</td>
<td>107</td>
</tr>
<tr>
<td>5 SUMMARY AND CONCLUSIONS</td>
<td>125</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>125</td>
</tr>
<tr>
<td>5.2 Observations of Iron Electrodes</td>
<td>125</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cyclic Voltammogram for nickel as a function of Cathodic Hold Time.</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>The Influence of Temperature on Ring and Disk Currents on Iron Electrode.</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Potential Versus Log $m_{NaOH}/mol kg^{-1}$ Diagrams for Iron in Concentrated Sodium Hydroxide Solution as a Function of Temperature.</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Measured Passivation Onset Potentials and Calculated Reversible Potentials Versus Temperature, for Zinc in 28 wt% NaOH.</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>RRDE Potential Step Experiment for Zinc in 18 wt% NaOH at 22.5°C.</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Region of Current Instability for Zn in 25 wt% NaOH Under Quiescent Conditions.</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>Bipotentiostat and Motor and Slip Ring Assemblies.</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>Schematic Diagram of RRDE Construction and Contact Assembly.</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>AC Impedance Measurement System.</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>Transfer Function and Phase Versus Log (Frequency) for FRA/Potentiostat Interface Unit.</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>The Equivalent Circuit and Expected Impedance Response for a Simple Electrochemical Interface.</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>The Influence of Cathodic Potential Limit on the Repetitive Sweep Voltammogram for an Iron Disk Rotated at 10 Hz in 30 wt% KOH at 75°C.</td>
<td>35</td>
</tr>
<tr>
<td>13</td>
<td>The Influence of Anodic Potential Limit on the Repetitive Sweep Voltammogram for an Iron Disk Rotated at 10 Hz in 30 wt% KOH at 75°C.</td>
<td>36</td>
</tr>
<tr>
<td>14</td>
<td>The Influence of Sweep Rates on the Potentiodynamic Charge/Discharge Curves for an Iron Disk Electrode Rotated at 10 Hz in 30 wt% KOH at 75°C.</td>
<td>38</td>
</tr>
</tbody>
</table>
The Influence of Sweep Rate on the Potentiodynamic Charge/Discharge Curves for an Iron Disk Electrode at 10 Hz in 30 wt% KOH at 0°C 40

RRDE Measurements of Iron in 30 wt% KOH at 75°C 50

RRDE Measurements of Iron in 30 wt% KOH at 50°C 54

RRDE Measurements of Iron in 30 wt% KOH at 25°C 56

AC Impedance Response of An Iron Rotating Disk Electrode in 30 wt% KOH with a rotation Speed of 10 Hz 63

Thermodynamically Favored Reaction Pathways Showing the Calculated Equilibrium Potentials for Fe in 8 Molal NaOH .. 69

Simplified High- and Low-Temperature Reaction Sequences for Iron in 30 wt% KOH 74

Potentiodynamic Discharge of Zinc in 30 wt% KOH at 78°C, as a Function of Disk Rotation Speed 79

Programmed Rotation Speed RRDE Experiments for Zinc in 35.5 wt% KOH at 25°C .. 85

Collection Efficiency Versus Angular Rotation Speed for a Zinc/Vitreous Carbon RRDE in 35.5 wt% KOH at 25°C 90

The results of Potentiodynamic Sweep Experiments for a Zinc Electrode in Initially Zincate-Free 30 wt% KOH at 25°C, as a Function of Electrode Rotation Speed 97

The results of Potential-Step Experiments for a Zinc Electrode in Initially Zincate-Free 30 wt% KOH at 25°C, as a Function of Potential-Step Amplitude 100

The Influence of Dissolved-Zinc Concentration on the Potentiodynamic Dissolution Rate of Zinc in 30 wt% KOH at 25°C 103

The Passivation Potential of Zinc Versus Electrode Rotation Speed in 30 wt% KOH at 20°C, as a Function of Zincate Concentration 105

Impedance Locus Showing Inductive Loops for Zn in 35.5% KOH 108

Equivalent Circuit for the Impedance of a Zinc Electrode Undergoing Discharge at Moderate Anodic Overpotentials 110

viii
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>The Influence of Rotation Speed on the Dissolution Kinetics for a Zinc Disk Held at + 75 mV Versus Zn/Zn(^{++}), in 36 wt% KOH at 25°C.</td>
<td>111</td>
</tr>
<tr>
<td>32</td>
<td>The Influence of Zincate ion Concentration on the Impedance Locus in 30 wt% KOH, at 25°C.</td>
<td>113</td>
</tr>
<tr>
<td>33</td>
<td>The Real Component of Impedance Versus (\omega^{-1/2}), as a Function of Zincate Concentration.</td>
<td>116</td>
</tr>
<tr>
<td>34</td>
<td>The Influence of Temperature on the Impedance Locus in Zincate-Free 35.5 wt% KOH.</td>
<td>120</td>
</tr>
<tr>
<td>35</td>
<td>(\sigma/T) Versus T Measured in Zincate-Free 35.5 25% KOH, at 0 and +50 mV Anodic Overpotential.</td>
<td>123</td>
</tr>
<tr>
<td>36</td>
<td>Reactions and Diffusion Profiles for the Proposed Mechanism of the Electrocatalytic Dissolution of Zinc under Mass Transport Control.</td>
<td>133</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Tables

1a Peak Height in Milli-Volts as a Function of Temperature and Sweep Rate for the Potentiodynamic Charge/Discharge of an Iron Disk Rotated at 10 Hz in 30 wt% .. 43

1b Peak Position in Milli-Volts Versus Zn/Zn (II) as a Function of Temperature and Sweep Rate for the Potentiodynamic Charge/Discharge of an Iron Disk Rotated at 10 Hz at in 30 wt%................................. 44

2 Regression of Data Obtained for Peak R2 to the Equation $V_{PR2} = qV_{R2} + R_{film} \cdot I_{PR2}$... 45

3 Iron RRDE Calibration Results in 0.1 M K$_3$Fe(CN)$_6$ with T = 25°C and $\omega = 10.0$ Hz .. 48

4 Peak Areas Measured from the Potentiodynamic Data presented in Figure 16 .. 53

5 Percent Dissolution Taken from Data in Table 4 59

6 Peak Areas Measured From the Potentiodynamic Sweep Data at 0°, 25°, 50°, and 75°C .. 60

7 Percent of Disk Dissolution .. 61

8 Electrochemical Parameters Calculated from the Impedance Dispersion .. 65

9 Calculated Equilibrium Potentials for Iron and Iron Oxide.. 66

10 Slope and Intercepts of the Linear IV Discharge Region of a zinc RDE, as a Function of Temperature, Rotation Speed, and Electrolyte Concentration .. 88

11 The Regression of Data in Table 10 to Equation (25) 82

12 The regression of Data in Table 11 to Equation (36) 83

13 Programmed rotation speed results for zinc in 35 wt% KOH at 25°C .. 80
Collection efficiency as a function of Rotation Speed: Regressing of Ring and Disk Current Data in Table 13
Equation (37) .. 91

Summary of the Influence of Zincate In Concentration on the Measured Potentiodynamic Discharge Parameters in 30 wt% KOH ... 101

The Warburg Diffusion Coefficient Calculated from the Impedance Measured in 35.5 wt% KOH 122
INTRODUCTION

1.1 Background

There has been a renewed interest in iron/nickel oxide and zinc/nickel oxide rechargeable alkaline batteries, particularly for electric vehicle applications.¹ The interest is due primarily to the low cost, high mechanical strength and availability of iron and zinc.

When used in electric vehicles, however, these cells may be subjected to ambient temperatures below 0°C, and temperatures in excess of 100°C may be reached by IR heating under conditions of high current flow (e.g., under conditions of rapid charge or discharge). Nearly all previous results of electrode performance in alkaline systems have been reported for the relatively narrow temperature range of 0°C to 50°C. Data from those studies are not sufficient for prediction of possible modes of battery failure at extremes of temperature.

The electrochemical features that may influence battery electrode performance can be summarized as follows:

1. Specific Energy--The potentials at which charge storage processes occur, the extent to which active material is utilized, and the specific volume resistivity of the electrolyte all are critically dependent on temperature.

2. Specific Power--The kinetics of charge-discharge processes are influenced by temperature.

3. Electrode Life, Charge Acceptance, and Charge Retention--Electrode life and the electrode's ability to store charge efficiently are determined primarily by the extent to which electrochemical processes occur that are completely reversible within the times involved in charging or discharging.
Several such processes, each of which is to some degree temperature dependent, are listed below:

- Dissolution of electrode material.
- Sloughing of formed oxide or hydroxide into regions inaccessible to electrochemical reduction.
- Slow (kinetically hindered) oxidation or reduction processes that require potentials outside the normal range of electrode operation to proceed at a meaningful rate.
- Secondary reactions that evolve gases (specifically hydrolysis producing O_2 and H_2).
- Transport of active material away from its original location (shape change).

In the previous year (DOE contract EM-78-C-015159)2,3 and current year (DOE/LBL subcontract 450561) of funding, SRI has focused attention on both possible kinetic2 and thermodynamic3 limitations of Ni, Fe, and Zn electrodes in NaOH and KOH electrolytes.

Electrochemical kinetic studies are being conducted using "pure" metal rotating disk electrodes (RDE) and rotating ring-disk electrodes (RRDE) under potentiostatic control. The principal methods used are:

- AC impedance measurements to determine rate-limiting processes and reaction mechanisms (Ni, Fe, Zn).
- Measurements of ring collection current at programmed electrode rotation speeds to determine the nature and extent of electrode dissolution (Fe and Zn) and the mechanism of passivation (Zn).
- Potential-sweep (Ni, Fe, Zn) and potential-step (Fe, Zn) voltammetry and coulometry to determine the position of charge-storage electrode processes.

Thermodynamic calculations for the equilibrium potential/electrolyte concentration diagrams in this study are derived using the Criss-Cobble extrapolation for ionic entropies to elevated temperatures. We take into account the variation of pH and of the activity of water, a_W, with temperature and electrolyte concentration.
The methods used for both the kinetic and thermodynamic aspects of this study have been described extensively in previous publications.2–8

1.2 Summary of NaOH Results

A comprehensive survey of the electrochemistry of Ni, Fe, and Zn in 20, 24, and 28 wt\% NaOH was made in the temperature range -20° to 120°C during the first year of this study. A number of specific observed features relating to the use of Ni, Fe, and Zn as alkaline battery electrodes, and these were of sufficient importance to merit further study.

Nickel: Two principal sources of irreversibility were found to contribute significantly to the coulombic inefficiency of the Ni charge/discharge process.

- Within the temperature range -20° to 120°C, the calculated equilibrium potential for oxygen evolution from electrolyte hydrolysis is negative with respect to the Ni(II)/Ni(III) equilibrium. The thermodynamic parameters of these competing processes are similar, although at room temperature and below the processes occur at very different rates. Thus, a high coulombic efficiency is achieved at this electrode only because a large overvoltage is required for oxygen evolution. With increasing temperature, the kinetic constraints are removed and we observe that exchange current density for oxygen evolution on a nickel surface increases markedly, resulting in decreased charge capacity and coulombic efficiency.

- Irreversibility is observed to be associated with deep or prolonged discharge, particularly at elevated temperatures. When a passivated Ni(OH)\textsubscript{2} electrode is cycled potentiodynamically from complete discharge just into the oxygen evolution region, the shape of the anodic peak changes substantially, and the peak moves to more negative potentials (associated with a decrease in capacity), until a steady, reproducible trace is achieved after several tens of cycles. During this transition, the cathodic peak shape and charge remain relatively unchanged. This phenomenon can also be demonstrated by varying the extent of discharge. Figure 1 shows the effect of arresting a potentiodynamic sweep at its negative limit (+200 mV versus Hg/HgO) for
FIGURE 1 CYCLIC VOLTAMMOGRAM FOR NICKEL AS A FUNCTION OF CATHODIC HOLD TIME

20 wt% NaOH, 80°С, sweep rate 20 mV s⁻¹. Cathodic hold potential = 200 mV versus Hg/HgO.
various times after a steady repetitive sweep previously has been established. It is apparent that both the components of charge and the current profiles are strongly influenced by the hold time, τ_c, even though no charge-consuming processes occur at a significant rate at the cathodic limit potential. The anodic process requires a higher potential and consumes a greater charge at longer τ_c. In contrast to the anodic behavior, the cathodic process has a constant charge and occurs at effectively the same potential, independent of τ_c.

Iron:—High-temperature limitations of the iron negative electrode are associated with metal dissolution and with the coevolution of hydrogen at high states of charge. We have identified three distinct dissolution processes of iron and iron oxide in concentrated NaOH that may significantly reduce the cycle life and coulombic efficiency of iron alkaline battery electrodes operating at elevated temperatures. The presence of dissolved species also is of fundamental importance in interpreting the reaction mechanism. Figure 2 shows the results of slow-potentiodynamic-sweep RRDE studies in Fe and 28 wt% NaOH. For the experiments shown, the ring is held at a potential sufficiently positive to oxidize Fe(II) to Fe(III). The ring currents thus reflect the presence of dissolved Fe(II) species within defined regions of disk potential. At temperatures up to 40°C, a reductive dissolution process, D3, is seen to occur in association with disk charging peak V. D3 increases with temperature, and at 40°C accounts for 15% of the current associated with disk peak V. The genesis of an oxidative dissolution peak, D1, also is observed at 40°C. Both D1 and D3 increase at 80°C relative to the disk charge and discharge currents. At 112°C oxidative dissolution is observed during both disk discharge and charge, and the reductive dissolution process accounts for
FIGURE 2 THE INFLUENCE OF TEMPERATURE ON RING AND DISK CURRENTS ON IRON ELECTRODE

Disk sweep rate = 10 mV s\(^{-1}\), ring=500 mV versus Hg/HgO. Electrolyte concentration = 28 wt% NaOH, rotation speed = 1200 RPM.
FIGURE 2 THE INFLUENCE OF TEMPERATURE ON RING AND DISK CURRENTS ON IRON ELECTRODE (Concluded)

Disk sweep rate = 10 mV s^{-1}, ring-500 mV versus Hg/HgO.
Electrolyte concentration = 28 wt% NaOH, rotation speed = 1200 RPM
about 30% of the charge under disk peak V. At a state of high discharge, dissolution occurs over a wide potential range, producing Fe(III).

The origins of these dissolved species can be found for in the calculated equilibrium properties summarized in Figure 3. The predicted stability regions for the anions FeO$_2^-$ and HFeO$_2^-$ appear as closed loops in E versus log m_{NaOH} space; this suggests that above a certain OH$^-$ ion concentration, irreversibility and coulombic inefficiency due to electrode dissolution may be reduced. Note also that the anion stability domains are predicted to decrease in size with increasing temperature, while the measured dissolution rate increases.

Zinc:—The principal temperature limitations of zinc negative electrodes are associated with the interrelated processes of dissolution, passivation, and current oscillation. We observe that the form of the repetitive sweep voltamogram for zinc in initially zincate-free NaOH depends critically on both electrode rotation speed and electrolyte temper-ature, with the discharge rate increasing with increasing electrolyte convection and temperature. Figure 4 shows the influence of disk rotation speed and temperature on the passivation onset potential for Zn in 28 wt% NaOH, compared with the reversible potential profiles calculated for redox reactions. It is apparent that the strong temperature dependence of zinc dissolution kinetics, and the more rapid onset of passivation at low temperatures, may sharply decrease the rate and extent of electrode discharge.

Under potentiostatic or slow potentiodynamic sweep conditions, we have observed zinc electrodes to undergo an oscillatory activation/
FIGURE 3 POTENTIAL VERSUS LOG \(m_{\text{NaOH}} \) DIAGRAMS FOR IRON IN CONCENTRATED SODIUM HYDROXIDE SOLUTION AS A FUNCTION OF TEMPERATURE

The line \(\cdots \cdots \cdots \) refers to the equilibrium potentials for the Fe/Fe(OH)\(_2\) couple.
FIGURE 4 MEASURED PASSIVATION ONSET POTENTIALS AND CALCULATED REVERSIBLE POTENTIALS VERSUS TEMPERATURE, FOR ZINC IN 28 wt% NaOH
passivation process within a defined region of potential, which may result in current fluctuations of several orders of magnitude. These are shown in Figure 5 for a rotating zinc disk and vitreous carbon ring electrode, following a potential step from the reversible potential, at an electrode rotation speed of 5.0 Hz. Oscillations appear in quiescent as well as convected electrolyte, and under controlled hydrodynamic conditions appear to be sustainable indefinitely. However, both the oscillation amplitude and period are markedly influenced by step potential, temperature, rotation speed, and zincate concentration. Figure 6 shows the limits of potential over which oscillation occurs in a quiescent system, as a function of temperature.

1.3 Conclusions from NaOH Studies

Nickel appears well suited as a positive battery electrode material operating at extremes of temperature. We find no evidence for metal or oxide dissolution within the normal operating range of potential. Provided this electrode is not completely discharged, high-temperature limitation is imposed only by the competition from oxygen evolution at high charge. This effect may be minimized by control of electrolyte concentration.

In common with the other two metals studied, the decreased rate and extent of charge/discharge processes for nickel at low temperature may well impair battery performance under high-rate charge or discharge conditions at low ambient temperatures.

Both zinc and iron suffer degradation in performance at temperature extremes, which may well limit their use, particularly under high current
FIGURE 5 RRDE POTENTIAL STEP EXPERIMENT FOR ZINC IN 28 wt% NaOH AT 22.5°C
Ring potential and initial disk potential -1500 mV versus Hg/HgO. Rotation speed 300 RPM.
FIGURE 6 REGION OF CURRENT INSTABILITY FOR Zn IN 28 wt% NaOH UNDER QUIESCENT CONDITIONS
conditions where electrolyte IR heating is severe. The increased dissolution rate of zinc with temperature causes wide regions of current oscillation, loss of reactant, irreversibility, and internal short circuit; it may also promote electrode shape change and the growth of dendrites.

The low overpotential for hydrogen evolution on iron and the increase of i_0 for this process with temperature severely restrict the operating potential range of iron and may result in substantial coulombic inefficiency. Both oxidative and reductive iron dissolution may lead to coulombic inefficiency and electrode degradation at elevated temperatures. Since these processes occur within narrow regions of potential, however, it is probable that the effects of dissolution can be minimized by appropriate potential control—that is, by using potentiostatic rather than constant-current charging.

1.4 Report Organization

Parts I and II of this report describe the results and conclusions obtained in kinetic and thermodynamic studies of Ni, Fe, and Zn electrodes in concentrated aqueous NaOH electrolytes. Parts III and IV have been organized slightly differently. The present volume (Part III) contains results and conclusions relating to the charge/discharge characteristics of the negative electrode materials, Fe and Zn, in concentrated KOH. Part IV will contain the results of studies of Ni electrodes in KOH, with particular emphasis placed on the role of LiOH in stabilizing the Nickel Oxide positive electrode.
2 EXPERIMENTAL METHODS

2.1 Introduction

Within the current year of funding, SRI has sought to use the "high information" electrochemical methods previously applied to understanding temperature limitations of Ni, Fe, and Zn electrodes in NaOH, and to extend these measurements to KOH solutions. Some refinement of techniques has been undertaken, particularly in the construction of a closed-loop, digital-feedback, variable-speed RRDE motor assembly. Considerable attention also has been paid to the development of stepped-frequency AC impedance measurements under minicomputer control for use as a quantitative tool to obtain mechanistic information in battery electrode studies.

Particular emphasis has been given to the phenomena identified in the work to date. These are:

(1) Determining the mechanisms of irreversibility of Ni associated with deep or prolonged discharge at elevated temperatures.

(2) Quantifying the extent of Fe(II) and Fe(III) dissolution at elevated temperatures, and determining the influence of KOH concentration on dissolution kinetics.

(3) Quantifying the dissolution and studying passivation and oscillation phenomena of Zn as a function of KOH and Zn(OH)\(_4^-\) concentration.

Five temperatures at 25°C intervals in the range 0°C to 100°C were used. Two electrolyte concentrations (30 and 35 wt%) were chosen as being typical of alkaline battery electrolyte concentrations and are close to the composition for maximum electrolyte conductivity at all temperatures.
2.2 Electrolyte Preparation; Electrode and Cell Construction

An all-Teflon electrochemical cell was used, containing a four-electrode rotating ring-disk electrode (RRDE) assembly. This apparatus is similar to that described previously;2,3 it differs in the following features:

- A mercury slip ring assembly (Omega Model SR-2) replaces the Ag/Hg/Cu brushes previously used for RRDE contacts.
- A Digital Systems Division Model MC141A motor control unit provides increased speed range (50 to 3000 RPM), increased stability (± 0.25%), and programmable rotation-speed sweep capability.
- A Pine Model RDE-3 bipotentiostat improves current handling capability for RRDE studies.

The bipotentiostat and motor and mercury slip ring assemblies are shown in Figure 7.

For nickel, only a rotating disk electrode (RDE) was used. The dissolution of Ni has been shown to be negligible2,4 at all temperatures studied within the normal range of operating potential of the nickel positive electrode. The RRDE used in studies of the dissolution of iron and zinc employed a PTFE insulating spacer and a vitreous carbon* ring. Details of the RRDE construction are presented in Figure 8.

Electrolytes were prepared in polyethylene containers by diluting "Baker Analyzed" reagent-grade 45 wt% KOH to the desired concentration with doubly distilled deionized water. The second distillation was performed under high-purity N\textsubscript{2} gas immediately before use to exclude

*Vitreous carbon was generously supplied by Dr. A. Norris, Fluorocarbon Corporation, Anaheim, California.
FIGURE 7 BIPOTENTIOSTAT AND MOTOR AND SLIP RING ASSEMBLIES
FIGURE 8 SCHEMATIC DIAGRAM OF RRDE CONSTRUCTION AND CONTACT ASSEMBLY
The concentrations of hydroxide and carbonate were determined by acid titration, using the method described in Reference 10.

2.3 Instrumentation

The principal electrochemical techniques used in the present study were:

- Linear sweep voltammetry and coulometry
- Programmed rotation speed rotating ring-disk studies
- Potential-step transient analysis
- AC impedance studies.

The methodology for the experiments has been described previously. Reference 2 contains a detailed description of the apparatus and experimental methods for the first three techniques.

AC impedance studies were performed using the experimental configuration shown schematically in Figure 9. Briefly, a Solartron model 1172/1183C/1185 Frequency Response Analyzer (FRA) was used in conjunction with an Apple II microcomputer to automatically perform RDE AC impedance measurements over a range of frequencies and applied DC potentials. The data are displayed on the video monitor as either a Nyquist or Bode plot. Data can be saved on disk for subsequent analysis.

The use of this apparatus required the development of IEEE-488 bus communication between computer and FRA, and the design and construction of an appropriate FRA/potentiostat interface unit. The software necessary to make impedance measurements under computer control and to display, record, and analyze the results is presented in Appendix I. The interface unit was intended to address two specific problems in the use of the Solartron model 1172 to make electrochemical impedance measurements.
(a) SCHEMATIC DIAGRAM OF INSTRUMENTATION

FIGURE 9 AC IMPEDANCE MEASUREMENT SYSTEM
FRAT
POTENTIOSTAT
INTERFACE

All IC's are AD521LD

PAR MODEL 173/179
POTENTIOSTAT/GALVANOSTAT

Electro-Chemical Cell

Counter Electrode

Reference Electrode

External Input

Reference Input

Working Electrode

Precision Decade Resistance Box

Gain = 1.0000

Gain = 1.0000

V+

V−

14kΩ

14kΩ

100kΩ

1kΩ

100kΩ

1111Ω

1111Ω

1/100

1/10

AC

DC

"Y" Channel Input

"X" Channel Input

SOLARTRON MODEL 1172/1183C/1185 FREQUENCY RESPONSE ANALYZER

(b) FRA/POTENTIOSTAT INTERFACE UNIT CIRCUITRY

FIGURE 9 AC IMPEDANCE MEASUREMENT SYSTEM (Concluded)
(1) The minimum output AC voltage amplitude from the FRA is 10 mV, but the maximum electrode perturbation allowable while preserving a linear current/voltage response is of the order of 5 mV.

(2) The reference/working electrode potential typically comprises an AC component of magnitude < 5 mV, superimposed on a DC level of hundreds of thousands of mV. A large fraction of the DC voltage must be removed before amplification to allow the Solartron to operate on its most sensitive input range.

Requirement 1 is accomplished by attenuating the AC output from the Solartron before combining it with the DC output in instrumentation amplifier 1. The combined output is provided to the potentiostat "external" input and applied to the cell. A precision, decade-adjustable resistor is placed in series with the cell counter* electrode. The voltage drops across the resistor, and between the reference and working electrodes, are determined by instrumentation amplifiers 2 and 3. The output of amplifier 3 provides the negative feedback return path to the potentiostat.

The outputs from amplifiers 2 and 3 are amplified by instrumentation amplifiers 4 and 5 and are provided to the "Y" and "X" channels of the Solartron for analysis. In order to accomplish requirement 2, a DC level is subtracted from each signal before amplification. For the current signal (output "X"), this DC backoff is accomplished manually using a 10-turn potentiometer. The backoff signal for the cell voltage (output "Y") is obtained from the DC input to amplifier 1. The potentiostat functions nearly ideally with regard to the DC component of the applied voltage, \(^8\)

*This resistor also has been placed in series with the working electrode. Since the signal fed back to the potentiostat is determined differentially between the reference and working electrodes, the potentiostat can be induced to operate with the working electrode floating.
and the gain function for the instrumentation amplifiers can be expressed as \(11,12\)

\[
V_{\text{out}} = (V_+ - V_-)G - V_{\text{ref}}, \tag{1}
\]

where \(V_+\) and \(V_-\) are the inverting and noninverting input voltages, \(G\) is the amplifier closed loop gain and \(V_{\text{ref}}\) is the reference terminal voltage. Thus, amplifier 5 serves to reduce the DC component of the cell voltage to a very low level (\(0 \pm 2\) mV), independent of the gain of the AC component.

The bandwidth of this device is of critical importance in determining the high‐frequency AC impedance. Accordingly, measurements were made of the impedance of a nonreactive dummy cell (of nominal impedance 999.0 \(\Omega\)). The results shown in (Figure 10) indicate that the measurement system is accurate to within \(\pm 0.1\%\) at frequencies up to 2 kHz, and within \(\pm 0.5\%\) up to 6 kHz.

2.4 Measurement Techniques

The methods employed for cyclic voltammetry, rotating ring‐disk, and coulometry studies are detailed in Reference 2, Section 3. Additional methods used in the present study were as follows.

Measurements of the electrochemical impedance of rotating disk electrodes were made as a function of electrode speed, electrolyte concentration, temperature, and applied DC potential. The response to a small‐amplitude (\(\lesssim 5\) mV) sinusoidal perturbation in the frequency range
FIGURE 10 TRANSFER FUNCTION AND PHASE VERSUS LOG (FREQUENCY) FOR FRA/POTENTIOSTAT INTERFACE UNIT
$10^{-3} < f < 10^4$ Hz was analyzed to provide information on the reaction mechanisms, interfacial reaction rates and the mass transport parameters. The nature of the analysis and the assumptions implied have been described previously.8

By way of a brief review, a smooth plane-parallel electrode can be represented by the equivalent circuit shown in Figure 11(a). The uncompensated electrolyte resistance (RO) reflects the resistance of the volume of electrolyte between the reference probe (tip of Luggin capillary) and the plane of the working electrode, and the double-layer capacitance provides a measure of the distribution of charge in the fixed and diffuse electrical double layers. The measured capacitance is a function of voltage8 and may contain low-frequency contributions from surface-adsorbed species. This parameter generally is not of great interest in battery studies.

The interfacial reaction (charge/discharge) rate is determined by the series combination of two terms that reflect the mass transport of reactant to or product away from the interface and the intrinsic kinetics of the reaction process. An expression for the interfacial reaction resistance for simple electrode processes can be obtained by linearizing the Butler-Volmer equation

$$I = I_0 \left[\exp (\hat{\beta}V) - \exp (\tilde{\beta}V) \right],$$ \hspace{1cm} (2)

where

$$\hat{\beta} = \alpha nF/RT$$ \hspace{1cm} (3)

$$\tilde{\beta} = (1 - \alpha) nF/RT.$$ \hspace{1cm} (4)
FIGURE 11 THE EQUIVALENT CIRCUIT AND EXPECTED IMPEDANCE RESPONSE FOR A SIMPLE ELECTROCHEMICAL INTERFACE
(b) Expected frequency response for an electrochemical interface undergoing a single, uncoupled charge transfer process, under mass transport control in a well-convected system

FIGURE 11 THE EQUIVALENT CIRCUIT AND EXPECTED IMPEDANCE RESPONSE FOR A SIMPLE ELECTROCHEMICAL INTERFACE (Concluded)
For a sinusoidal perturbation superimposed on a steady DC level, V can be expressed as

\[V = V_0 + v \sin(\omega t) \]

(5)

where \(V_0 \) is the difference between the applied DC level and the reversible electrode potential.

Substituting (5) into (2) one obtains

\[I = I_0 \left[\exp(\beta_0 V) \exp(\beta \sin[\omega t]) - \exp(\beta_0 V) \exp(\beta \sin[\omega t]) \right] \]

(6)

We can expand \(\exp(x) \) as

\[e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!} \]

(7)

The nonlinear form of equation (6) results in a series of harmonic terms in the AC response.\(^{13-16}\) The first three terms of the DC and fundamental AC responses are given by:\(^{13,15}\)

DC:

\[i_0^V = I_0 \left[\exp(\beta_0 V) - \exp(\beta_0 V) \right] \]

\[+ \frac{i_0 v^2}{4} \left[\exp(\beta_0 V) - \exp(\beta_0 V) \right] \]

\[+ \frac{i_0 v^4}{64} \left[\exp(\beta_0 V) - \exp(\beta_0 V) \right] \]

(8)
Fundamental: \[i = \frac{1}{0} \beta \exp(\beta_0 V) - \beta \exp(\beta_0 V) \]
\[+ \frac{1}{8} \beta^3 \exp(\beta_0 V) - \beta^3 \exp(\beta_0 V) \]
\[+ \frac{1}{192} \beta^5 \exp(\beta_0 V) - \beta^5 \exp(\beta_0 V) \]. \hspace{1cm} (9)

For small applied AC amplitudes (v << 1), the DC response simplifies to its expected Butler-Volmer form,

\[I = I_0 [\exp(\beta_0 V) - \exp(\beta_0 V)] , \hspace{1cm} (10) \]

and the reaction resistance is given by

\[\frac{1}{R_R} = \frac{1}{v} = I_0 [\beta \exp(\beta_0 V) - \beta \exp(\beta_0 V)] \]. \hspace{1cm} (11)

Under the simplifying conditions of a symmetric reaction (\(\alpha = 0.5 : \beta = -\beta = \beta \)),

\[\frac{1}{R_R} = 2I_0 \beta \exp(\beta_0 V) = \frac{I_0 nF}{RT} \exp (0.5 nF_0 V/RT) \]. \hspace{1cm} (12)

Thus, we define a voltage-dependent resistance that is inversely proportional to the exchange-current density in combination with other (generally known) electrochemical parameters.
The Warburg diffusional impedance in Figure 11(a) reflects the limitation on the reaction rate that is imposed by the mass transport of reactant to and product from the electrode. A sinusoidal voltage perturbation at the electrode results in a damped concentration wave, symmetric about the bulk concentration of reactant (or product), that propagates toward the electrolyte bulk. This concentration wave has a period equal to the imposed electrical perturbation, but is 45° out of phase. At high frequencies the wave is effectively damped out within the Nernst diffusion layer, and the diffusional impedance is given by

\[Z_w = \sigma (1 - j\omega)^{-\frac{1}{2}}, \quad (13) \]

where

\[\sigma = \frac{RT}{[n F^2 (2D)^{-\frac{1}{2}} c]} \quad (14) \]

\(D \) and \(c \) are the mean diffusion coefficient and mean concentration of reactant (or product), and \(\omega \) is the frequency in radians s\(^{-1}\). At lower frequencies the concentration wave interacts with the diffusion layer, at which point the concentration is considered to be damped rapidly to its mean value by natural convection processes in the electrolyte bulk. The diffusional impedance in this slightly more complicated case is given by

\[Z_w = \left[\frac{RT}{n F (1 - 1\omega^2)^{\frac{1}{2}}} \right] \left[\frac{\tanh(ju)}{u^{1/2}} \right]^{1/2}, \quad (15) \]

where

\[u = \omega D^2 / \bar{D} \quad (16) \]
and δ is the diffusion layer thickness, i is the DC current density, and $i_\tilde{\lambda}$ is the limiting current density. At high frequencies equation (15) reduces to equation (13). At the limit of low frequency ($\omega \to 0$), equation (15) defines the diffusional resistance,

$$RD = \sigma \delta / (\tilde{D}/2)^{1/2}.$$ \hspace{0.5cm} (17)

The characteristic impedance plane response (Nyquist plot) of the equivalent circuit shown in Figure 11(a) is given in Figure 11(b). Under ideal conditions the three principal resistances--RO, RR, and RD--are clearly resolvable, and the region determined by equation (13) appears as a straight line of slope 45°. For a perfectly smooth electrode with surface everywhere perpendicular to the applied field gradient (i.e. current flux normal to the surface), the intercept of the impedance locus at limiting high and low frequencies, occurs at 90°.

In battery studies we are particularly interested in i_\circ. To obtain this parameter with precision from the high-frequency AC response, we have developed a regression technique to fit the measured impedance data to a series/parallel equivalent circuit comprising RO, RR, and CDL. Details of the regression technique, and the computer program employed are included as Appendix II.

Programmed-rotation-speed ring-disk voltammetry was also used in the current study. In this method, the ring and disk are held at constant potential, and the respective currents are monitored as a function of a continuously varying rotation speed. The rotation speed variation is
"programmed" by applying an external voltage at the reference input of the motor speed controller shown in Figure 7. The shaft rotation speed is tightly controlled by the digital feedback loop and the angular momentum of the rotating assembly is low in comparison with the motor power (Bodine, 1/50 HP). Thus, the electrode rotation follows the program voltage variation closely, to high slew rates. Rotation speed information is taken directly from the magnetic pickup induced by the 22-tooth gear. In this way the rotation speed can be updated 22 times per revolution.

We have used two principal rotation speed perturbation schemes. Linear cycling of the rotation-speed from low to high rotation and return, has been used to measure the rotating speed dependence of the measured RRDE collection efficiency. In this case the rate of rotation speed change was calculated to be sufficiently low to maintain hydrodynamic equilibrium\(^\text{17}\) at the electrode surface. The second method was to impose a small sinusoidal perturbation of rotation about a fixed (DC) rotation speed. Measurements of the dependence of disk current on the modulation frequency provide a very effective means of distinguishing convective-diffusion processes from interfacial electrode reactions that are not governed by mass transport.\(^\text{17-21}\)

The advantages of programmed speed control of rotating disk and rotating ring-disk electrodes have been well reviewed in the pioneering study of Miller et al.\(^\text{17}\)
3 MEASUREMENTS ON IRON

3.1 Introduction

Experiments were performed using a rotating 99.9985% purity Fe disk and vitreous carbon ring electrode. A single electrolyte concentration (30 wt% KOH) was studied at temperatures of 0°, 25°, 50°, and 75°C. Experiments at 100°C resulted in severe corrosion and degradation of the Fe disk electrode, and no useful results were obtained at that temperature.

The experiments performed may be divided into three categories. Potentiodynamic studies comprising rotating disk electrode voltammetry and coulometry were used to examine possible kinetic limitations of the iron/iron oxide redox processes, and to measure the rate of hydrogen evolution under high-charge conditions. Rotating ring-disk studies were performed to quantify the rate of dissolution of iron and iron oxide species. AC impedance measurements were made to investigate the nature of the oxide films. Results of these measurements are presented in Sections 3.2 to 3.5.

A considerable insight into the mechanisms of dissolution and passivation is contained in the results. The implications are discussed in Section 3.6.
3.2 **Potentiodynamic Studies of Iron**

The discharge of an iron electrode in concentrated alkali proceeds via three sequential oxidation processes; each of these is manifest as a peak on a potentiodynamic discharge curve. On reversal of the potential sweep direction, three consecutive reduction peaks are resolvable.

Figures 12 and 13 show the influence of the anodic and cathodic reversal potentials on the repetitive-sweep voltammogram for Fe at 75°C and a rotation speed of 10 Hz, with a potentiodynamic sweep rate of 50 mV s\(^{-1}\). It is clear from these results that the peaks designated as 01 and R2 are conjugate processes, and that 03 and R3 are conjugates. That is, the oxidized species formed under peak 01 is reduced at R1, and similarly for 03 and R3.

The dependence of the height and position of peaks 02 and R2 on sweep rate and reversal potential suggests slightly more complex reaction paths. In Figure 12 the reoxidation of a fraction of 02 can be seen to occur for reversal potentials more negative than +500 mV\(^*\). A plot of the area under 02 versus cathodic reversal potential is inset in Figure 12, and indicates that the species formed at 02 is reduced continuously (i.e., the reduction process is not characterized by a peak on the potentiodynamic charge curve).

The origin of R2 can be seen most clearly in Figure 13. Peak R2 is absent in all voltammograms except those performed with the two most

*Unless otherwise specified, measurements of potential are with respect to a Zn/Zn\(^{++}\) reference couple in an electrolyte of the same composition and temperature as the working electrode chamber.
FIGURE 12 THE INFLUENCE OF CATHODIC POTENTIAL LIMIT ON THE REPETITIVE SWEEP VOLTAMMOGRAM FOR AN IRON DISK ROTATED AT 10 Hz IN 30 wt% KOH AT 75°C

Potentiodynamic sweep rate = 50 mV s⁻¹.
FIGURE 13 THE INFLUENCE OF ANODIC POTENTIAL LIMIT ON THE REPETITIVE SWEEP VOLTAMMGRAM FOR AN IRON DISK ROTATED AT 10 Hz IN 30 wt % KOH AT 75°C
Potentiodynamic sweep rate = 50 mV s⁻¹.
positive anodic reversal potentials. For $V_a = +1000$ mV, a shoulder is visible on the cathodic potential sweep between R3 and R1, and for $V_a = +1500$ mV, R2 is apparent as a well-defined peak. Figure 13 also reinforces the assignment of O3 and R3 as conjugate processes. At anodic reversal potentials more negative than O3, the reduction process that gives rise to R3 is completely absent. For an anodic reversal potential more positive than O3, peak R3 is present, at effectively constant area, independent of V_a.

This latter behavior is not replicated for O1 \rightarrow R1. The oxidation process has a constant area, independent of V_a, indicating that the oxide formed is completely reduced at V_c. The area of the reduction peak, however, increases with V_a. An analysis of the potential/charge curves (the integral of the curves in Figure 13) indicates that the majority of product formed by reduction process R2 is the reactant for reduction process R3. The above conclusions will be used in Section 3.5 in conjunction with the results of RRDE and AC impedance studies and our previous thermodynamic analysis, to make a complete identification of the charge and discharge processes for iron in concentrated alkali.

The influence of sweep rate on the potentiodynamic charge/discharge curves is shown in Figure 14 for an iron disk rotated at 10 Hz in 30 wt% KOH at 75°C and in Figure 15 at 0°C. It is immediately apparent from the poor resolution of the peaks at 0°C that kinetic factors limit the charge and discharge processes at the lower temperature. At 0°C peaks O1, O2, O3, R1, R2, and R3 are resolvable only at the lowest potentiodynamic sweep rates (< 1 mV s$^{-1}$).
FIGURE 14 THE INFLUENCE OF SWEEP RATE ON THE POTENTIODYNAMIC CHARGE/DISCHARGE CURVES FOR AN IRON DISK ELECTRODE ROTATED AT 10 Hz IN 30 wt% KOH AT 75°C
FIGURE 14 THE INFLUENCE OF SWEEP RATE ON THE POTENTIODYNAMIC CHARGE/DISCHARGE CURVES FOR AN IRON DISK ELECTRODE ROTATED AT 10 Hz IN 30 wt % KOH AT 75°C (Concluded)
FIGURE 15 THE INFLUENCE OF SWEEP RATE ON THE POTENTIODYNAMIC CHARGE/DISCHARGE CURVES FOR AN IRON DISK ELECTRODE ROTATED AT 10 Hz IN 30 wt% KOH AT 0°C
FIGURE 15 THE INFLUENCE OF SWEEP RATE ON THE POTENTIODYNAMIC CHARGE/DISCHARGE CURVES FOR AN IRON DISK ELECTRODE ROTATED AT 10 Hz IN 30 wt% KOH AT 0°C (Concluded)
Inset within Figures 14 and 15 are plots of the anodic, cathodic and net (anodic) charge versus the inverse square root of the potentiodynamic sweep rate v. In the previous study a correlation versus $v^{-1/3}$ was used. These functional dependences are not significantly different, and either one provides a useful empirical fit against sweep rate that is linear over a wide range of v. A theoretical interpretation of this observation currently is being considered.

The dependence of peak height and position on the potentiodynamic sweep rate in KOH is essentially identical to that observed previously in NaOH electrolytes. Table 1 gives the peak height and position information for the curves presented in Figures 14 and 15. In all cases, the positions of the oxidation peaks display relatively little dependence on sweep rate, while the reduction peak positions are linearly dependent on peak height. Thus, for R_2,

$$T = 0^\circ C: \quad V_{PR2} = 318 + 17.9 \ I_{PR2} : \ r^2 = .991 \quad (18)$$

$$T = 75^\circ C: \quad V_{PR2} = 338 + 5.4 \ I_{PR2} : \ r^2 = .991, \quad (19)$$

where r^2 is the regression coefficient.22

A linear dependence of peak position on peak height indicates the presence of a resistive surface film,23 the values of this resistance being the slopes of equations (18) and (19). A similar analysis of potentiodynamic curves obtained at 25° and 50°C yields the results shown in Table 2.
Table 1a

PEAK HEIGHT IN MILLI-VOLTS AS A FUNCTION OF TEMPERATURE AND SWEEP RATE FOR THE POTENTIODYNAMIC CHARGE/DISCHARGE OF AN IRON DISK ROTATED AT 10 Hz IN 30 WT% KOH

<table>
<thead>
<tr>
<th>v/mV s⁻¹</th>
<th>T/°C</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>75</td>
<td>1.29</td>
<td>1.74</td>
<td>1.79</td>
<td>1.51</td>
<td>-</td>
<td>-6.52</td>
<td>-1.95</td>
</tr>
<tr>
<td>100</td>
<td>75</td>
<td>0.77</td>
<td>1.28</td>
<td>0.88</td>
<td>0.80</td>
<td>-2.81</td>
<td>-3.81</td>
<td>-0.99</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
<td>0.41</td>
<td>0.86</td>
<td>0.47</td>
<td>0.43</td>
<td>-2.02</td>
<td>-1.50</td>
<td>-0.46</td>
</tr>
<tr>
<td>20</td>
<td>75</td>
<td>0.161</td>
<td>0.710</td>
<td>0.214</td>
<td>0.181</td>
<td>-1.30</td>
<td>-0.359</td>
<td>-0.228</td>
</tr>
<tr>
<td>10</td>
<td>75</td>
<td>0.069</td>
<td>0.646</td>
<td>0.122</td>
<td>0.098</td>
<td>-</td>
<td>-0.162</td>
<td>-0.114</td>
</tr>
<tr>
<td>5</td>
<td>75</td>
<td>0.022</td>
<td>0.590</td>
<td>0.072</td>
<td>0.056</td>
<td>-</td>
<td>-0.089</td>
<td>-0.061</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
<td>-</td>
<td>0.559</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.023</td>
<td>-0.018</td>
</tr>
<tr>
<td>200</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>2.39</td>
<td>-</td>
<td>-</td>
<td>-4.60</td>
<td>-2.19</td>
</tr>
<tr>
<td>100</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>1.76</td>
<td>-</td>
<td>-</td>
<td>-3.14</td>
<td>-1.58</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
<td>0.55</td>
<td>0.92</td>
<td>1.34</td>
<td>-</td>
<td>-</td>
<td>-2.27</td>
<td>-1.27</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>0.40</td>
<td>0.68</td>
<td>0.84</td>
<td>0.68</td>
<td>-</td>
<td>-1.32</td>
<td>-0.84</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>0.294</td>
<td>0.549</td>
<td>0.567</td>
<td>0.460</td>
<td>-</td>
<td>-0.84</td>
<td>-0.55</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>0.181</td>
<td>0.387</td>
<td>0.372</td>
<td>0.294</td>
<td>-</td>
<td>-0.515</td>
<td>-0.367</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>0.092</td>
<td>0.254</td>
<td>0.220</td>
<td>0.141</td>
<td>-</td>
<td>-0.382</td>
<td>-0.215</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>2.86</td>
<td>-</td>
<td>-</td>
<td>-4.50</td>
<td>-2.31</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>1.47</td>
<td>-</td>
<td>-</td>
<td>-2.96</td>
<td>-1.60</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>1.13</td>
<td>-</td>
<td>-</td>
<td>-2.05</td>
<td>-1.20</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>-</td>
<td>0.70</td>
<td>0.76</td>
<td>-</td>
<td>-</td>
<td>-1.24</td>
<td>-0.76</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.39</td>
<td>0.56</td>
<td>0.58</td>
<td>-</td>
<td>-</td>
<td>-0.87</td>
<td>-0.56</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.302</td>
<td>0.422</td>
<td>0.425</td>
<td>0.290</td>
<td>-</td>
<td>-0.600</td>
<td>-0.469</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.182</td>
<td>0.253</td>
<td>0.239</td>
<td>0.145</td>
<td>-</td>
<td>-</td>
<td>-0.306</td>
</tr>
</tbody>
</table>
Table 1b

PEAK POSITION IN MILLI-VOLTS VERSUS ZN/ZN (II) AS A FUNCTION OF TEMPERATURE AND SWEEP RATE FOR THE POTENTIODYNAMIC CHARGE/DISCHARGE OF AN IRON DISK ROTATED AT 10 Hz AT IN 30 WT5 KOH

<table>
<thead>
<tr>
<th>(\text{v/mV s}^{-1})</th>
<th>T/°C</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>75</td>
<td>387</td>
<td>554</td>
<td>768</td>
<td>910</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>75</td>
<td>385</td>
<td>551</td>
<td>754</td>
<td>++</td>
<td>**</td>
<td>319</td>
<td>417</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
<td>379</td>
<td>549</td>
<td>743</td>
<td>++</td>
<td></td>
<td>291</td>
<td>328</td>
</tr>
<tr>
<td>20</td>
<td>75</td>
<td>337</td>
<td>546</td>
<td>732</td>
<td>++</td>
<td></td>
<td>303</td>
<td>349</td>
</tr>
<tr>
<td>10</td>
<td>75</td>
<td>376</td>
<td>542</td>
<td>722</td>
<td>++</td>
<td></td>
<td>367</td>
<td>433</td>
</tr>
<tr>
<td>5</td>
<td>75</td>
<td>**</td>
<td>536</td>
<td>711</td>
<td>++</td>
<td></td>
<td>380</td>
<td>436</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
<td>-</td>
<td>528</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>875</td>
<td>-</td>
<td>-</td>
<td>288</td>
<td>**</td>
</tr>
<tr>
<td>100</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>851</td>
<td>-</td>
<td>-</td>
<td>299</td>
<td>**</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
<td>**</td>
<td>**</td>
<td>835</td>
<td>-</td>
<td>-</td>
<td>307</td>
<td>**</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>++</td>
<td>**</td>
<td>825</td>
<td>**</td>
<td></td>
<td>311</td>
<td>416</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>454</td>
<td>676</td>
<td>852</td>
<td>**</td>
<td></td>
<td>316</td>
<td>431</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>446</td>
<td>660</td>
<td>841</td>
<td>**</td>
<td></td>
<td>328</td>
<td>443</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>443</td>
<td>622</td>
<td>803</td>
<td>++</td>
<td></td>
<td>340</td>
<td>451</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>863</td>
<td>-</td>
<td>-</td>
<td>239</td>
<td>**</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>842</td>
<td>-</td>
<td>-</td>
<td>265</td>
<td>**</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>829</td>
<td>-</td>
<td>-</td>
<td>279</td>
<td>**</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>-</td>
<td>673</td>
<td>806</td>
<td>-</td>
<td>-</td>
<td>297</td>
<td>**</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>**</td>
<td>662</td>
<td>791</td>
<td>-</td>
<td>-</td>
<td>305</td>
<td>420</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>462</td>
<td>625</td>
<td>775</td>
<td>999</td>
<td>-</td>
<td>315</td>
<td>428</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>444</td>
<td>650</td>
<td>784</td>
<td>984</td>
<td>**</td>
<td></td>
<td>438</td>
</tr>
</tbody>
</table>

= Peak not observed.
++ = Plateau.
** = Shoulder.
It is apparent that the resistance of the oxide film formed during the discharge of an iron electrode increases monotonically with decreasing temperature. This resistance partially controls the charge rate during the reduction cycle. The potential at limiting low sweep rates increases approximately linearly with increasing temperature.

The dependence of peak current on sweep rate for the oxidation processes is complicated somewhat by the thickening of the oxide film. The regression lines calculated from the data in Table 1 are as follows:

Peak 01

- $T = 0^\circ C$: $I_{P01} = 0.22 + 0.118 \cdot \sqrt{v}$ \hspace{1cm} : $r^2 = .985$ \hspace{1cm} (20)
- $T = 75^\circ C$: $I_{P01} = 0.023 + 0.0066 \cdot v$ \hspace{1cm} : $r^2 = .996$ \hspace{1cm} (21)
Peak 02

\[T = 0^\circ C: \ I_{P02} = 0.127 + 0.124 \ v^{1/2} \quad : \ r^2 = .983 \quad (22) \]

\[T = 75^\circ C: \ I_{P02} = 0.248 + 0.104 \ v^{1/2} \quad : \ r^2 = .997 \quad (23) \]

Peak 03

\[T = 0^\circ C: \ I_{P03} = 0.103 + 0.141 \ v^{1/2} \quad : \ r^2 = .996 \quad (24) \]

\[T = 75^\circ C: \ I_{P03} = 0.026 + 0.026 \ v \quad : \ r^2 = .9998 \quad (25) \]

A well-behaved \(v^{1/2} \) dependence is observed for the principal discharge process, 02. Such a dependence has been interpreted previously\(^2\),\(^23\),\(^26\) in terms of the pore resistance model, in which the potentiodynamic peak current is determined by the resistance of the electrolyte in pores at the growing oxide film. This model predicts the following functional dependence for \(I_p \) and \(V_p \).

\[I_p = (nF\rho\kappa/M)^{1/2} A_o (1 - \theta_p)^{1/2} v \quad (26) \]

\[V_p = (nF\rho\kappa/M)^{1/2} (\lambda/\kappa) + R_o A_o (1 - \theta_p)^{1/2} v \quad (27) \]

where \(\theta_p \) is the fractional surface coverage at the peak

\(\rho \) is the density of the deposited phase

\(\kappa \) is the specific conductance of the solution

\(\lambda \) is the thickness of the film

\(A_o \) is the effective surface area

\(R_o \) is the uncompensated electrolyte resistance.
The pore resistance model appears to describe oxidation peak 02 adequately at all temperatures, and peaks 01 and 03 at 0°C. However, the form of equations (26) and (27) conveys relatively little information regarding the nature of the oxide film. A more detailed discussion is presented in Reference 2.

At high temperatures, the form of the peak-current dependence for processes 01 and 03 changes from $v^{1/2}$ to v. The significance of this change is not understood.

3.3 RRDE Collection Efficiency Calibration

The radius ratios of the rotating vitreous carbon ring and iron disk electrode (see Figure 8) exceeds those tabulated by Albery et al.25 and by Pleskov et al.26 However, the theoretical collection efficiency, N, can be evaluated from the equation25

$$
N = 1 - f(\alpha/\beta) + \beta^{2/3}[1 - f(\alpha)] - (1 + \alpha + \beta)^{2/3}[1 - f((\alpha/\beta)(1 + \alpha + \beta))] \tag{28}
$$

where

$$
\alpha = (r_2/r_1)^3 - 1 \tag{29}
$$

and

$$
f(\theta) = \frac{3^{1/2}}{4\pi} \ln\left[\frac{(1 + \theta^{1/3})^3}{1 + \theta}\right] + \frac{3}{2\pi} \tan^{-1}\left[\frac{2\theta^{1/3} - 1}{3^{1/2}}\right] + \frac{1}{4} \tag{30}
$$

Equations (28) to (30) are evaluated using the basic program in Appendix II to yield values of N.
The iron RRDE was calibrated experimentally by using a solution of 0.1 M K\textsubscript{3}Fe(CN)\textsubscript{6} in 1.0 M KOH supporting electrolyte. The results of this calibration at 25°C and at a rotation speed of 10 Hz are presented in Table 3.

Table 3

IRON RRDE CALIBRATION RESULTS IN 0.1 M K\textsubscript{3}Fe(CN)\textsubscript{6} WITH T = 25°C AND \(\omega = 10.0 \) Hz

<table>
<thead>
<tr>
<th>Disk Potential</th>
<th>1000 MV</th>
<th>800 MV</th>
<th>700 MV</th>
<th>650 MV</th>
<th>600 MV</th>
<th>550 MV</th>
<th>500 MV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{ring}} = 1200 \text{ mV})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{disk}}/\text{mA})</td>
<td>0.03</td>
<td>0.17</td>
<td>0.71</td>
<td>1.52</td>
<td>2.92</td>
<td>4.79</td>
<td>6.77</td>
</tr>
<tr>
<td>(I_{\text{ring}}/\text{mA})</td>
<td>0.46</td>
<td>0.49</td>
<td>0.71</td>
<td>1.04</td>
<td>1.63</td>
<td>2.40</td>
<td>3.21</td>
</tr>
<tr>
<td>(V_{\text{ring}} = 1400 \text{ mV})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{disk}}/\text{mA})</td>
<td>0.03</td>
<td>0.16</td>
<td>0.63</td>
<td>1.39</td>
<td>2.73</td>
<td>4.66</td>
<td>6.68</td>
</tr>
<tr>
<td>(I_{\text{ring}}/\text{mA})</td>
<td>1.03</td>
<td>1.04</td>
<td>1.21</td>
<td>1.54</td>
<td>2.10</td>
<td>2.92</td>
<td>3.78</td>
</tr>
<tr>
<td>(V_{\text{ring}} = 1500 \text{ mV})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{disk}}/\text{mA})</td>
<td>0.03</td>
<td>0.17</td>
<td>0.68</td>
<td>1.52</td>
<td>2.91</td>
<td>4.72</td>
<td>6.69</td>
</tr>
<tr>
<td>(I_{\text{ring}}/\text{mA})</td>
<td>1.68</td>
<td>1.67</td>
<td>1.84</td>
<td>2.18</td>
<td>2.74</td>
<td>3.50</td>
<td>4.29</td>
</tr>
</tbody>
</table>

The value of \(N \) can be determined from the regression of \(I_{\text{ring}} \) versus \(I_{\text{disk}} \):

\[
\begin{align*}
V_{\text{ring}} &= 1200 \text{ mV}: \quad I_{\text{ring}} &= 0.4183 + 0.4129 I_{\text{disk}} : \quad r^2 = 1.0000 \quad (31) \\
V_{\text{ring}} &= 1400 \text{ mV}: \quad I_{\text{ring}} &= 0.9553 + 0.4220 I_{\text{disk}} : \quad r^2 = 0.9999 \quad (32) \\
V_{\text{ring}} &= 1500 \text{ mV}: \quad I_{\text{ring}} &= 1.5756 + 0.4054 I_{\text{disk}} : \quad r^2 = 0.9998 \quad (33)
\end{align*}
\]

Therefore, over the range of ring potentials indicated, \(N = 43.3 \pm 0.8\% \). The value of \(N \) calculated from equation (28) with \(r_1 = 0.76 \),
$r_2 = 0.51$ and $r_3 = 0.32 \pm 0.01$ cm is $N = 41.4\%$. This conformity between experiment and theory provides a good indication that the RRDE is functioning ideally. The experimentally determined value of $N = 41.3\%$ will be used in all subsequent discussion.

3.4 **RRDE Studies of Iron**

As discussed previously for NaOH electrolytes, the dissolution of iron and iron oxide in KOH occurs by several distinguishably different mechanisms within defined regions of electrode potential.

Figure 16 shows the results of RRDE measurements of Fe in 30 wt% KOH at 75°C, with a potentiodynamic sweep of the disk, as a function of ring potential. The various dissolution processes can be seen in Figure 16(a) as oxidative peaks in the ring current at large positive ring potentials and/or as reductive ring current peaks at low ring potentials. This experiment can be used to determine the oxidation number of the dissolved ionic species; with the ring held at $+1400$ mV, we expect to oxidize any Fe(II) dissolved species to Fe(III). As shown in Figure 16(b), for $V_{\text{ring}} > 600$ mV there are three ring oxidation current peaks and no reduction peaks. Peaks D01 and D02 are observed to be associated, respectively, with 01 and 02 on the potentiodynamic discharge cycle, and D03 is observed to be associated with disk peak R2 during charge.

A ring potential of $+400$ mV is sufficient to reduce Fe(III) to Fe(II), but not to reduce Fe(II) to Fe(0). Two such reduction processes are shown in Figure 16(b). Dissolution peak DR2 occurs in conjunction with disk oxidation peak 02, and an additional dissolution peak, DR3, is seen at large disk potentials corresponding roughly to the disk peak labeled 04 in Figure 16(a).
FIGURE 16 RRDE MEASUREMENTS OF IRON IN 30 wt% KOH AT 75°C

Disk potentiodynamic sweep rate = 50 mV s⁻¹.
FIGURE 16 RRDE MEASUREMENTS OF IRON IN 30 wt% KOH AT 75°C (Concluded)
Disk potentiodynamic sweep rate = 50 mV s⁻¹.
At ring potentials more negative than 300 mV (not shown in Figure 16), peak DR2 increases in amplitude, and a dissolution-reduction peak designated as DR1 appears as a complement to D03. Both processes involve the reduction of Fe(II) to Fe(0) at the ring. These collection processes cannot be quantified because of competition from hydrogen ion reduction at the vitreous carbon ring.

At intermediate ring potentials (500 < \(V_{\text{ring}} \) < 600 mV), reduction and oxidation peaks are observed simultaneously in conjunction with disk oxidation peak 02. Peak 02 already has been observed to be complex, and at very low potentiodynamic discharge rates this peak splits into a roughly symmetric doublet. It is clear, therefore, that 02 conceals two separate oxidation processes. The process occurring at lower potentials involves a dissolved Fe(II) species, presumably as a reaction intermediate in the growth of the oxide film. The higher-potential process yields an Fe(III) ion, the dissolution of which apparently is terminated by disk oxidation process 03.

Table 4 gives peak areas for disk currents and for ring currents at various ring potentials, taken from the potentiodynamic data in Figure 16.

These data indicate that, at 75°C, an appreciable fraction of each of the principal charge and discharge processes involves the formation of soluble ionic species. This is a matter of some concern in battery technology since a dissolved ion may not be fully recovered when the current is reversed, thus resulting in coulombic inefficiency. More importantly, Fe(II) ions will oxidize at the positive electrode, resulting in a chemical "short circuit," and may poison that electrode. Also, continued dissolution of iron may result in shape change.
Table 4

PEAK AREAS MEASURED FROM THE POTENTIODYNAMIC DATA PRESENTED IN FIGURE 16 (μC)

<table>
<thead>
<tr>
<th>Disk Peak</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>821</td>
<td>6605</td>
<td>2380</td>
<td>2011</td>
<td>1174</td>
<td>433</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ring Peak</th>
<th>DO1</th>
<th>DO2</th>
<th>DO3</th>
<th>DR1</th>
<th>DR2</th>
<th>DR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ring} = +1400 mV</td>
<td>18</td>
<td>144</td>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V_{ring} = +600 mV</td>
<td>17</td>
<td>144</td>
<td>77</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V_{ring} = +550 mV</td>
<td>11</td>
<td>37</td>
<td>38</td>
<td>0</td>
<td>94</td>
<td>67</td>
</tr>
<tr>
<td>V_{ring} = +400 mV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>194</td>
<td>124</td>
</tr>
</tbody>
</table>

From the data in Table 4 we can calculate the percentage of the disk redox process that results in a soluble species as

\[
PD = \frac{100}{N} \frac{Q_r n_d}{Q_d n_r}
\]

where \(Q_r\) and \(Q_d\) are the ring and disk peak areas

\(n_r\) and \(n_d\) are the number of electrons involved in the redox process

\(N\) is the RRDE collection efficiency = 0.413.

In each case \(n_r = 1\), and \(n_d\) depends on the assignment of the disk peaks.

Figures 17 and 18 show the results of RRDE experiments at 50°C and 25°C. The peak areas measured from the potentiodynamic data at temperatures from 0° to 75°C are summarized in Table 6.

Figures 16 to 18 indicate qualitatively, and Table 6 shows quantitatively, that there is a progressive change in charge and dissolution processes as temperature is increased. Thus, at low temperatures 03
FIGURE 17 RRDE MEASUREMENTS OF IRON IN 30 wt% KOH AT 50°C
Potentiodynamic sweep rate = 50 mV s\(^{-1}\).
FIGURE 17 RRDE MEASUREMENTS OF IRON IN 30 wt% KOH AT 50°C (Concluded)

Potentiodynamic sweep rate = 50 mV s\(^{-1}\).
FIGURE 18 RRDE MEASUREMENTS OF IRON IN 30 wt% KOH AT 25°C.
Potentiodynamic sweep rate = 50 mV s⁻¹.
FIGURE 18 RRDE MEASUREMENTS OF IRON IN 30 wt% KOH AT 25°C (Continued)
Potentiodynamic sweep rate = 50 mV s⁻¹
FIGURE 18 RRDE MEASUREMENTS OF IRON IN 30 wt% KOH AT 25°C (Concluded)
Potentiodynamic sweep rate = 50 mV s⁻¹
Table 5

PERCENT DISSOLUTION TAKEN FROM DATA IN TABLE 4

<table>
<thead>
<tr>
<th>Dissolution Peak</th>
<th>Dissolved Species</th>
<th>Associated Disk Peak</th>
<th>Dissolution Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO1</td>
<td>Fe(II)</td>
<td>01</td>
<td>5.3 (n_d)</td>
</tr>
<tr>
<td>DO2</td>
<td>Fe(II)</td>
<td>02</td>
<td>5.3 (n_d)</td>
</tr>
<tr>
<td>DO3</td>
<td>Fe(II)</td>
<td>R2</td>
<td>22.9 (n_d)</td>
</tr>
<tr>
<td>DR1</td>
<td>Fe(II)</td>
<td>01</td>
<td>-</td>
</tr>
<tr>
<td>DR2</td>
<td>Fe(III)</td>
<td>02</td>
<td>7.1 (n_d)</td>
</tr>
<tr>
<td>DR3</td>
<td>Fe(III)</td>
<td>04</td>
<td>14.9 (n_d)</td>
</tr>
</tbody>
</table>

constitutes the principal discharge process, while at elevated temperatures peak 02 dominates discharge. Disk peaks 01 and 04 both show a monotonic decrease in area with decreasing temperature. In contrast, the disk charge peak areas show essentially no dependence on temperature.

The extent of dissolution as a percentage of the disk process is presented in Table 7 for all temperatures studied.

Presented in this way the extent of dissolution is seen generally to decline with decreasing temperature until, at 0°C, only DO3 is observed at the ring. Two exceptions are the apparent lack of dependence of DO1/01 on temperature, and the decrease of DR3/04 at temperatures above ambient. This latter process, however, occurs at potentials sufficiently positive to be of no interest in battery studies.

It should be noted that the figures presented in Tables 4 to 7 reflect only the extent to which the features of the potentiodynamic charge/discharge curves that can be resolved into separate peaks result in a dissolved product. However, not all of the charge or discharge.
Table 6

Peak Areas Measured from the Potentiodynamic Sweep Data at 0°, 25°, 50°, and 75°C

(μC)

<table>
<thead>
<tr>
<th>T/°C</th>
<th>Disk Peak:</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>821</td>
<td>6605</td>
<td>2380</td>
<td>2011</td>
<td>1176</td>
<td>433</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>470</td>
<td>4460</td>
<td>2250</td>
<td>1000</td>
<td>1180</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>280</td>
<td>2160</td>
<td>3250</td>
<td>910</td>
<td>1190</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>---</td>
<td>1230</td>
<td>4450</td>
<td>---</td>
<td>440</td>
<td>410</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T/°C</th>
<th>Ring Peak:</th>
<th>D01</th>
<th>D02</th>
<th>D03</th>
<th>DR1</th>
<th>DR2</th>
<th>DR3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V<sub>ring</sub>/mV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>1400</td>
<td>18</td>
<td>144</td>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>600</td>
<td>17</td>
<td>144</td>
<td>77</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>550</td>
<td>11</td>
<td>37</td>
<td>38</td>
<td>0</td>
<td>94</td>
<td>67</td>
</tr>
<tr>
<td>75</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>194</td>
<td>124</td>
</tr>
<tr>
<td>50</td>
<td>800</td>
<td>11</td>
<td>19</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>600</td>
<td>4</td>
<td>6</td>
<td>21</td>
<td>0</td>
<td>54</td>
<td>41</td>
</tr>
<tr>
<td>50</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>96</td>
<td>74</td>
</tr>
<tr>
<td>25</td>
<td>1000</td>
<td>6</td>
<td>8</td>
<td>66</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>700</td>
<td>7</td>
<td>9</td>
<td>61</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>600</td>
<td>8</td>
<td>9</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>550</td>
<td>4</td>
<td>5</td>
<td>26</td>
<td>0</td>
<td>35</td>
<td>37</td>
</tr>
<tr>
<td>25</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>46</td>
<td>78</td>
</tr>
<tr>
<td>25</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>54</td>
<td>78</td>
</tr>
<tr>
<td>25</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>56</td>
<td>81</td>
</tr>
<tr>
<td>0</td>
<td>1000</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

60
Table 7

PERCENT OF DISK DISSOLUTION

<table>
<thead>
<tr>
<th></th>
<th>0°C</th>
<th>25°C</th>
<th>50°C</th>
<th>75°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D01/01</td>
<td>*</td>
<td>5.2</td>
<td>5.7</td>
<td>5.3</td>
</tr>
<tr>
<td>D02/01</td>
<td>*</td>
<td>0.9</td>
<td>1.0</td>
<td>5.3</td>
</tr>
<tr>
<td>DR2/02</td>
<td>*</td>
<td>6.3</td>
<td>5.2</td>
<td>7.1</td>
</tr>
<tr>
<td>(D02 + DR2)/02</td>
<td>*</td>
<td>7.4</td>
<td>6.2</td>
<td>12.3</td>
</tr>
<tr>
<td>D03/R2</td>
<td>3.9</td>
<td>13.4</td>
<td>10.5</td>
<td>22.9</td>
</tr>
<tr>
<td>DR3/04</td>
<td>*</td>
<td>21.6</td>
<td>17.9</td>
<td>14.9</td>
</tr>
</tbody>
</table>

*Insufficient precision in peak area determinations.

Processes result in a potentiodynamic peak. For example, the principal charge process (the converse of O2) has no associated peak. Thus, the decrease in total coulombic efficiency resulting from metal dissolution is somewhat less than would be indicated by the data in Table 7. The total dissolution relative to the total anodic and cathodic disk charges is as follows:

<table>
<thead>
<tr>
<th>T/°C</th>
<th>Oxidative Dissolution</th>
<th>Reductive Dissolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>5.98%</td>
<td>1.56%</td>
</tr>
<tr>
<td>50</td>
<td>2.55%</td>
<td>0.29%</td>
</tr>
<tr>
<td>25</td>
<td>3.16%</td>
<td>0.08%</td>
</tr>
<tr>
<td>0</td>
<td>0%</td>
<td>0.08%</td>
</tr>
</tbody>
</table>

3.5 AC Impedance Studies of Iron

The impedance locus plots in Figure 19 show the effects of temperature and applied DC potential on the measured AC response of an iron RDE in 30% KOH, at a constant rotation speed of 10 Hz.
The growth of an oxide film can be seen qualitatively in the influence of applied DC bias on the measured impedance dispersion [Figure 19(a)]. Close to the potential of zero current (+250 mV), the impedance response displays the expected Randles form for a smooth, plane-parallel, unfilmed electrode [Figure 11(a)]. That is, at high frequencies the impedance locus has the form of a semicircle with center on the real axis, which is attributable to the parallel combination of the double-layer capacitance and the interfacial reaction resistance. At low frequencies the impedance locus is attributable to diffusion across a stratified Nernst diffusion layer within the electrolyte. At larger applied DC potentials, a large series impedance becomes evident, which is associated with the surface iron oxide film. This series oxide impedance corresponds roughly to the parallel combination of a bulk geometric capacitance, the resistance due to the passage of electrons (or holes) in the oxide phase, and an impedance associated with the diffusion of oxygen and/or metal ions in the oxide phase and hydroxyl ions in the liquid phase. A complete quantitative analysis of these data, and of the results of a number of additional experiments, currently is being prepared and will be included in the next annual report. Qualitatively, the resistance of the oxide film increases monotonically with increasing potential.

The data in Figure 19(b) can be analyzed to determine the influence of temperature on the double-layer capacitance, and exchange-current density i_0, for the iron electrode in the vicinity of the [Fe$^+$Fe(OH)$_2$] peak (peak 01). These parameters have been obtained by fitting the impedances measured at high frequency to an RC series/parallel equivalent current using the regression program that is included as Appendix III.
FIGURE 19 AC IMPEDANCE RESPONSE OF AN IRON ROTATING DISK ELECTRODE IN 30 wt% KOH WITH A ROTATION SPEED OF 10 Hz
FIGURE 19 AC IMPEDANCE RESPONSE OF AN IRON ROTATING DISK ELECTRODE IN 30 wt% KOH WITH A ROTATION SPEED OF 10 Hz (Concluded)
The results of this regression analysis for the data in Figure 19(b) are presented in Table 8. The values of the, i_o, were calculated using equation (12).

It is apparent from the tabulated values of i_o that the kinetic constraints for the Fe$^{2+}$Fe(OH)$_2$ charge/discharge process are reduced with increasing temperature. However, the principal kinetic limitations of charge and discharge originate within the oxide film, not with the interfacial reaction process.

The values tabulated for C display a maximum at 80°C but are relatively independent of temperature.

Table 8

<table>
<thead>
<tr>
<th>T/°C</th>
<th>RS/Ω cm$^{-2}$</th>
<th>RR/Ω cm$^{-2}$</th>
<th>C/µF cm$^{-2}$</th>
<th>i_o mA cm$^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.71</td>
<td>3.12</td>
<td>77.4</td>
<td>3.76</td>
</tr>
<tr>
<td>25</td>
<td>0.39</td>
<td>2.44</td>
<td>80.8</td>
<td>5.25</td>
</tr>
<tr>
<td>50</td>
<td>0.26</td>
<td>2.32</td>
<td>90.1</td>
<td>6.00</td>
</tr>
<tr>
<td>75</td>
<td>0.23</td>
<td>1.87</td>
<td>89.2</td>
<td>8.03</td>
</tr>
<tr>
<td>100</td>
<td>0.19</td>
<td>1.61</td>
<td>88.0</td>
<td>9.98</td>
</tr>
</tbody>
</table>

3.6 Mechanisms of the Charge/Discharge Reactions of Iron

The equilibrium potentials for all pertinent iron and iron oxide redox processes are presented in Table 9. The tabulated data summarize the results of our thermodynamic calculations for iron in 8 molal (corresponding to 31 wt%) NaOH.
Table 9
CALCULATED EQUILIBRIUM POTENTIALS FOR IRON AND IRON OXIDE
REDOX PROCESSES IN 8 MOLAL NaOH

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Number of e⁻</th>
<th>Equilibrium Potential/mV versus Zn/Zn⁺⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0°C</td>
<td>20°C</td>
</tr>
<tr>
<td>Metal + Soluble Ion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/HFeO₂⁻</td>
<td>+2</td>
<td>491</td>
</tr>
<tr>
<td>Fe/FeO₂⁺</td>
<td>+2</td>
<td>429</td>
</tr>
<tr>
<td>Fe/(Fe(OH)₄)⁻</td>
<td>+3</td>
<td>547</td>
</tr>
<tr>
<td>Metal Oxide + Soluble Ion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeOH₂⁻/Fe(OH)₄⁻</td>
<td>+1</td>
<td>690</td>
</tr>
<tr>
<td>Fe₃O₄⁻/HFeO₂⁻</td>
<td>−2/3</td>
<td>453</td>
</tr>
<tr>
<td>Fe₃O₂⁻/FeO₂⁺</td>
<td>−2/3</td>
<td>612</td>
</tr>
<tr>
<td>Fe₃O₄⁻/Fe(OH)₄⁻</td>
<td>+1/3</td>
<td>1072</td>
</tr>
<tr>
<td>Fe₂O₃⁻/HFeO₂⁻</td>
<td>−1</td>
<td>1522</td>
</tr>
<tr>
<td>Fe₂O₃⁻/FeO₂⁺</td>
<td>−1</td>
<td>667</td>
</tr>
<tr>
<td>FeOOH⁻/HFeO₂⁻</td>
<td>−1</td>
<td>558</td>
</tr>
<tr>
<td>FeOOH⁻/FeO₂⁺</td>
<td>−1</td>
<td>633</td>
</tr>
<tr>
<td>Fe(OH)₃⁻/HFeO₂⁻</td>
<td>−1</td>
<td>694</td>
</tr>
<tr>
<td>Fe(OH)₃⁻/FeO₂⁺</td>
<td>−1</td>
<td>800</td>
</tr>
<tr>
<td>Soluble Ion + Soluble Ion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFeO₂⁻/Fe(OH)₄⁻</td>
<td>+1</td>
<td>660</td>
</tr>
<tr>
<td>FeO₂⁻_/Fe(OH)₄⁻</td>
<td>+1</td>
<td>765</td>
</tr>
<tr>
<td>Metal + Metal Oxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/Fe(OH)₂⁺</td>
<td>+2</td>
<td>476</td>
</tr>
<tr>
<td>Fe/Fe₃O₄⁺</td>
<td>+8/3</td>
<td>482</td>
</tr>
<tr>
<td>Metal Oxide + Metal Oxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(OH)₂⁻/Fe₃O₄⁻</td>
<td>+2/3</td>
<td>499</td>
</tr>
<tr>
<td>Fe(OH)₂⁻/Fe(OH)₃⁻</td>
<td>+1</td>
<td>724</td>
</tr>
<tr>
<td>Fe(OH)₂⁻/FeOOH⁻</td>
<td>+1</td>
<td>588</td>
</tr>
<tr>
<td>Fe(OH)₂⁻/Fe₂O₃⁻</td>
<td>+1/3</td>
<td>777</td>
</tr>
</tbody>
</table>

Iron in 8 molal (corresponding to 31 wt% NaOH).
Table 9 Concluded

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Number of e⁻</th>
<th>Equilibrium potential/mV versus Zn/Zn²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0°C</td>
</tr>
<tr>
<td>Metal → Soluble Ion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/HFeO₂⁻</td>
<td>+2</td>
<td>491</td>
</tr>
<tr>
<td>Fe/FeO₂⁻</td>
<td>+2</td>
<td>439</td>
</tr>
<tr>
<td>Fe/Fe(OH)₄⁻</td>
<td>+3</td>
<td>547</td>
</tr>
<tr>
<td>Metal Oxide → Soluble Ion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeOH₂/Fe(OH)₄⁺</td>
<td>+1</td>
<td>690</td>
</tr>
<tr>
<td>Fe₃O₄/HFeO₂⁻</td>
<td>-2/3</td>
<td>453</td>
</tr>
<tr>
<td>Fe₃O₄/FeO₂⁻</td>
<td>-2/3</td>
<td>612</td>
</tr>
<tr>
<td>Fe₃O₄/Fe(OH)₄⁻</td>
<td>+1/3</td>
<td>1072</td>
</tr>
<tr>
<td>Fe₂O₃/HFeO₂⁻</td>
<td>-1</td>
<td>1522</td>
</tr>
<tr>
<td>Fe₂O₃/FeO₂⁻</td>
<td>-1</td>
<td>667</td>
</tr>
<tr>
<td>FeOOH/HFeO₂⁻</td>
<td>-1</td>
<td>558</td>
</tr>
<tr>
<td>FeOOH/FeO₂⁻</td>
<td>-1</td>
<td>663</td>
</tr>
<tr>
<td>Fe(OH)₃/HFeO₂⁻</td>
<td>-1</td>
<td>694</td>
</tr>
<tr>
<td>Fe(OH)₃/FeO₂⁻</td>
<td>-1</td>
<td>800</td>
</tr>
<tr>
<td>Soluble Ion → Soluble Ion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFeO₂⁻/Fe(OH)₄⁺</td>
<td>+1</td>
<td>660</td>
</tr>
<tr>
<td>FeO₂⁻/Fe(OH)₄⁺</td>
<td>+1</td>
<td>705</td>
</tr>
<tr>
<td>Metal → Metal Oxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/Fe(OH)₂²⁻</td>
<td>2</td>
<td>476</td>
</tr>
<tr>
<td>Fe/Fe₃O₄</td>
<td>+8/3</td>
<td>482</td>
</tr>
<tr>
<td>Metal Oxide → Metal Oxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(OH)₂²⁻/Fe₃O₄⁺</td>
<td>+2/3</td>
<td>499</td>
</tr>
<tr>
<td>Fe(OH)₂²⁻/Fe(OH)₃⁺</td>
<td>+1</td>
<td>724</td>
</tr>
<tr>
<td>Fe(OH)₂²⁻/FeOOH</td>
<td>+1</td>
<td>588</td>
</tr>
<tr>
<td>Fe(OH)₂²⁻Fe₂O₃</td>
<td>+1</td>
<td>591</td>
</tr>
<tr>
<td>Fe₃O₄²⁻/FeOOH</td>
<td>+1/3</td>
<td>766</td>
</tr>
<tr>
<td>Fe₃O₄²⁻/Fe₂O₃</td>
<td>+1/3</td>
<td>777</td>
</tr>
</tbody>
</table>
It should be stressed that the calculations were made for NaOH, while the experiments performed in this study were conducted in KOH. Nevertheless, the cation effect is expected to be sufficiently small that the data in Table 9 reflect the trends of the thermodynamic parameters.

The reaction sequences shown in Figure 20 summarize the data in Table 9; these may be used in conjunction with the potentiodynamic sweep and RRDE results in an attempt to explain the charge, discharge, and dissolution mechanisms of iron in concentrated hydroxide.

Figure 20(a) shows the thermodynamically favored reaction paths at low temperatures (\(\leq 25^\circ\text{C}\)); Figure 20(b) shows the high-temperature (\(\geq 50^\circ\text{C}\)) mechanisms. In each case the numbers in boxes adjacent to the reversible arrows indicate the calculated equilibrium potentials for the specified processes, taken from Table 9: in Figure 20(a) at 100°C and in Figure 20(b) at 0°C. Heavy arrows indicate thermodynamically most favored pathways, while dotted lines indicate improbable reaction paths.

At high temperatures [Figure 20(a)], discharge occurs initially to form \(\text{HFeO}^-\); this ion then precipitates to form \(\text{Fe(OH)}_2\) on the electrode surface. Oxidation via this dissolved intermediate is favored by only 20 mV over the direct formation of \(\text{Fe(OH)}_2\), and the differential rates will be determined by kinetic factors. However, the presence of a dissolved Fe(II) intermediate is clearly indicated by the results of RRDE experiments, shown in Figure 16 (peak D01). With the buildup of an \(\text{Fe(OH)}_2\) film, the rate of this reaction decreases, and a potentiodynamic peak (02) is observed. At higher potentials a second discharge peak (01) conceals three processes: the oxidation of surface-formed \(\text{Fe(OH)}_2\) to \(\text{Fe}_3\text{O}_4\) (peak 02, path [a]) the continued dissolution of \(\text{Fe} + \text{HFeO}_2 + \text{Fe(OH)}_2 + \)
FIGURE 20 THERMODYNAMICALLY FAVORED REACTION PATHWAYS SHOWING THE CALCULATED EQUILIBRIUM POTENTIALS FOR Fe IN 8 MOLAL NaOH
FIGURE 20 THERMODYNAMICALLY FAVORED REACTION PATHWAYS SHOWING THE CALCULATED EQUILIBRIUM POTENTIALS FOR Fe IN 8 MOLAL NaOH (Concluded)
Fe$_3$O$_4$ (peak 02, path [b]), and the electrochemical dissolution of magnetite formed by these reactions to produce Fe(OH)$_4^-$. This last process becomes highly favored (thermodynamically) with increasing temperature, and must be restricted kinetically, perhaps by the formation of a "pseudo-passivating" Fe(III) surface oxide film by precipitation. If such a film were not formed, magnetite would dissolve completely to form Fe(OH)$_4^-$ at temperatures \geq 80°C. The RRDE results at 75°C presented in Figure 16 and the data summarized in Table 7 show that both Fe(II) ions (peak D02, which appears as an intermediate in the formation of magnetite) and Fe(III) ions (peak DR2, resulting from the electrochemical dissolution of magnetite) are observed in conjunction with disk peak 02.

Oxidation peaks 03 and 04 can tentatively be assigned to the oxidation of unreacted Fe(OH)$_2$ directly to Fe$_2$O$_3$ and the oxidation of Fe$_3$O$_4$ to Fe$_2$O$_3$. In each case Fe(OH)$_4^-$ is an intermediate, which is observed as ring reduction process DR3. Since a dissolved Fe(III) species is not observed during the reduction half-cycle, it is clear that the precipitation reaction Fe(OH)$_4^- \rightarrow$ Fe$_2$O$_3$ proceeds rapidly to the right.

Reduction of the disk surface oxide proceeds as follows. As was noted previously (Section 3.2), disk peaks 03 and R3 are conjugate processes. Thus, R3 is related to the reduction of Fe$_2$O$_3$ to Fe$_3$O$_4$; in this direction, Fe(OH)$_4^-$ is an intermediate. The results presented in Figures 12 and 13 indicate that the reduction of magnetite (produced by oxidation in peak 02 or reduction in peak R3) to Fe(OH)$_3$ does not result in a reduction peak, but occurs continuously at potentials \leq 400 mV.

Reduction peak R2 is observed in conjunction with ring oxidation peak D03, following oxidation at large positive potentials (see Figure 13). It
is probable that this is a result of the partial transformation of Fe$_2$O$_3$ to FeOOH at high potentials. During the reduction half-cycle, FeOOH is reduced to Fe(OH)$_2$, with HFeO$_2^-$ as an intermediate.

The Fe(OH)$_2$ formed by processes 01, R3, and R2 is reduced to Fe(O) under peak R1, without a dissolved Fe(II) intermediate.

The influence of temperature on the thermodynamic and electrochemical kinetic parameters is such that the charge, discharge, and dissolution mechanisms at low temperatures deviate somewhat from the high-temperature scheme described above.

Figure 20(b) summarizes the reaction sequence proposed for temperatures $\leq 25^\circ$C. At low temperatures FeO$_2^-$ becomes the stable Fe(II) dissolved species, and the initial discharge of Fe to Fe(OH)$_2$ proceeds with this ion as an intermediate (peaks 01 and DO1 in Figure 17). As indicated in Table 7, the percentage of Fe(II) that is dissolved in this process is effectively independent of temperature.

Disk oxidation peak 02 again conceals three processes: the oxidation of surface-formed Fe(OH)$_2$ to Fe$_3$O$_4$, the direct oxidation of Fe to Fe$_2$O$_3$ and the dissolution of Fe(OH)$_2$ to Fe(OH)$_4^-$. The first of these processes is the same as at high temperature, but in this case the direct oxidation from iron to magnetite is favored by nearly 20 mV over a path with Fe(OH)$_2$ as an intermediate. The fact that this path does not involve a dissolved Fe(II) species accounts for the relative decrease at low temperatures of ring dissolution peak DO2 [see Figure 17(b) and Table 7]. At low temperatures, also, the available paths from magnetite to Fe(III) all have relatively high potentials, and it is probable that the Fe(III) dissolution peak (DR2) that appears in conjunction with disk peak 02,
temperatures, is due to the electrochemical dissolution of unreacted Fe(OH)$_2$. The influence of potentiodynamic sweep rate on RRDE results tends to support this hypothesis, since ring peak DR2 is not observed at very low disk potential sweep rates.

At low temperatures oxidation peaks O3 and O4 probably correspond to the oxidation of unreacted Fe(OH)$_2$ and of Fe$_3$O$_4$ to Fe(III). In this case, the stable Fe(III) oxide is FeOOH (compared with Fe$_2$O$_3$ at high temperatures).

On the reduction half-cycle, disk peak R3 corresponds to the reduction of Fe(III) oxide (Fe$_2$O$_3$ or FeOOH) to magnetite. As is observed at high temperatures, subsequent reduction of magnetite to Fe(OH)$_2$ occurs continuously and does not result in a peak.

Reduction peak R2 is observed following large anodic potential excursions and, at low temperatures, is attributable to the reduction sequence Fe$_2$O$_3$ + FeO$^-$ + Fe(OH)$_2$. The well-defined ring oxidation peak is associated with the FeO$^-$ that is an intermediate in this disk reduction process.

The final reduction process, R1, that is associated with the reduction of Fe(OH)$_2$ to Fe, is concealed at low temperatures by the reduction of hydrogen ions.

This detailed reaction sequence represents an attempt to correlate the calculated thermodynamic and measured kinetic and dissolution parameters for Fe over a range of temperatures. The proposed mechanism should be treated as not definitive but as a working hypothesis for further experimentation. Simplified versions of the oxidation and reduction reaction sequences at high and low temperatures are presented, together with peak assignments, in Figure 21.
FIGURE 21 SIMPLIFIED HIGH- AND LOW-TEMPERATURE REACTION SEQUENCES FOR IRON IN 30 wt% KOH
FIGURE 21 SIMPLIFIED HIGH- AND LOW-TEMPERATURE REACTION SEQUENCES
FOR IRON IN 30 wt% KOH (Concluded).
4 MEASUREMENTS ON ZINC

4.1 Introduction

Measurements were performed using a rotating 99.999% purity Zn disk and vitreous carbon ring electrode. Two electrolyte concentrations containing 30 and 36 wt% KOH were studied at 0°, 25°, 50°, 75°, and 100°C. For selected conditions the solution zincate concentration was varied from effectively zero to supersaturated, by coulometrically dissolving an auxiliary high-purity zinc electrode in the working electrolyte.

In contrast to the iron electrode, where the charge/discharge kinetics are controlled by the electrode/electrolyte interfacial impedance and oxide film resistance, the discharge of Zn prior to passivation is dominated by mass transport processes. Accordingly, potentiodynamic studies of a zinc RDE were performed with rotational speed as the principal independent variable (in contrast to potentiodynamic sweep rate for Fe). In addition to potentiodynamic voltammetry and coulometry, AC impedance experiments were performed as a function of DC potential, electrode rotation speed, KOH and zincate concentration, and temperature to determine the kinetics and mechanism of zinc discharge. RRDE measurements were made as a function of zincate concentration and rotation speed in an attempt to determine the nature of the dissolved product.
4.2 Potentiodynamic Studies of Zinc

The discharge of a zinc electrode in concentrated KOH proceeds qualitatively in the same way as discharge in NaOH.2,5 For a slow potentiodynamic sweep, an initial exponential dependence of discharge current on potential is followed by a linear region in which the slope is proportional to the inverse square root of rotation speed. Figure 22 shows the influence of electrode rotation speed on the slope of the potentiodynamic discharge curve for zinc in 30 wt\% KOH at 78°C. Table 10 contains a complete tabulation of the slopes and intercepts of the linear regions of the dissolution current/voltage curves as a function of angular rotation speed, electrolyte concentration, and temperature. These data were obtained at a potentiodynamic sweep rate of 1 mV s-1. The current/voltage responses display little hysteresis at all nonzero rotation speeds used, and the data tabulated closely reflect steady-state conditions.

The data presented in Table 10 may be fitted to an equation of the form

\begin{equation}
R = R^o + \alpha \omega^{-1/2}.
\end{equation}

Thus, over a wide range of potential, the discharge resistance for zinc is the sum of a convection-independent term, and a term proportional to the thickness of the diffusion layer.

Table 11 shows the regression parameters for the fit of all data in Table 10 to equation (35). Both R^o and α are seen to decrease
FIGURE 22 POTENTIODYNAMIC DISCHARGE OF ZINC IN 30 wt% KOH AT 78°C, AS A FUNCTION OF DISK ROTATION SPEED
Sweep rate = 1 mV s$^{-1}$.

JA-1535-35
Table 10

SLOPE AND INTERCEPTS OF THE LINEAR I-V DISCHARGE REGION OF A ZINC RDE, AS A FUNCTION OF TEMPERATURE, ROTATION SPEED, AND ELECTROLYTE CONCENTRATION

(a) 35 wt% KOH

<table>
<thead>
<tr>
<th>Electrolyte Temperature /°C</th>
<th>Electrode Diameter /cm</th>
<th>Electrode Diameter /cm</th>
<th>Rotation Velocity /Hz</th>
<th>dV/dQ</th>
<th>V₀R/mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.640</td>
<td>20.05</td>
<td>4.636</td>
<td>-1381.2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.640</td>
<td>9.95</td>
<td>5.295</td>
<td>-1378.7</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.640</td>
<td>5.05</td>
<td>5.626</td>
<td>-1376.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.640</td>
<td>0.00</td>
<td>6.581</td>
<td>-1373.1</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.483</td>
<td>30.00</td>
<td>2.800</td>
<td>-1394.3</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.483</td>
<td>19.90</td>
<td>3.039</td>
<td>-1392.8</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.483</td>
<td>10.00</td>
<td>3.339</td>
<td>-1389.4</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.483</td>
<td>8.05</td>
<td>3.459</td>
<td>-1386.9</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.483</td>
<td>5.00</td>
<td>3.831</td>
<td>-1386.6</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.483</td>
<td>0.00</td>
<td>4.530</td>
<td>-1376.8</td>
<td></td>
</tr>
<tr>
<td>25*</td>
<td>0.405</td>
<td>20.00</td>
<td>3.20</td>
<td>-1375.9</td>
<td></td>
</tr>
<tr>
<td>25*</td>
<td>0.405</td>
<td>10.00</td>
<td>3.33</td>
<td>-1371.8</td>
<td></td>
</tr>
<tr>
<td>25*</td>
<td>0.405</td>
<td>5.03</td>
<td>3.58</td>
<td>-1370.3</td>
<td></td>
</tr>
<tr>
<td>25*</td>
<td>0.405</td>
<td>2.50</td>
<td>3.86</td>
<td>-1369.7</td>
<td></td>
</tr>
<tr>
<td>25*</td>
<td>0.405</td>
<td>0.00</td>
<td>4.57</td>
<td>-1365.8</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.640</td>
<td>19.93</td>
<td>2.02</td>
<td>-1414.0</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.640</td>
<td>9.60</td>
<td>2.21</td>
<td>-1409.6</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.640</td>
<td>5.06</td>
<td>2.41</td>
<td>-1403.9</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.640</td>
<td>0.00</td>
<td>3.30</td>
<td>-1392.6</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>0.640</td>
<td>20.00</td>
<td>1.79</td>
<td>-1416.2</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>0.640</td>
<td>9.94</td>
<td>1.88</td>
<td>-1411.8</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>0.640</td>
<td>5.07</td>
<td>2.05</td>
<td>-1407.2</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>0.640</td>
<td>0.00</td>
<td>2.57</td>
<td>-1395.8</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.640</td>
<td>19.90</td>
<td>1.35</td>
<td>-1416.9</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.640</td>
<td>9.93</td>
<td>1.43</td>
<td>-1416.3</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.640</td>
<td>4.99</td>
<td>1.55</td>
<td>-1414.8</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.640</td>
<td>0.00</td>
<td>2.01</td>
<td>-1405.6</td>
<td></td>
</tr>
</tbody>
</table>

*Saturated with zincate ions.
Table 10 (Concluded)

(b) 30 wt% KOH

<table>
<thead>
<tr>
<th>Electrolyte Temperature /°C</th>
<th>Electrode Diameter /cm</th>
<th>Electrode Rotation Velocity /Hz</th>
<th>$\frac{dV}{dT}$</th>
<th>V_{R}^{o}/mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.640</td>
<td>19.99</td>
<td>2.317</td>
<td>-1350.0</td>
</tr>
<tr>
<td>0</td>
<td>0.640</td>
<td>10.01</td>
<td>2.410</td>
<td>-1347.6</td>
</tr>
<tr>
<td>0</td>
<td>0.640</td>
<td>5.03</td>
<td>2.550</td>
<td>-1346.5</td>
</tr>
<tr>
<td>0</td>
<td>0.640</td>
<td>2.50</td>
<td>2.750</td>
<td>-1345.8</td>
</tr>
<tr>
<td>0</td>
<td>0.640</td>
<td>0.00</td>
<td>2.882</td>
<td>-1340.6</td>
</tr>
<tr>
<td>25</td>
<td>0.640</td>
<td>20.00</td>
<td>1.713</td>
<td>-1351.9</td>
</tr>
<tr>
<td>25</td>
<td>0.640</td>
<td>10.00</td>
<td>1.825</td>
<td>-1351.1</td>
</tr>
<tr>
<td>25</td>
<td>0.640</td>
<td>5.00</td>
<td>1.948</td>
<td>-1359.1</td>
</tr>
<tr>
<td>25</td>
<td>0.640</td>
<td>0.00</td>
<td>2.200</td>
<td>-1339.6</td>
</tr>
<tr>
<td>51</td>
<td>0.640</td>
<td>20.00</td>
<td>1.126</td>
<td>-1363.2</td>
</tr>
<tr>
<td>51</td>
<td>0.640</td>
<td>10.00</td>
<td>1.152</td>
<td>-1362.8</td>
</tr>
<tr>
<td>51</td>
<td>0.640</td>
<td>5.00</td>
<td>1.194</td>
<td>-1359.9</td>
</tr>
<tr>
<td>51</td>
<td>0.640</td>
<td>2.50</td>
<td>1.279</td>
<td>-1357.3</td>
</tr>
<tr>
<td>51</td>
<td>0.640</td>
<td>0.00</td>
<td>1.377</td>
<td>-1351.1</td>
</tr>
<tr>
<td>78</td>
<td>0.640</td>
<td>20.02</td>
<td>1.370</td>
<td>-1414.1</td>
</tr>
<tr>
<td>78</td>
<td>0.640</td>
<td>10.01</td>
<td>1.420</td>
<td>-1410.2</td>
</tr>
<tr>
<td>78</td>
<td>0.640</td>
<td>5.00</td>
<td>1.609</td>
<td>-1407.6</td>
</tr>
<tr>
<td>78</td>
<td>0.640</td>
<td>2.51</td>
<td>1.619</td>
<td>-1405.7</td>
</tr>
<tr>
<td>78</td>
<td>0.640</td>
<td>0.00</td>
<td>1.748</td>
<td>-1394.4</td>
</tr>
<tr>
<td>100</td>
<td>0.640</td>
<td>20.09</td>
<td>0.997</td>
<td>-1414.3</td>
</tr>
<tr>
<td>100</td>
<td>0.640</td>
<td>10.03</td>
<td>1.032</td>
<td>-1411.4</td>
</tr>
<tr>
<td>100</td>
<td>0.640</td>
<td>5.00</td>
<td>1.107</td>
<td>-1408.9</td>
</tr>
</tbody>
</table>
Table 11
THE REGRESSION OF DATA IN TABLE 10 TO EQUATION (35)

<table>
<thead>
<tr>
<th>Electrolyte Concentration /wt%</th>
<th>Electrolyte Temperature /°C</th>
<th>(R^0)/Ω cm(^{-2})</th>
<th>(\alpha)/Ω cm(^{-1/2}) cm(^{-2})</th>
<th>Regression Coefficient (r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>0</td>
<td>11.67</td>
<td>13.54</td>
<td>.925</td>
</tr>
<tr>
<td>35</td>
<td>25</td>
<td>7.80</td>
<td>13.71</td>
<td>.994</td>
</tr>
<tr>
<td>35*</td>
<td>25</td>
<td>7.85</td>
<td>4.56</td>
<td>.997</td>
</tr>
<tr>
<td>35</td>
<td>50</td>
<td>5.07</td>
<td>5.48</td>
<td>.998</td>
</tr>
<tr>
<td>35</td>
<td>50</td>
<td>7.85</td>
<td>4.56</td>
<td>.992</td>
</tr>
<tr>
<td>35</td>
<td>100</td>
<td>3.57</td>
<td>2.79</td>
<td>1.000</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>6.47</td>
<td>3.26</td>
<td>.999</td>
</tr>
<tr>
<td>30</td>
<td>25</td>
<td>4.61</td>
<td>3.24</td>
<td>.995</td>
</tr>
<tr>
<td>30</td>
<td>51</td>
<td>3.22</td>
<td>3.22</td>
<td>.987</td>
</tr>
<tr>
<td>30</td>
<td>78</td>
<td>2.70</td>
<td>2.95</td>
<td>.950</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
<td>2.15</td>
<td>1.21</td>
<td>.989</td>
</tr>
</tbody>
</table>

*Solution saturated with zincate.

monotonically with increasing temperature. The convection-independent term, \(R^0 \), reflects, in part, the presence of an uncompensated electrolyte resistance. The data in Table 11 can be analyzed to determine the activation energy for conduction in 30 and 35 wt% KOH. In the best fit to an Arrhenius equation of the form

\[
R^0 = A_0 \exp\left[\frac{E_a}{RT}\right],
\]

one obtains the regression parameters shown in Table 12. The values of \(E_a \) obtained are somewhat larger than those expected for electrolyte phase
Table 12
THE REGRESSION OF DATA IN TABLE 11 TO EQUATION (36)

<table>
<thead>
<tr>
<th>Electrolyte Concentration/wt%</th>
<th>(A_0/Q)</th>
<th>Activation Energy/ kJ mol(^{-1})</th>
<th>Regression Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.110</td>
<td>9.23</td>
<td>.995</td>
</tr>
<tr>
<td>35</td>
<td>0.147</td>
<td>9.84</td>
<td>.975</td>
</tr>
</tbody>
</table>

conduction, suggesting the presence of a series term in the oxide film or interface regions.

The variation of the convection-dependent parameter, \(\alpha \), with temperature and electrolyte concentration is of fundamental importance in understanding the discharge kinetics and the mechanisms of dissolution and passivation of zinc. We currently believe that this resistive term is associated with the prepassive film as described previously.\(^5,28\) The rate of dissolution of this film is controlled by the rate of the reprecipitation reaction and by the rate of mass transfer of the dissolved species from the film/electrolyte interface to the bulk solution. Under some circumstances it is possible to predict a film thickness that is inversely proportional to the diffusion layer thickness. We are currently developing a model to describe the observed dependence of the initial discharge of zinc on convection rate, and a potential-step transient technique to verify this model.

4.3 Rotating Ring Disk Studies of Zinc

It has been previously noted\(^2,5,29\) that the percentage of dissolved zinc species that is reducible on the ring declines at high rotation speeds.
for an RRDE operated in NaOH. The mechanism for decrease in the apparent collection efficiency at high convection rates has been interpreted29 as follows. The anodic charge transfer process produces an inactive intermediate that transforms in time to the electrochemically active product by chemical dissolution. It is this final product that is reducible on the ring.

Experiments were performed using a rotating ring-disk electrode with programmed rotation speed to verify that this phenomenon is observable in KOH electrolytes and to shed some light on the dissolution process.

The motor speed controller was programmed using an external DC voltage ramp to increase the electrode rotation speed linearly from a preset minimum to a predetermined maximum angular velocity, and back. Care was taken to keep the speed control function, \(\frac{d\omega}{dt} \), low enough to maintain the hydrodynamic equilibrium.17 Experiments were performed with the ring at a potential sufficiently negative to reduce any soluble reducible zinc species to Zn. Measurements were made as a function of disk potential, in the region of active zinc dissolution. A typical set of results is shown in Figure 23. It is worth mentioning that sweeping the rotation speed provides the only practical and convenient means of obtaining RRDE data for the dissolution of zinc over a wide range of rotation speeds. Because the zinc disk electrode dissolves rapidly at moderate overpotentials, and because the deposit on the ring is mossy or dendritic, the laminar flow condition necessary for a predictable and constant collection efficiency is soon destroyed. Indeed, at elevated temperatures the useful operating life of a zinc RRDE may be only a few minutes, following which the electrode is must to be disassembled and repolished. To increase the acquisition rate
FIGURE 23 PROGRAMMED ROTATION SPEED RRDE EXPERIMENTS FOR ZINC IN 36 wt% KOH AT 25°C

Disk acceleration = 0.1 Hz s$^{-1}$.
Figure 23: Programmed Rotation Speed RRDE Experiments for Zinc in 36 wt% KOH at 25°C

Disk acceleration = 0.1 Hz s⁻¹ (Concluded).
further while maintaining hydrodynamic equilibrium, measurements currently are being made with an exponential speed control function, as suggested by Miller et al.,17 under microcomputer control.

The hysteresis shown in Figure 23 at low angular velocities is associated primarily with the fact that, for this experiment, the RRDE was initially stationary. The plot is of current versus program voltage, and the electrode was stationary for some time after the ramp was started, before the DC motor had sufficient torque to overcome the static frictional forces of the system. The disk then started impulsively, and the peak observed in the ring current is associated with the presence of an excess concentration of dissolved zinc that had previously accumulated in the vicinity of the disk. This effect can be overcome satisfactorily by starting with a nonstationary electrode and by measuring the ring and disk currents only while the angular velocity is decreasing.

Table 13 summarizes of the results of a series of experiments in 35 wt\% KOH at 25°C, as a function of disk potential, with a programmed sweep from 31.47 to 1.61 Hz. These data conform to an equation of the form

\[I_r = I_r^0 + \frac{N}{100} (I_d) \] \hspace{1cm} (37)

where \(I_r \) and \(I_d \) are the ring and disk currents at the interpolated rotation speeds shown in Table 13, as a function of disk potential; \(N \) is the calculated collection efficiency; and \(I_r^0 \) is the background current due to the evolution of hydrogen on the vitreous carbon ring, which is effectively independent of disk potential.
Table 13

PROGRAMMED ROTATION SPEED RESULTS FOR ZINC IN 35 WT% KOH AT 25°C
(Ring and Disk Currents as a Function of Rotation Speed and Disk Potential).

<table>
<thead>
<tr>
<th>Disk Potential /mV versus Hg/HgO</th>
<th>ω = 1.61 Hz</th>
<th>ω = 3.76 Hz</th>
<th>ω = 6.27 Hz</th>
<th>ω = 12.57 Hz</th>
<th>ω = 18.87 Hz</th>
<th>ω = 25.17 Hz</th>
<th>ω = 31.47 Hz</th>
<th>Current /mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1400</td>
<td>2.58</td>
<td>3.02</td>
<td>3.41</td>
<td>3.86</td>
<td>4.15</td>
<td>4.32</td>
<td>4.46</td>
<td>Disk</td>
</tr>
<tr>
<td></td>
<td>0.83</td>
<td>1.11</td>
<td>1.20</td>
<td>1.20</td>
<td>1.14</td>
<td>1.09</td>
<td>1.00</td>
<td>Ring</td>
</tr>
<tr>
<td>-1380</td>
<td>5.40</td>
<td>6.12</td>
<td>6.69</td>
<td>7.30</td>
<td>7.80</td>
<td>8.12</td>
<td>8.40</td>
<td>Disk</td>
</tr>
<tr>
<td></td>
<td>1.53</td>
<td>2.17</td>
<td>2.29</td>
<td>2.33</td>
<td>2.20</td>
<td>2.02</td>
<td>1.98</td>
<td>Ring</td>
</tr>
<tr>
<td>-1360</td>
<td>9.60</td>
<td>10.61</td>
<td>11.36</td>
<td>12.22</td>
<td>12.74</td>
<td>13.07</td>
<td>13.40</td>
<td>Disk</td>
</tr>
<tr>
<td></td>
<td>2.78</td>
<td>3.75</td>
<td>4.14</td>
<td>4.13</td>
<td>3.92</td>
<td>3.66</td>
<td>3.33</td>
<td>Ring</td>
</tr>
<tr>
<td>-1350</td>
<td>13.80</td>
<td>15.21</td>
<td>16.11</td>
<td>17.22</td>
<td>17.93</td>
<td>18.41</td>
<td>18.78</td>
<td>Disk</td>
</tr>
<tr>
<td></td>
<td>4.05</td>
<td>5.61</td>
<td>6.37</td>
<td>6.63</td>
<td>6.33</td>
<td>5.90</td>
<td>5.23</td>
<td>Ring</td>
</tr>
<tr>
<td>-1300</td>
<td>24.9</td>
<td>27.1</td>
<td>28.7</td>
<td>30.8</td>
<td>31.8</td>
<td>32.2</td>
<td>32.6</td>
<td>Disk</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>10.5</td>
<td>11.7</td>
<td>12.1</td>
<td>11.5</td>
<td>10.5</td>
<td>9.6</td>
<td>Ring</td>
</tr>
</tbody>
</table>

Note: Disk acceleration = 0.126 Hz s⁻¹. Ring potential = -1500 mV versus Hg/HgO.
Table 14 shows the results of the regression of the data in Table 13 to equation (37). The tabulated values of the collection efficiency are plotted in Figure 24 versus the angular rotation speed. Also shown in Figure 24 is the theoretical collection efficiency calculated from equation (28) using the computer program in Appendix II.

These results, obtained in KOH solutions, are essentially identical to those obtained previously in NaOH.2,5 Under all conditions the amount of zinc that is dissolved exceeds the concentration of species that could be reduced at the ring, and the percentage of dissolved material that is collected is a function of the rotation speed. We interpret these data as follows: the decline in collection efficiency at low rotation speeds is an artifact of the RRDE system. That is, when no dissolved product is convected past the ring (as $\omega \to 0$) the collection efficiency goes to zero. As shown in Figure 24, however, the measured value of N does not attain the theoretical value independent of rotation speed. Instead, N is observed to increase rapidly with ω, achieving a maximum value of 73% of the theoretical value at $\omega = 5$ Hz, and then declining approximately linearly with increasing rotation speed. indicating that the dissolution of zinc occurs in at least two sequential steps. The anodic charge transfer process produces a relatively inactive intermediate, which transforms to the electrochemically more active species by chemical reaction in the bulk electrolyte. At long times (low rotation speeds), this second reaction goes to completion, and the concentration of the more reducible product is a maximum. At short times (high transition velocities, high rotation speeds), the initial, less electrochemically active species is at a high concentration, and the collection efficiency
FIGURE 24 COLLECTION EFFICIENCY VERSUS ANGULAR ROTATION SPEED FOR A ZINC/VITREOUS CARBON RRDE IN 35.5 wt% KOH, AT 25°C
Table 14

COLLECTION EFFICIENCY AS A FUNCTION OF ROTATION SPEED: REGRESSION OF RING AND DISK CURRENT DATA IN TABLE 13 TO EQUATION (37)

<table>
<thead>
<tr>
<th>Rotation Speed/Hz</th>
<th>(I^0/I) mA</th>
<th>N/%</th>
<th>Regression Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.61</td>
<td>-0.038</td>
<td>28.8</td>
<td>.999</td>
</tr>
<tr>
<td>3.76</td>
<td>-0.240</td>
<td>39.2</td>
<td>.998</td>
</tr>
<tr>
<td>6.27</td>
<td>-0.437</td>
<td>42.1</td>
<td>.999</td>
</tr>
<tr>
<td>12.57</td>
<td>-0.619</td>
<td>41.2</td>
<td>.997</td>
</tr>
<tr>
<td>18.87</td>
<td>-0.661</td>
<td>38.1</td>
<td>.998</td>
</tr>
<tr>
<td>25.17</td>
<td>-0.617</td>
<td>34.5</td>
<td>.997</td>
</tr>
<tr>
<td>31.47</td>
<td>-0.582</td>
<td>31.0</td>
<td>.998</td>
</tr>
</tbody>
</table>

is low. If we postulate that the initially formed inactive intermediate species is Zn(OH)\(_2\), then a possible reaction scheme is as follows:

Disk: \[\text{Zn} - 2e^- + 2OH^- \rightarrow \text{Zn(OH)}_2 \] \hspace{1cm} (38)

Gap: \[\text{Zn(OH)}_2 + 2OH^- \rightleftharpoons \text{Zn(OH)}_4^{2-} \] \hspace{1cm} (39)

Ring: \[\text{Zn(OH)}_4^{2-} + 2e^- + \text{Zn} + 4\text{OH}^-. \] \hspace{1cm} (40)

On the basis of this postulated reaction sequence, and using the rather simple concept of a mean transit time for the dissolved species between the disk and ring, we can calculate a value for the rate constant in equation (39) from the observed linear dependence of N on rotation velocity.

The radial velocity, \(dr/dt \), of a microscopic volume of electrolyte in the vicinity of a rotating disk electrode at a point (\(r, y \)) is
where \(r \) is the distance (cm) from the center of rotation, \(\bar{\omega} \) is the angular velocity (radians s\(^{-1}\)), \(y \) is the perpendicular distance from the electrode, and \(\lambda \) is the kinematic viscosity of the solution. Bruckenstein and Feldman\(^{30}\) assumed that the path of a particle generated at the disk electrode at radius \(r_i \), and ultimately reaching the ring electrode at radius \(r_o \), can be described in terms of an average trajectory. Integration of equation (41) yields

\[
\ln\left(\frac{r_o}{r_i}\right) = 0.5102 \left(\frac{\omega^3}{\lambda}\right)^{1/2} \int_0^{t'} y \, dt.
\]

(42)

Assuming that \(y = (Dt)^{1/2} \) (i.e., that convection parallel to the electrode takes place, on average, in a plane one mean diffusion length above the electrode surface), and that equal times are required to traverse the path normal to the electrode on leaving the disk and returning to the ring electrode, then from equation (42) the mean transit time, \(\tau \), is given by,

\[
\tau = \left(\frac{0.718}{\omega}\right)(\lambda / D)^{1/3} \left(\log \frac{r_o}{r_i}\right)^{2/3}
\]

(43)

where \(\omega \) is expressed in revolutions per second (Hz).

The kinematic viscosity and diffusion coefficient for 35.5 wt% KOH at 25°C interpolated from literature tabulations\(^{27,32}\) are as follows:

\[
\lambda = 2.269 \times 10^{-2} \text{ stokes} \quad \text{and} \quad D = 2.3 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}
\]
Further, we can treat the source of the dissolved species as the disk radius (see Figure 8) for which half the area is inside (and half outside),

\[r_1 = \left(\frac{r_1^2}{2}\right)^{1/2}, \quad (44) \]

and similarly for the ring,

\[r_0 = \left[\frac{r_3^2 + r_2^2}{2}\right]^{1/2}. \quad (45) \]

Thus, equation (43) becomes

\[\tau = \left(\frac{7.15}{\omega}\right) \left(\log\left(\frac{\frac{r_2^2 + r_2^2}{2}}{r_1}\right)^{1/2}\right)^{2/3}. \quad (46) \]

In this initial analysis we will assume that the rate of the homogeneous reaction, equation (39), is determined by the concentration of hydroxyl ions at the disk and the local concentration of the electrochemical dissolution products. Thus,

\[\frac{d[Zn(OH)_4^-]}{dt} = k [OH^-]^2[Zn(OH)_2] \quad (47) \]

where \(k \) is the homogeneous rate constant.

The concentration of reducible (zincate) ions at time \(t \) can be determined from

\[\frac{dA}{dt} = kc^2Z, \quad (48) \]

where \(A = [Zn(OH)_4^-] \).
c = bulk OH⁻ concentration

\[Z = [\text{Zn(OH)}_2] = Z^0 \cdot A \]

\[Z^0 = \text{Concentration of Zn(OH)}_2 \text{ at the disk.} \]

A solution to (48) with the boundary condition that \(A = 0 \) at \(t = 0 \) is

\[A = Z^0[1 - \exp(-kc^2t)] \] \hspace{1cm} (49)

However, the relative collection efficiency is

\[N' = \frac{N_{\text{obs}}}{N_{\text{theo}}} = \frac{A}{Z^0} \] \hspace{1cm} (50)

That is, the observed collection efficiency is determined by the mean local concentration of zincate at the ring, while the collection efficiency predicted by equation (28) is based on the complete conversion of zinc hydroxide to zincate. As \(t \to \infty \), \(A \to Z^0 \).

Substituting equation (46) for the transit time into equation (49), we obtain

\[N' = \frac{N_{\text{obs}}}{57.67} = 1 - \exp \left[-7.15 \frac{kc^2}{\omega} \left(\frac{r_2^2 + r_1^2}{r_3^2} \right)^{1/2} \right] \] \hspace{1cm} (51)

A regression of the measured collection efficiency versus rotation speed data presented in Table 13, for frequencies greater than 10 Hz, to an equation of the form
\[\omega = -\frac{M}{\ln(1 - \frac{N}{57.67})} \]

where \(M = 7.15kc^2\left(\frac{r_1^2 + r_2^2}{r_3^2}\right) \)

yields a value of \(M = 33.5 \) with a regression coefficient of 0.998. This is an unexpectedly good fit of the measured relative collection efficiency to the form predicted by our simple model. From the calculated value of \(M \) and the known bulk electrolyte concentration and electrode radii, we can calculate an approximate value for the homogeneous rate constant,

\[k = 2.4 \times 10^{-2} \text{ mol}^{-2} \text{ s}^{-1} \]

for \(c = 8.474 \text{ molal, } r_1 = 0.76 \text{ cm, } r_2 = 0.41 \text{ cm, } r_3 = 0.32 \text{ cm.} \)

Thus, we are able to obtain a value for the rate constant in support of our hypothesis that a homogeneous reaction converts an electrochemically less active initial product to a species that is electro-reducible on the ring. This treatment should not, however, be taken as definitive. In particular, the difficulty in defining an average trajectory for the ions between dissolution at the disk and reduction at the ring will lead to a considerable error in the calculated "mean transit time." The presence of a porous "prepassive" film also may have a considerable influence on the RRDE hydrodynamics and on the homogeneous (and heterogeneous) reaction kinetics.
4.4 The Influence of Zincate Concentration

For a reaction sequence of the type described in equations (38) to (40), one might expect to observe an influence of the bulk dissolved zinc concentration on the discharge process. Such an influence was observed previously2,4,5 in NaOH solutions. In particular, the effective collection efficiency was found to increase with increasing dissolved zinc concentration.

A series of experiments was performed to determine the influence of dissolved zinc on the dissolution and passivation of zinc in KOH and on the measured AC impedance response. Zinc was dissolved in initially zincate-free, 30 wt\% KOH at progressively higher concentrations up to complete saturation. To achieve known zincate concentrations, strips of high-purity zinc metal were polarized anodically using a counter electrode in an external chamber. In no case was the dissolution current allowed to exceed 1 amp, and the total immersed area of zinc strips was chosen to be sufficient to avoid passivation of the dissolving anodes. Electrolytes were filtered using a plastic gauze to remove undissolved zinc grains.

In all except the initially zincate-free solution, the background zincate level was too high to allow accurate ring measurements, and the results of these RRDE experiments will not be described in this section.

Figure 25 shows complete discharge curves for a rotating zinc disk in initially zincate-free 30 wt\% KOH. The forward and reverse potentiodynamic sweeps are shown separately for clarity. Following the initial Tafel and linear discharge regions (discussed in Section 4.2), the electrode enters a prepassive region in which the current becomes constant or decreases slightly to a constant value with increasing potential. The
FIGURE 25 THE RESULTS OF POTENTIODYNAMIC SWEEP EXPERIMENTS FOR A ZINC ELECTRODE IN INITIALLY ZINCATE-FREE 30 wt% KOH AT 25°C, AS A FUNCTION OF ELECTRODE ROTATION SPEED

Sweep rate = 10 mV s\(^{-1}\).
FIGURE 25 THE RESULTS OF POTENTIODYNAMIC SWEEP EXPERIMENTS FOR A ZINC ELECTRODE IN INITIALLY ZINCATE-FREE 30 wt% KOH AT 25°C, AS A FUNCTION OF ELECTRODE ROTATION SPEED (Concluded)

Sweep rate = 10 mV s⁻¹.
current then decreases abruptly. In the vicinity of this discontinuity we describe the electrode surface as pseudopassive since, under a range of hydrodynamic conditions, the electrode may oscillate between active and passive dissolution levels. At higher potentials the electrode achieves a stable, limiting low current, independent of potential.

On the reverse potential sweep, reactivation occurs abruptly at a potential somewhat less than the prepassive to pseudopassive transition. After an initial current transient, the electrode current follows that of the positive sweep, with very little hysteresis except at the lowest convection rates.

Figure 26 shows the current oscillation observed at a constant potential, following a potential step from the potential of zero current (0 mV versus Zn/Zn\(^{++}\)). When stepped to potentials < 385 mV the electrode remains active. At 395 mV the electrode undergoes an active/passive/active transition once, then remains active, while at 400 mV, the electrode oscillates with nearly constant amplitude and period, effectively indefinitely. For potential-step values > 405 mV, the electrode passivates and remains passive.

The characteristics described above for the potentiodynamic discharge of Zn in 30 wt% KOH are all observed in the presence of zincate, up to saturation levels. In particular, the variation of the slope of the linear discharge region, the passivation onset potential, the reactivation potential, and the potential at which the electrode undergoes a stable oscillation are of interest in elucidating possible discharge and passivation mechanisms. Table 15 contains a summary of these parameters measured in 30 wt% KOH at 25°C as a function of electrode rotation speed and zincate concentration.
FIGURE 26 THE RESULTS OF POTENTIAL-STEP EXPERIMENTS FOR A ZINC ELECTRODE IN INITIALLY ZINCATE-FREE 30 wt% KOH AT 25°C, AS A FUNCTION OF POTENTIAL-STEP AMPLITUDE

Initial potential = 0 mV versus Zn/Zn$^{2+}$.
Table 15

SUMMARY OF THE INFLUENCE OF ZINCATE ION CONCENTRATION ON THE MEASURED POTENTIODYNAMIC DISCHARGE PARAMETERS IN 30 WT% KOH

All Data at T = 25 °C ± 1 °C, v = 1 mV s⁻¹.

<table>
<thead>
<tr>
<th>Dissolved Zinc Concentration /mol cm⁻³</th>
<th>Rotation Speed /Hz</th>
<th>Slope of Linear Region /Ω cm⁻²</th>
<th>(\bar{\psi}^p) /mV</th>
<th>(\bar{\psi}^a) /mV</th>
<th>(V_{osc}) /mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.60 x 10⁻⁷</td>
<td>20.00</td>
<td>4.83</td>
<td>617</td>
<td>437</td>
<td>400</td>
</tr>
<tr>
<td>2.67 x 10⁻⁷</td>
<td>15.07</td>
<td>5.13</td>
<td>589</td>
<td>436</td>
<td>---</td>
</tr>
<tr>
<td>0.62 x 10⁻⁷</td>
<td>10.00</td>
<td>5.34</td>
<td>544</td>
<td>431</td>
<td>---</td>
</tr>
<tr>
<td>3.02 x 10⁻⁷</td>
<td>5.04</td>
<td>5.74</td>
<td>493</td>
<td>426</td>
<td>---</td>
</tr>
<tr>
<td>3.73 x 10⁻⁷</td>
<td>2.59</td>
<td>6.15</td>
<td>452</td>
<td>421</td>
<td>---</td>
</tr>
<tr>
<td>4.34 x 10⁻⁷</td>
<td>0.00</td>
<td>6.63</td>
<td>432</td>
<td>407</td>
<td>---</td>
</tr>
<tr>
<td>2.04 x 10⁻⁵</td>
<td>20.00</td>
<td>4.45</td>
<td>597</td>
<td>399</td>
<td>361</td>
</tr>
<tr>
<td>2.05 x 10⁻⁵</td>
<td>10.03</td>
<td>4.76</td>
<td>521</td>
<td>388</td>
<td>---</td>
</tr>
<tr>
<td>2.05 x 10⁻⁵</td>
<td>4.99</td>
<td>5.00</td>
<td>459</td>
<td>382</td>
<td>---</td>
</tr>
<tr>
<td>2.06 x 10⁻⁵</td>
<td>1.49</td>
<td>5.41</td>
<td>414</td>
<td>377</td>
<td>---</td>
</tr>
<tr>
<td>2.06 x 10⁻⁵</td>
<td>0.00</td>
<td>6.09</td>
<td>398</td>
<td>362</td>
<td>---</td>
</tr>
<tr>
<td>1.39 x 10⁻⁴</td>
<td>20.04</td>
<td>4.22</td>
<td>582</td>
<td>367</td>
<td>333</td>
</tr>
<tr>
<td>1.39 x 10⁻⁴</td>
<td>10.02</td>
<td>4.22</td>
<td>582</td>
<td>367</td>
<td>333</td>
</tr>
<tr>
<td>1.39 x 10⁻⁴</td>
<td>4.99</td>
<td>4.86</td>
<td>443</td>
<td>356</td>
<td>---</td>
</tr>
<tr>
<td>1.39 x 10⁻⁴</td>
<td>2.69</td>
<td>5.40</td>
<td>394</td>
<td>351</td>
<td>---</td>
</tr>
<tr>
<td>1.39 x 10⁻⁴</td>
<td>0.00</td>
<td>5.69</td>
<td>372</td>
<td>338</td>
<td>---</td>
</tr>
<tr>
<td>3.82 x 10⁻⁴</td>
<td>20.08</td>
<td>4.08</td>
<td>483</td>
<td>353</td>
<td>None</td>
</tr>
<tr>
<td>3.82 x 10⁻⁴</td>
<td>9.99</td>
<td>4.40</td>
<td>426</td>
<td>351</td>
<td>---</td>
</tr>
<tr>
<td>3.82 x 10⁻⁴</td>
<td>4.99</td>
<td>4.61</td>
<td>381</td>
<td>345</td>
<td>---</td>
</tr>
<tr>
<td>3.82 x 10⁻⁴</td>
<td>2.49</td>
<td>5.08</td>
<td>362</td>
<td>340</td>
<td>---</td>
</tr>
<tr>
<td>3.82 x 10⁻⁴</td>
<td>0.00</td>
<td>5.62</td>
<td>330</td>
<td>329</td>
<td>---</td>
</tr>
<tr>
<td>++</td>
<td>20.01</td>
<td></td>
<td>638</td>
<td>353</td>
<td>---</td>
</tr>
<tr>
<td>++</td>
<td>10.02</td>
<td>5.31</td>
<td>552</td>
<td>361</td>
<td>---</td>
</tr>
<tr>
<td>++</td>
<td>4.99</td>
<td>5.90</td>
<td>476</td>
<td>356</td>
<td>---</td>
</tr>
<tr>
<td>++</td>
<td>2.49</td>
<td>6.52</td>
<td>419</td>
<td>350</td>
<td>---</td>
</tr>
<tr>
<td>++</td>
<td>0.00</td>
<td>6.98</td>
<td>390</td>
<td>337</td>
<td>---</td>
</tr>
</tbody>
</table>

* Potentials measured with respect to a zinc electrode in the same electrolyte.
++Zincate removed, concentration unknown.
---Not measured.
Figure 27 shows a plot of $1/R$ versus $\omega^{-1/2}$, as a function of dissolved zinc concentration. These data correspond roughly to a family of straight lines. With the exception of the last data set in Table 15, however, these lines exhibit a striking characteristic of increasing dissolution rate (decreasing R) with increasing dissolved-zinc concentration. At constant rotation speed, R decreases with the logarithm of the dissolved-zinc concentration:

$$R = K - 0.401 \log ([Zn^{++}])$$

where $[Zn^{++}]$ is expressed in mol cm$^{-3}$, and R in Ω cm$^{-2}$. For $\omega^{1/2} = 1$, $K = 3.821$ and the regression coefficient $r^2 = 0.998$.

This variation of the dissolution resistance, which characterizes the linear current/voltage discharge region of zinc, cannot be attributed to a variation in the uncompensated electrolyte resistance associated with changing specific conductivity in the electrolyte. Since the total amount of zinc dissolved accounts for only 0.38 moles/kg in an approximately 7 molal solution, we would expect this effect to be much less. Since we can postulate an overall cell reaction of the type

$$Zn + 2OH^- + 2H_2O \rightarrow Zn(OH)_4^{2-} + H_2^+$$

the in-situ electrooxidation of zinc will result in no net change in the availability of charge carriers. Indeed, the decrease in OH^- concentration in favor of the less mobile zincate ion is likely to result in a small decrease in electrolyte conductivity.
FIGURE 27 THE INFLUENCE OF DISSOLVED-ZINC CONCENTRATION ON THE POTENTIODYNAMIC DISSOLUTION RATE OF ZINC IN 30 wt% KOH AT 25°C
The results indicated by the dashed line in Figure 27 were obtained following an experiment to reduce the dissolved-zinc concentration. A total charge of 250,400 coulombs was impressed between spiral platinum wire electrodes in zincate-concentrated electrolyte. At the termination of current, a considerable mass of zinc metal was present at the cathode, and a crystalline ZnO deposit was apparent at the anode. The dashed line indicates that the dissolution resistance increased in the absence of dissolved zinc. The dissolution resistance at the termination of the experiment was marginally greater than that in the initially zincate-free solution, probably as a consequence of a decrease in electrolyte concentration (decrease in conductivity) associated with the precipitation of ZnO.

It is clear that increasing the zincate ion concentration results in a significant increase in the rate of discharge of a zinc electrode at overpotentials up to 100 or 200 mV. However, as the concentration of dissolved zinc increases in the bulk electrolyte phase, the useful potential "window" decreases before the onset of pseudopassivation and passivation behavior. This effect is shown in Figure 28, in which the potential at which passivation occurs on the anodic potentiodynamic sweep is plotted versus electrode rotation speed, as a function of zincate concentration. The passivation onset potential decreases monotonically with decreasing convection rate and increasing zincate concentration. Both these trends are to be expected if passivation is due to precipitation from a critically supersaturated solution.

Because these experiments were performed under potentiodynamic sweep conditions, several effects combine to produce the trends shown in
FIGURE 28 THE PASSIVATION POTENTIAL OF ZINC VERSUS ELECTRODE ROTATION SPEED IN 30 wt% KOH AT 20°C, AS A FUNCTION OF ZINCATE CONCENTRATION
Potential sweep rate = 10 mV s$^{-1}$.
Figure 28. The critical level of supersaturation necessary for passivation presumably is the concentration of the zincate ion zincate concentration, achieved as the result of a dynamic equilibrium between the dissolution (discharge) and the diffusion rates. At low zincate concentrations and/or large rotation speeds, the diffusion rate is high, resulting in a large value of the passivation onset potential. At high zincate concentrations, the diffusion rate is low but the dissolution rate is high, resulting in passivation at lower potentials.

A plausible interpretation of these data is that the dissolution reaction is autocatalytic, possibly following a scheme of the type proposed by Armstrong and Bell31 and Epelboin et al.,32 involving a Zn+ intermediate.

\[
\text{Zn(OH)}_\text{4}^{2-} + \text{Zn} + \rightarrow 2\text{Zn}^{+} + 4\text{OH}^{-} \tag{55}
\]

\[
\text{Zn}^{+} \text{ads} - e^{-} \rightarrow \text{Zn}^{++} \tag{56}
\]

Since anodic dissolution is observed in the complete absence of dissolved zincate, reaction (55) must be considered as occurring in parallel with a direct two-electron oxidation process (or a two-step process that does not involve zincate ions):

\[
\text{Zn} - e^{-} \rightarrow \text{Zn}^{+} \text{ads} \tag{57}
\]

\[
\text{Zn}^{+} \text{ads} - e^{-} \rightarrow \text{Zn}^{++} . \tag{58}
\]
4.5 AC Impedance Results

In the previous sections we have developed an empirical model for the discharge of zinc in KOH, in terms of a convection-independent term and a term proportional to the thickness of the diffusion layer [equation (35)]. From the results of potentiodynamic sweep experiments as a function of dissolved-zinc concentration, we observed that discharge can be partly characterized in terms of parallel processes involving a convection independent conductance proportional to log (bulk zincate ion concentration), and a convection-dependent term [K in equation (53)]. We proposed that these observations could be explained in terms of an autocatalytic process involving an adsorbed Zn⁺ species [equations (55) and (56)].

A series of AC impedance measurements was performed as a function of DC voltage, electrode rotation speed, zincate concentration, and temperature, using the methods described in Section 2.4 and elsewhere.²,₈ By conducting measurements over a very wide frequency range (10⁻³ to 10⁻⁴ Hz), the contributions to the convection independent terms (uncompensated electrolyte resistance, charge transfer impedance, and double-layer capacitance) and the diffusional processes (Warburg impedance) could easily be resolved. More importantly, the autocatalytic process represented by equation (56) should result in characteristic inductive behavior at low frequencies.³¹-³⁵

Figure 29 shows results obtained at an anodic overpotential of approximately 100 mV for a zinc disk rotated at 10 Hz in a 35.5 wt% KOH solution, containing a small amount of zincate. The presence of an inductive loop is clearly evident in the impedance locus plot, with the impedance doubling back on itself in the three decades of frequency
FIGURE 29 IMPEDANCE LOCUS SHOWING INDUCTIVE LOOP FOR Zn IN 35.5% KOH

Electrode rotation = 10 Hz, DC potential = -1350 mV versus Hg/HgO, Temperature = 25°C.
between 0.1 and 100 Hz. At frequencies lower than 0.1 Hz, the impedance response is associated principally with diffusional processes. At frequencies above 100 Hz, the impedance response is that of the charge transfer resistance \(R_{ct} = 1.0 \, \Omega \) shunted by the double-layer capacitance. At limiting high frequencies, the impedance locus intersects with the real axis at the value of the uncompensated electrolyte resistance \(R_u \approx 0.1 \, \Omega \). The measured impedance response conforms to an equivalent circuit of the type shown in Figure 30.

The results shown in Figure 31 were obtained as a function of the rotation speed of a zinc disk electrode, held potentiostatically within the linear current/voltage discharge region, in initially zincate-free KOH. As expected, the high-frequency behavior (which is determined by \(R_u \) and the parallel combination of \(R_{ct} \) and \(C_{dl} \)) is relatively uninfluenced by electrode rotation speed. At low frequencies the impedance response is that expected for diffusion within a Nernst diffusion layer at finite thickness; that is, the impedance decreases with increasing rotation speed. At large rotation speeds and very low frequencies, the inductive effect due to the autocatalytic process can be seen as the impedance locus curves back toward the imaginary axis.

The data for nonzero rotation speeds in Figure 31 can be extrapolated to remove this inductive impedance, and used to estimate the low-frequency intercept associated with the diffusional process, \(R_{lf} \). We find that for this data set,

\[
R_{lf} = 2.91 + 7.88 \, \omega^{-1/2}
\]
$R_u = \text{Uncompensated Electrolyte Resistance}$

$R_{ct} = \text{Charge Transfer Resistance}$

$Z_a = \text{Inductance Due to Adsorbed Species and/or Autocatalytic Effects}$

$Z_w = \text{Warburg Diffusional Impedance}$

$C_{dl} = \text{Double-Layer Capacitance}$

FIGURE 30 EQUIVALENT CIRCUIT FOR THE IMPEDANCE OF A ZINC ELECTRODE UNDERGOING DISCHARGE AT MODERATE ANODIC OVERPOTENTIALS
Figure 31: The influence of rotation speed on the dissolution kinetics for a zinc disk held at +75 mV versus Zn/Zn⁺⁺, in 36 wt% KOH at 25°C.
with a regression coefficient of 0.992. Thus, the low-frequency (DC) resistance comprises a rotation-independent term \(2.91 \Omega = R_u + R_{ct}\) and a rotation-dependent term \(= 7.88 \omega^{-1/2}\).

Both the diffusional impedance and the inductive impedance associated with an autocatalytic process may be influenced by the concentration of dissolved zincate ion. If the sequence of diffusional processes has a rate determined by the diffusion of zincate reactant to the interface (on charge) or the diffusion of zincate product from the interface (on discharge), then the overall rate will be influenced by the concentration of zincate ions in the bulk electrolyte. The bulk electrolyte zincate concentration and this diffusional flux will influence the autocatalytic process if this process involves a zincate ion intermediate [e.g. equation (55)]. Figures 32(a), 32(b) and 32(c) show the influence of zincate ion concentration on the measured impedance locus at 0 mV (equilibrium), -50 mV (charge) and +50 mV (discharge) anodic overvoltage, respectively. Under equilibrium conditions we observe, in Figure 32a, a family of curves with a trend towards decreasing impedance with increasing dissolved zincate concentration. Over a very wide range of frequencies down to the DC limit, these impedance data are dominated by a finite Warburg diffusional impedance. The data in Figure 32(a) are re-plotted in Figure 33(a), as a function of \(\omega^{-1/2}\). At low frequencies (large \(\omega^{-1/2}\)), these plots are straight lines, with a slope equal to the Warburg diffusion coefficient, \(\sigma\), which can be expressed as \(8, 23\)

\[
\sigma = \sigma_0 + \sigma_R \tag{59}
\]
FIGURE 32 THE INFLUENCE OF ZINCATE ION CONCENTRATION ON THE
IMPEDEACE LOCUS IN 30 wt% KOH, AT 25°C

Rotation speed = 10.0 Hz
FIGURE 32 THE INFLUENCE OF ZINCATE ION CONCENTRATION ON THE IMPEDANCE LOCUS IN 30 wt% KOH, AT 25°C (Continued)

Rotation speed = 10.0 Hz.

(b) MEASURED AT -50 mV VERSUS Zn/Zn⁺⁺
FIGURE 32 THE INFLUENCE OF ZINCATE ION CONCENTRATION ON THE IMPEDANCE LOCUS IN 30 wt% KOH, AT 25°C (Concluded)
Rotation speed = 10.0 Hz.
FIGURE 33 THE REAL COMPONENT OF IMPEDANCE VERSUS $\omega^{-1/2}$, AS A FUNCTION OF ZINCATE CONCENTRATION

(a) PLOTTED FOR THE DATA IN FIGURE 32a
FIGURE 33 THE REAL COMPONENT OF IMPEDANCE VERSUS $\omega^{-1/2}$, AS A FUNCTION OF ZINCATTE CONCENTRATION, FOR THE DATA IN FIGURE 32b (Concluded)
where α and β are the anodic and cathodic transfer coefficients, η is the applied DC overvoltage, and subscripts "0" and "R" refer to oxidation and reduction reactions, respectively.

Close to the equilibrium potential ($\eta \approx 0$), σ is a function of both the anodic and cathodic transfer coefficients, diffusion coefficient, and bulk concentrations. However, at potentials removed from the equilibrium potential, one process is dominant, and at large cathodic overvoltages equations (59) to (61) simplify to

$$
\sigma_R = \left[\frac{RT}{nF^2(2)^{1/2}} \right] \left[\frac{D_R^{-1/2} \exp(-\beta \eta)}{\alpha c_R \exp(\alpha \eta) + \beta c_0 \exp(-\beta \eta)} \right],
$$

$$
\sigma_0 = \left[\frac{RT}{nF^2(2)^{1/2}} \right] \left[\frac{D_R^{-1/2} \exp(-\alpha \eta)}{\alpha c_R \exp(\alpha \eta) + \beta c_0 \exp(-\beta \eta)} \right]
$$

Figure 33(b) shows a plot of the real component of the impedance, measured at -50 mV, versus $\omega^{-1/2}$, as a function of zincate concentration. The values of σ that characterize the straight-line portions of these plots can be fitted to equation (62). If we assume that the concentration of reducible species (c_R) is identical to the known dissolved-zinc concentration, then we obtain the following regression equation.

$$
\frac{1}{\sigma} = -9.116 + 10948 [\text{Zn}^{++}]; \quad r^2 = 0.993.
$$
The regression coefficient of 0.993 indicates that these data are a reasonably good fit to a straight line. We can calculate the diffusion coefficient, D_R, from the slope of regression line

$$\frac{d(l)}{dc_R} = 10948 = \frac{A n^2 F^2 (2D_R)^{1/2}}{RT},$$

where superscript "b" refers to bulk concentration. Assuming $\beta = 1/2$, we obtain $D_R = 1.08 \times 10^{-6} \text{ cm}^2 \text{ s}^{-1}$, which is a plausible value for the zincate ion diffusing in concentrated KOH.

The preceding calculation suggests that the charging process proceeds in a relatively straight forward fashion, with the diffusional impedance dominated by the diffusion of reactant (i.e., zincate) to the electrode surface. However, the impedance locus plots in Figure 32(c) indicate that the discharge process is considerably more complex. In this case mass transport limitation may be imposed by the diffusion of OH^- ions to the interface, as well as the diffusion of product ("zincate") away. Unfortunately, at a rotation speed of 10 Hz the overall interfacial impedance contains terms associated with charge transfer and autocatalytic (inductive) processes, and we were not able to calculate σ from the data in Figure 32(c).

Figures 34(a) and 34(b) show impedance data taken at elevated temperatures in 35.5 wt% KOH, at 0 and +50 mV versus Zn/Zn$^{++}$, respectively. At the very low zincate ion concentrations present for these experiments, the inductive impedance is not dominant even at 50 mV anodic overpotential, and we were able to calculate σ as a function of electrolyte temperature. These data are presented in Table 16.
FIGURE 34 THE INFLUENCE OF TEMPERATURE ON THE IMPEDANCE LOCUS IN ZINCATE-FREE 35.5 wt% KOH
Rotation speed = 10.0 Hz.
FIGURE 34 THE INFLUENCE OF TEMPERATURE ON THE IMPEDANCE LOCUS IN ZINCATE-FREE 35.5 wt% KOH (Concluded)

Rotation speed = 10.0 Hz.
<table>
<thead>
<tr>
<th>T/K</th>
<th>Φ/mV</th>
<th>σ/ωs⁻¹/²cm⁻²</th>
<th>σ /Ω s⁻¹ K⁻¹ cm⁻²</th>
</tr>
</thead>
<tbody>
<tr>
<td>273</td>
<td>0</td>
<td>53.33</td>
<td>1.95 x 10⁻¹</td>
</tr>
<tr>
<td>298</td>
<td>0</td>
<td>22.14</td>
<td>7.43 x 10⁻²</td>
</tr>
<tr>
<td>323</td>
<td>0</td>
<td>6.30</td>
<td>1.95 x 10⁻²</td>
</tr>
<tr>
<td>348</td>
<td>0</td>
<td>1.92</td>
<td>5.52 x 10⁻³</td>
</tr>
<tr>
<td>373</td>
<td>0</td>
<td>0.82</td>
<td>2.20 x 10⁻³</td>
</tr>
<tr>
<td>273</td>
<td>50</td>
<td>35.71</td>
<td>1.31 x 10⁻¹</td>
</tr>
<tr>
<td>298</td>
<td>50</td>
<td>20.86</td>
<td>7.00 x 10⁻²</td>
</tr>
<tr>
<td>323</td>
<td>50</td>
<td>9.04</td>
<td>2.80 x 10⁻²</td>
</tr>
<tr>
<td>348</td>
<td>50</td>
<td>1.72</td>
<td>4.94 x 10⁻²</td>
</tr>
<tr>
<td>373</td>
<td>50</td>
<td>0.40</td>
<td>1.07 x 10⁻³</td>
</tr>
</tbody>
</table>

The last column in Table 16 displays \(\sigma \) normalized by the absolute temperature. With reference to equation (62), these data should display a residual temperature dependence only associated with the inverse square root of the diffusion coefficient. It is surprising, therefore, that \(\sigma / T \) displays a parabolic temperature dependence, as shown in Figure 35. This fit is almost exact, and the solid line in Figure 35 is the regression fit of the data obtained at \(\eta = 50 \) mV to an equation of the form

\[
\frac{\sigma}{T} = a_0 + a_1 T + a_2 T^2
\]

(63)
\[\eta = 50 : \frac{\sigma}{T} = 2.04 - 0.01113T + 1.522 \times 10^{-5} T^2 (r^2 = 0.999997) \]

\[\eta = 0 : \frac{\sigma}{T} = 3.89 - 0.02216T + 3.149 \times 10^{-5} T^2 (r^2 = 0.994) \]

FIGURE 35 \(\sigma/T \) VERSUS T MEASURED IN ZINCAT-FREE 35.5 wt% KOH, AT 0 AND +50 mV ANODIC OVERPOTENTIAL.
At present we have no explanation for the observed temperature dependence of σ. Experiments are under way to measure more carefully the influence of temperature and zincate concentration on the reaction resistance and the autocatalytic inductive impedance, as well as on σ, in order to develop a quantitative model for the discharge of zinc in concentrated alkali.
5 SUMMARY AND CONCLUSIONS

5.1 Introduction

A series of experiments has been performed in an attempt to elucidate the mechanisms of charge and discharge of iron and zinc electrodes in 30 and 35 wt% KOH. Particular emphasis has been directed toward determining possible operating limitations and modes of failure of batteries employing these electrodes, when operated at extremes of temperature.

The principal experimental methods used in this investigation were potential-sweep voltammetry and coulometry, rotating ring disk electrode and AC impedance measurements. Measurements on iron electrodes were confined to the influence of temperature at a single KOH concentration. Measurements on zinc electrodes also included the influence of KOH and dissolved zinc concentrations.

5.2 Observations of Iron Electrodes

Cyclic voltammetry as a function of potentiodynamic sweep rate was used to identify the mechanisms of dissolution and passivation of iron and to measure the kinetics of charge and discharge. It is apparent that under the experimental conditions of potentiodynamic cycling (which corresponds to rapid charging and discharging), the discharge rate is limited by the resistance of electrolyte in pores within the growing oxide. On subsequent charging after the formation of a homogeneous oxide film, the maximum charge rate is determined by the oxide resistance. This
resistance increases monotonically with decreasing temperature, and under extremely low ambient temperature conditions (< 0°C) this large film resistance could result in a substantially reduced charge acceptance rate for the iron electrode.

The results of AC impedance experiments support those derived from potentiodynamic cycling. During charging, charge acceptance is limited by diffusion and migration of ions within the oxide film. From results at high frequencies, we have calculated the exchange-current density for the interfacial charge transfer reaction. This increases from 3.76 mA cm\(^{-2}\) at 0°C to 9.98 mA cm\(^{-2}\) at 100°C.

The results of rotating ring disk electrode experiments show that dissolution of iron metal and oxide occurs within defined regions of potential during both the charge and discharge cycles. With experiments involving variation of the ring potential from reducing to oxidizing, we have identified the dissolved species that occur in each of six regions of potential. By integrating under disk and associated ring oxidation and reduction peaks, we have been able to quantify the extent of dissolution associated with each charge and discharge process, and to determine the effects of temperature on the dissolution phenomenon. Within the potential region of interest for an iron battery electrode, the extent of dissolution increases with increasing temperature. Thus, dissolution accounts for 0.08% of the total electrode charge at 0°C, increasing to more than 7.5% at 75°C. It is clear that electrode dissolution may severely limit coulombic efficiency at elevated temperatures and may cause problems associated with shape change if iron electrodes are repeatedly cycled at high temperatures.
From the results of the experiments previously described, and by using tabulated results3 of our previous thermodynamic calculations, we have been able to postulate a comprehensive charge and discharge reaction scheme for the iron electrode in concentrated hydroxide. In particular, the results of potentiodynamic sweep RRDE experiments has been extremely useful in determining which reactions involve dissolved intermediates. The detailed reaction sequences in Figure 20 for high- and low-temperature conditions are shown separately. This proposed mechanism should be regarded not as definitive but as a working hypothesis to further experimentation. Simplified versions of the oxidation and reduction reaction sequences at high and low temperatures are presented in Figure 21.

5.3 Observations of Zinc Electrodes

In contrast to the iron electrode, in which charge/discharge kinetics are controlled by the electrode/electrolyte interfacial impedance and oxide film resistance, the discharge of zinc prior to passivation is dominated by mass transport processes. Accordingly, potentiodynamic studies of Zn were performed with rotational speed as the principal independent variable.

The discharge of zinc initially follows a Butler-Volmer rate law, but this rapidly gives way to a linear current/voltage region before the onset of pre-passive, pseudopassive, and true passive behavior. The linear region covers most of the potential "window" of interest in the discharge of zinc battery electrodes, and this region has received most of our attention. We have made a number of experimental observations of the discharge behavior of rotating zinc disk and ring-disk electrodes, which
are described fully in Section 4 of this report and in previous publications.2-8 We have observed a number of empirical laws of behavior that have yet to be molded into a cohesive model for the mechanisms of discharge of zinc in concentrated hydroxide electrolytes.

The critical observations can be summarized as follows:

1. The slope that characterizes the linear discharge region defines a resistance \(R = \frac{dV}{dI} \), which can be separated into a convection independent term \(R^0 \) and a term that depends on the electrode rotation speed.

2. With increasing temperature the rotation-dependent and rotation-independent terms change monotonically in such a way as to increase the dissolution rate at constant voltage.

3. With increasing dissolved-zinc concentration, the convection-dependent term changes in such a way as to increase the dissolution rate at constant voltage to an extent roughly proportional to the logarithm of the total dissolved-zinc concentration.

4. The potential at which the electrode passivates increases with increasing electrode rotation speed or decreasing dissolved zinc concentration.

5. The collection efficiency measured for a zinc RRDE decreases with increasing electrode rotation speed. From a simple analysis based on the concept of a mean transit time between disk and ring, we were able to show that this variation is consistent with the production of an electroreducible species by a first-order homogeneous chemical reaction in the electrolyte phase.

6. At low dissolved-zinc concentrations in the bulk electrolyte and low anodic overpotentials, the impedance of the zinc electrode is dominated by diffusion within a finite diffusion layer. This diffusional impedance has the same dependence on rotation speed dependence as that noted in (1).

7. At large dissolved-zinc concentrations and large (> 20 mV) anodic overpotentials, the impedance of the zinc electrode displays an inductive loop characteristic of autocatalytic behavior.
(8) The Warburg diffusion coefficient, \(\sigma \), measured in the range 0 to +50 mV, is proportional to the inverse of the dissolved zinc concentration. That is, diffusional limitation of zinc electrode dissolution (discharge) is imposed by the transport of the final product material to the electrode.

(9) With increasing temperature the Warburg diffusion coefficient normalized by temperature, \(\sigma/T \), decreases with a well-obeyed parabolic temperature dependence.

On first inspection many of these results are unexpected, and some apparently are in conflict. For example, \(\sigma/T \) is expected to have a residual temperature dependence associated only with the inverse square root of the diffusion coefficient and not that described in observation (9). Likewise, the autocatalytic behavior suggested by observations (3), (7), and (8) is unusual; and a diffusional process that gives rise to a resistance independent of discharge current, as indicated by observations (1) and (6), is not typically associated with electrode dissolution.

5.4 A Model for the Dissolution and Passivation of Zinc

We believe that our observations of the discharge behavior of zinc electrodes can be explained by a single cohesive model for the dissolution and passivation of zinc in concentrated alkali. The basic tenets of this model are as follows.

To remain as general as possible, we have previously described the ultimate product of the dissolution of zinc as "dissolved zinc." This product is frequently described in the literature as "zincate," and we will assume this species to be \(\text{Zn(OH)}_4^{2-} \).

We propose that the dissolution of zinc in 30 or 35 wt% KOH that is initially devoid of zincate proceeds initially via two one-electron transfer reactions of the form
Slow: \[\text{Zn} - e^- \rightarrow \text{Zn}^{+}_{\text{ads}} \quad (64) \]

Fast: \[\text{Zn}^{+}_{\text{ads}} - e^- + 20\text{H}^- \rightarrow \text{Zn(OH)}_2 \quad (65) \]

Reaction (64) is slow and rate determining. At very low anodic over-potential \((0 < \eta < 10 \text{ mV})\), in the absence of dissolved zinc, a Tafel law behavior is observed corresponding to

\[I = I_0 \exp \left[\frac{\eta RT}{\alpha F} \right] \quad (66) \]

We postulate that \(\text{Zn(OH)}_2\) is an intermediate product that reacts chemically to produce the ultimate product, zincate, as follows:

\[\text{Zn(OH)}_2 + 20\text{H}^- \rightarrow \text{Zn(OH)}^-_4 \quad (67) \]

Zinc hydroxide forms on the electrode at all potentials more positive than the reversible potential for equation (65). This material is porous and only loosely adherent (as observed by Breiter\(^{28}\)). We propose that the electrochemically formed \(\text{Zn(OH)}_2\) is in chemical equilibrium with the zincate product:

\[\text{Zn(OH)}_2 + 20\text{H}^- \leftrightarrow \text{Zn(OH)}^-_4 \quad (68) \]

Under RRDE conditions, only \(\text{Zn(OH)}^-_4\) is detectable on the ring [\(\text{Zn(OH)}_2\) is uncharged and solid], and the collection efficiency is less than that predicted theoretically, by the amount of \(\text{Zn(OH)}_2\) that is convected beyond
the radius of the ring. When the equilibrium rate constant for reaction (68) is low or the rotation speed high, the observed collection efficiency will be decreased, as indicated by observation (5) above.

When the local zincate concentration is increased, an alternative to reaction (64) becomes feasible;

\[
\text{Zn} + \text{Zn(OH)}_4^- \rightarrow 2\text{Zn}^+ + 4\text{OH}^- .
\]

It is this disproportionation reaction that provides the autocatalytic effect noted by observations (3), (7), and (8). It should be noted that the electrochemical reaction (64) and the disproportionation reaction are parallel pathways that occur simultaneously at different rates.

We are now able to explain the seemingly anomalous influence of mass transport on the dissolution rate. The evidence of potentiodynamic sweep and AC impedance measurements indicates clearly that the discharge of Zn electrodes at an overvoltage of more than 10 or 20 mV is rate limited by mass transport within a finite diffusion layer. Yet rate limitation due to the diffusion of \(\text{OH}^- \) to the electrode would result in a current plateau (i.e., a resistance tending to infinity as the current is increased) rather than the observed constant "diffusional resistance." Also, the rate of diffusion of product from the electrode should become less as the bulk concentration of product is increased, but the opposite is observed.

We suggest that mass transport limitation is imposed by the diffusion of zincate to the electrode surface. This diffusional flux can be expressed simply as
where \(\delta \) is the diffusion layer thickness (and is proportional to the inverse square root of the rotation speed), and \(c \) is the zincate concentration (superscripts "o" and "i" refer to the "outside" and "interface" sides of the diffusion layer, respectively). The predicted dependence of \(J \) on the bulk concentration of zincate and on the rotation speed clearly is well obeyed. What is not quite so clear is the dependence of \(J \) on the overall current density. We can assume that under mass-transport limited conditions, the concentration of zincate at the interface is zero \((c^i = 0) \). To predict the observed linear dependence of current \((\alpha J) \) on overvoltage, therefore, \(c^o \) must increase linearly with current [equation (67)]. Since zincate is in equilibrium with the initial product, \(\text{Zn(OH)}_2 \), we simply require a linear increase with current of the \(\text{Zn(OH)}_2 \) concentration at the outside of the diffusion layer.

Figure 36 presents a general, qualitative picture of our proposed reaction scheme for the case where the autocatalytic step [reaction (2) in Figure 36] is completely under mass transport control. With increasing bulk zincate concentration, the diffusional flux of zincate to the interface is increased [Figure 36(a)], and the reaction current at constant voltage is proportionally increased. Figure 36(b) shows the effect of increasing the applied voltage. As the voltage is increased, reactions
(1) \(\text{Zn} - e^- \rightarrow \text{Zn}^+ \)
(2) \(\text{Zn} + \text{Zn(OH)}_4^{2-} \rightarrow 2\text{Zn}^+ + 4\text{OH}^- \)
(3) \(\text{Zn}^+ - e^- + 2\text{OH}^- \rightarrow \text{Zn(OH)}_2 \)
(4) \(\text{Zn(OH)}_2 + 2\text{OH}^- \rightarrow \text{Zn(OH)}_4^{2-} \)

(a) THE INFLUENCE OF BULK ZINCATE ION CONCENTRATION

FIGURE 36 REACTIONS AND DIFFUSION PROFILES FOR THE PROPOSED MECHANISM OF THE ELECTROCATALYTIC DISSOLUTION OF ZINC UNDER MASS TRANSPORT CONTROL
(1) \(\text{Zn} - e^- \rightarrow \text{Zn}^+ \)
(2) \(\text{Zn} + \text{Zn(OH)}_4^{=} \rightarrow 2\text{Zn}^+ + 4\text{OH}^- \)
(3) \(\text{Zn}^+ - e^- + 2\text{OH}^- \rightarrow \text{Zn(OH)}_2 \)
(4) \(\text{Zn(OH)}_2 + 2\text{OH}^- \rightarrow \text{Zn(OH)}_4^{=} \)

(b) THE INFLUENCE OF APPLIED POTENTIAL

FIGURE 36 REACTIONS AND DIFFUSION PROFILES FOR THE PROPOSED MECHANISM OF THE ELECTROCATALYTIC DISSOLUTION OF ZINC UNDER MASS TRANSPORT CONTROL (Concluded)
(1) and (3) proceed at higher rates, and the concentration of Zn(OH)$_2$ at the interface increases. Since Zn(OH)$_2$ and Zn(OH)$_4$ are in equilibrium via reaction (4), the increase in voltage and the increase in bulk zincate concentration both result in a higher zincate flux to the electrode and thus in a higher current. Decreasing the thickness of the diffusion layer (e.g., by increasing the rotation speed) has a similar effect on the zincate diffusion flux and the current. It should be noted that reaction (4) proceeds very slowly, and it is probable that equilibrium conditions are not attained within the diffusion layer, particularly at low temperatures. This does not affect the qualitative significance of the model since we require only that reaction (4) proceeds to the right at a finite rate within the boundary layer.

Electrode passivation occurs in a two-step process that involves the formation of prepassive and true passive films. When the reaction rate is increased (by increasing the anodic overvoltage), a porous film begins to accumulate on the electrode. At some point the transport of material across this prepassive film becomes rate limiting, and the slope of the current/voltage curve begins to decrease ($R = dV/dI \sim m$). Under some conditions a potential region in which the current is independent of voltage can be seen prior to passivation. This effect is associated with mass transport limitation in the prepassive film, not in the free electrolyte phase. Under these conditions the electrolyte composition in

*We have described the case in which reaction (2) is completely controlled by the diffusion of zincate, but in reality the rate of this reaction also would increase as the anodic overvoltage is increased.
the pores may become very different from that of the bulk electrolyte, and we propose that passivation occurs when the pH at the base of the pores becomes sufficiently low to favor the formation of ZnO over Zn(OH)$_2$ as the initial product:

\[
\text{Zn}^+ - e^- + 2\text{OH}^- \rightarrow \text{ZnO} + \text{H}_2\text{O}
\]

ZnO is nonporous and relatively insoluble in the electrolyte. Following formation of the true passive ZnO film, the current drops to a low value and the residual prepassive film material dissolves, leaving an exposed ZnO surface. In this condition one of two things can happen. If the transport of OH$^-$ through the ZnO is sufficient to maintain the film thickness in a steady state with the dissolution reaction, then the film remains passive. If the high-field migration rate is too low, the film will dissolve and the electrode will again establish the prepassive conditions. Hydroxide ions will be depleted within the pores of the prepassive film, ZnO will form, the electrode will passivate, etc. This cycle may repeat indefinitely.

It is important to notice that, since we consider reaction (4) to occur with a variable rate throughout the diffusion layer, the diffusion profiles are not linear. For example, three factors influence the [OH$^-$] profile. Hydroxide ions are consumed in the overall reaction, reaction (4) occurs with a variable rate throughout the diffusion layer and reaction (2) releases hydroxide in the vicinity of the interface. This nonlinearity and the complexity of the proposed reaction scheme contribute greatly to the difficulty of translating the qualitative model described above, and shown schematically in Figure 35, into a quantitative model for the dissolution of zinc.
5.5 Conclusions

The models we have developed for the dissolution and passivation of iron and zinc in concentrated alkali have a number of important consequences for the use of iron/nickel oxide and zinc/nickel oxide batteries. It is apparent that oxidation and subsequent reduction of Fe electrodes is largely impeded by migration and diffusion processes within the oxide film. Thus, discharge and charge acceptance rates might well be improved by modifying the film structure, possibly by the addition of suitable dopant ions. It is clear also that the various dissolution processes observed for iron reflect integral steps in the mechanisms of charge and discharge. Suppressing the solubility of these species without providing an alternative reaction path will result only in decreased reaction rate. Nevertheless, intelligent use of the reaction scheme that we have proposed might well lead to a class of additives that will alleviate the problem of coulombic inefficiencies due to dissolution at high temperature, without kinetic losses at low temperatures.

Our model for zinc involves autocatalysis and mass transport limitation by the zincate ion, and two-stage passivation involving Zn(OH)$_2$ and ZnO. A conclusion is that this model provides a mechanism for "shape change" of zinc electrodes. If the reaction initially proceeds at a greater rate in one part of the electrode than another (e.g., edge > center due to the primary current distribution), then, because the product catalyzes the reaction, the two rates will diverge. In a more normal reaction scheme, the presence of product tends to impede the forward reaction, and rates tend to become uniform over an electrode surface. For an autocatalytic reaction of the type proposed, initial nonuniformities
are amplified during discharge. This is an extension of the model proposed by McBreen36 in which asymmetric dissolution is attributed to the nonuniform primary current distribution. We invoke the concept of autocatalysis to explain the persistence (in fact acceleration of) current nonuniformity following the accumulation of product in the vicinity of the electrode. The data presented by McBreen36 for early cycles of a zinc negative electrode, show flat current profiles for the inner regions of a zinc plate, while the currents at the peripheral sections accelerates with discharge time, consistent with our model.

5.6 Suggestions for Further Work

The models proposed for the dissolution and passivation of zinc and iron require further testing, and a number of specific experiments are suggested.

(1) A series of potential-step experiments should be performed in zincate-free KOH, to examine the evolution of the diffusion layer and the autocatalytic process. In the complete absence of dissolved zinc, only the direct one-electron transfer (Zn - e- + Zn2+) can occur. By following the current transients following a potential step from zero to an anodic overvoltage, it should be possible to distinguish the direct from the autocatalytic process in the overall reaction.

(2) The formation of prepassive and passive films should be followed directly, using optical, semiconductor, and AC impedance techniques. In particular, since Zn(OH)\textsubscript{2} and ZnO are likely to be semiconductors, following the photocurrent as a function of electrode potential should yield valuable information regarding the existence, nature, and thickness of any films present.

(3) The results of these and further experiments should be applied in a quantitative way to refine the present model or improve the modeling work of others.37
(4) Semiconductor electrochemistry techniques also may be of great value in determining the nature and conductivity of the oxide films formed during the discharge of iron. Light effects should be used to evaluate the role and utility of dopants intended to increase oxide conductivity, thus reducing kinetic losses in low-temperature operation.

(5) Further RRDE studies should be performed at elevated temperatures to determine which electrolyte additives increase and which decrease the dissolution of iron.

5.7 Comment

It is apparent that the learning curve for the development of iron/nickel oxide and zinc/nickel oxide alkaline battery electrodes is approaching a plateau, and that further engineering modifications and phenomenological computer modeling will produce little improvement. Both techniques require input regarding the underlying nature of the processes being investigated.

It is our belief that the missing information, that is a prerequisite for a breakthrough in battery technology, is a detailed knowledge of the reaction sequences and mechanics that constitute the overall reaction mechanism. We believe that this report represents a step in this direction.
REFERENCES

APPENDIX I

DATA MANAGEMENT SYSTEM

1 REM DNS4 15/APR/1982
2 REM KEITHLEY MODEL 192 DMM
3 REM MOUNTAIN HARDWARE CLOCK
10 REM MODIFICATION OF SOLARTRON DNS TO INCORPORATE VARIABLE INTEGRATION & SOFTWARE DIFFERENCING
30 REM BY M.C.H. MCXUBER AUG/28/1981
100 HREM: 36500: LOREM: 24577
120 TEXT: HONE: SPEED = 230: VTAB 5: PRINT "SOLARTRON 1172/1174/1250"
140 VTAB 10: PRINT TAB(5)"IMPEDEANCE"
160 PRINT: PRINT TAB(15)"MEASUREMENT"
180 PRINT: PRINT TAB(27)"SYSTEM"
200 PRINT: PRINT: PRINT: FOR II: 1 TO 40: PRINT ":;: NEXT II:
220 VTAB 22: PRINT "WHAT IS THE DATA ARRAY LENGTH? ": VTAB 24: CALL - 668; IN = 120: PRINT IN: INPUT ": "ST": IF ST = "" THEN 260
240 IN = INT (VAL (ST)): IF IN < 3 OR IN > 300 THEN PRINT CHR$(7): GOTO 220
260 PRINT: PRINT: PRINT "SAVE PARAMETER ARRAY? "; GET IDS(0): PRINT I NO"
280 IF IDS(0) < "Y· THEN IHI: 0: VTAB 23: HTAB 25: CALL - 868: PRINT "MD"
300 DIM IN(5,IN),ZN(32),IZ(9),IT(25),ZR(25),EX(4),AA(3),EZ(11)
320 PRINT CHR$(4);"LOAD B.FRA"
340 II: = 18: REM IEEE-488 ADDRESS
360 JT(0) = LOG (10); JT(1) = 1 / JT(0); JT(2) = 6E - 10; JR(2) = 1: JR(3) = 0
380 REM: DEFAULT DATA
400 IN(0) = 1: REM INITIAL HARMONIC
420 IN(1) = 0: REM LOCAL
440 IN(2) = 4: REM DC BIAS/INPUT REJECT ON
460 IN(3) = 1: REM CARRIER OFF
480 IN(4) = 2: REM SINEWAVE
500 IN(6) = 5: REM DISPLAY OPERATING FREQUENCY
520 IN(7) = 2: REM LOG SWEEP
540 IN(8) = 1: REM SWEEP OFF
560 IN(9) = 6: REM INPUT AUTORANGING
580 IN(11) = 1: REM MEASUREMENT MODE
600 IN(12) = 1: REM Y INPUT CHANNEL
620 IN(13) = 2: REM DISPLAY REAL, IMAG.
640 IN(14) = 1: REM MINIMUM DELAY
660 IN(15) = 1: REM MINIMUM INTEGRATION
680 IN(16) = 9999: REM MAXIMUM FREQUENCY
700 IN(17) = 1: REM MAXIMUM FREQUENCY
720 IN(18) = 1: REM DISPLAY FREQUENCY
740 IN(19) = 1: REM OPERATING FREQUENCY
760 IN(20) = 0.1: REM AC OUTPUT VOLTAGE
780 IN(21) = 0.1: REM AC VOLTAGE DISPLAYED
800 ZN(22) = 10: REM LINEAR DELTA FREQ.
820 ZN(23) = 10: REM LOG POINTS PER DECADE
840 ZN24) = 0: REM DC BIAS VOLTAGE
860 ZN(25) = 1: REM SERIES MEASURING RESISTANCE
880 ZN(26) = 0: REM // STANDARD CAPACITANCE
900 ZN(27) = 1: REM IMPEDANCE SCALE FACTOR
920 ZN(28) = 0: REM INITIAL DC VOLTAGE
940 ZN(29) = 0: REM FINAL DC VOLTAGE
960 ZN(30) = ZN: REM FREQUENCY POINTS PER VOLTAGE
980 ZN(31) = 0: REM
1000 ZN(32) = 0: REM
1020 CXZ = 3: REM (Y/X) NODE
1040 L1 = 9999: IF ZR(4) = 1174 THEN LI = LI + 140: REM UPPER F LIMIT
1060 BP0) = 0: REM DELAY IN SECONDS
1080 BP(1) = L1: REM BREAK TO INTEGRATION $ 10
1100 BP(2) = L1: REM BREAK TO INTEGRATION $ 100
1120 BP(3) = L1: REM BREAK TO INTEGRATION $ 1000
1140 SX = 6: REM BOOT FROM SLOT 6
1160 DI = 11: REM DRIVE 11
1180 VBX = PEEK (11501): REM BOOTVOLUME
1200 VX = VBX: REM CURVUS VOLUME VARIABLE
1220 PLX = ZN: REM LENGTH OF PARAMETER FILE LOAD
1240 HOME : VTAB 9: ZD$(0) = "MEASUREMENT"; ZD$(1) = "DATA ANALYSIS"; PRINT : PRINT ZD$(0); " (M)" ; PRINT
1 PRINT "OR": PRINT : PRINT ZD$(1); " (O)": PRINT
1260 VTAB 16: HTAB 2: PRINT "WELL ? "; GET ZQ$: PRINT ZD$(0): IF ZQ$ = "D" THEN HTAB 2: VTAB 16: CALL - 868: PRINT ZD$(1); GOTO 1460
1280 HOME : VTAB 9: PRINT "LOADING DNS4.MAIN"
1300 HOME : VTAB 5: PRINT "WHICH INSTRUMENT ARE YOU USING ?": PRINT : PRINT "PRINT "1..1172": PRINT
1 PRINT "2....1174": PRINT : PRINT "3....1250": PRINT : PRINT "WELL ? ";
1320 GET ZQ$: IF ZQ$ = CHR. (13) THEN ZR(4) = 1172: GOTO 1380
1340 ZZ(3) = INT (VAL (ZQ$)) : IF ZZ(3) < 1 OR ZZ(3) > 3 THEN PRINT CHR$. (7); GOTO 1300
1360 ZR(4) = 1172: IF ZZ(3) < 1 THEN ZR(4) = 1174: IF ZZ(3) > 2 THEN ZR(4) = 1250
1380 PRINT ZR(4): VTAB 20: PRINT "IS CLOCK AVAILABLE (Y/N) ? "; GET ZD$(0);CLX = 1: PRINT "NO": IF ZD$(0) < ") * Y" THEN CLX = 0: VTAB 20: HTAB 28: CALL - 868: PRINT "NO"
1400 NPX = 0: REM LAST PROGRAM MARKER
1420 PRINT CHR$. (4); "LOADING CHAIN,AS20"
1440 CALL 520"DNS4.MAIN,B1"
1460 VTAB 22: PRINT "LOADING DNS4,ANALYSIS"
1480 PRINT CHR$. (4); "LOADING CHAIN,AS20"
1500 CALL 520"DNS4,ANALYSIS"
1520 END
1540 REM NPX=0 => DNS$0
1560 REM NPX=1 => DNS$0.MAIN
1580 REM NPX=2 => DNS$0.BOME
1600 REM NPX=3 => DNS$0.MYQUIST
1620 REM NPX=4 => DNS$0.ANALYSIS
1640 REM NPX=5 => DNS$0.RCR FIT
1660 REM NPX=6 => DNS$0.LINEAR FIT
1680 REM NPX=7 => DNS$0.DATA MANIPULATE
30000 REM AUTO-LIST UTILITY BY ROBERT WEAVER
30020 TEXT : HOME : SPEED= 255
30030 VTAB 5: CALL'. - 868: INPUT "ENTER FILE NAME: ;DNS$0.L = LEN (DNS$)
30040 IF L > 48 THEN VTAB 20: PRINT "LIMIT TO 48 CHARACTERS": PRINT CHR$(7): FOR I = 0 TO 200: NEXT I: GOTO 30030
30060 PRINT CHR$(4);"PR01": PRINT CHR$(15)
30065 PRINT CHR$(9);"52P": PRINT CHR$(9);"F"
30070 L = INT (24 - L / 2)
30080 PRINT CHR$(9);"K"
30090 PRINT CHR$(14);;
30100 PRINT TAB(L);DNt;L = L - 1
30120 FOR I = 1 TO LEN (DNt) + 2: DU8 = DU8 + CHR$(95): NEXT I
30150 PRINT CHR$(14);;
30160 PRINT TAB(L);DU8
30170 PRINT CHR$(9);"122N": PRINT CHR$(9);"112R": PRINT CHR$(9);"11L"
30180 PRINT CHR$(15)
30190 PRINT CHR$(9);"A"
30200 LIST: PRINT
30210 PRINT CHR$(12)
30220 PRINT CHR$(18); PRINT CHR$(4);"PR00": END
1 REM DMS4.MA In 17/JUN/1982
2 REM KEITHLEY DVM ON IEEE-488 BUS
10 HINE=34300: GOSUB 20000: IF NP1 = 0 THEN GOSUB 1500
1000 HOME : PRINT
1100 PRINT : PRINT "PROGRAM OPTIONS ARE:"
1120 PRINT : PRINT * 1...SET UP SOLARTRON*
1140 PRINT : PRINT * 2...RESET (INITIALIZE)"
1160 PRINT : PRINT * 3...TAKE MEASUREMENTS"
1180 PRINT : PRINT * 4...CHAIN BODE PLOT*
1200 PRINT : PRINT * 5...CHAIN NYQUIST PLOT*
1220 PRINT : PRINT * 6...SAVE DATA ON DISK*
1240 PRINT : PRINT * 7...RETRIEVE DATA FROM DISK*
1245 PRINT : PRINT * 8...CHANGE CONFIGURATION"
1250 PRINT : PRINT * 9...CHAIN ANALYSIS PROGRAM"
1260 IF (3) = 0: VTAB (23) = 0: IF (5) = 9: GOSUB 10100
1280 IF (0) = 1 THEN 1000
1300 HOME: VTAB 9: PRINT "EXIT PROGRAM": PRINT: PRINT "TYPE GOTO 1000 TO RESUME": END
1400 GOSUB 1500: GOTO 1000
1500 HOME : PRINT "Initialize"
1520 IF (3) = 0: GOSUB 20010: GOSUB 26000
1540 FOR II = 0 TO 1000: NEXT II: GOTO 1000
1560 IF (0) = "R" THEN ZII(0) = 1: RE" SET UP SOLARTRON UNDER:"
1580 IF (0) = "L" THEN PRINT "LOCAL (=L) , OR PROGRAM (=P) CONTROL:"
1600 IF (0) = "P" THEN PRINT "PROGRAM (=P) CONTROL:"
1620 IF (0) = "L" THEN PRINT "LOCAL (=L): GOTO 2100
1640 IF (0) = "P" THEN PRINT "PROGRAM (=P): GOTO 2200
1660 IF (0) = "L" THEN PRINT "LOCAL:"
1680 IF (0) = "P" THEN PRINT "PROGRAM (=P): GOTO 2200
1700 IF (0) = "L" THEN PRINT "LOCAL:"
1720 IF (0) = "P" THEN PRINT "PROGRAM (=P): GOTO 2200
1740 IF (0) = "L" THEN PRINT "LOCAL:"
1760 IF (0) = "P" THEN PRINT "PROGRAM (=P): GOTO 2200
1780 IF (0) = "L" THEN PRINT "LOCAL:"
1800 IF (0) = "P" THEN PRINT "PROGRAM (=P): GOTO 2200
1820 REM SET PARAMETER ROUTINE
2000 HOME : VTAB 5: PRINT "SET UP SOLARTRON UNDER:"
2020 IF (0) = "L" THEN PRINT "LOCAL (=L) , OR PROGRAM (=P) CONTROL:"
2040 IF (0) = "P" THEN PRINT "PROGRAM (=P) CONTROL:"
2060 IF (0) = "L" THEN PRINT "LOCAL:"
2080 IF (0) = "P" THEN PRINT "PROGRAM (=P) CONTROL:"
2100 IF (0) = "L" THEN PRINT "LOCAL:"
2120 IF (0) = "P" THEN PRINT "PROGRAM (=P) CONTROL:"
2140 IF (0) = "L" THEN PRINT "LOCAL:"
2160 IF (0) = "P" THEN PRINT "PROGRAM (=P) CONTROL:"
2180 IF (0) = "L" THEN PRINT "LOCAL:"
2200 IF (0) = "P" THEN PRINT "PROGRAM (=P) CONTROL:"
2220 IF (0) = "L" THEN PRINT "LOCAL:"
2240 IF (0) = "P" THEN PRINT "PROGRAM (=P) CONTROL:"
2260 IF (0) = "L" THEN PRINT "LOCAL:"
2280 FOR II = 1 TO 3
2300 VTAB 15 + 2 * II; ZZ(3) = BP(II); ZZ(4) = 0.0001 * ZZ(5) = LI: PRINT "BREAK POINT FREQ. "; II: GOSUB 10100: IF ZE(0) = 1 THEN 2300
2320 BP(II) = ZZ(3): NEXT II
2340 HOME: IF ZR(4) = 1174 THEN 2440
2360 VTAB 3; ZZ(3) = ZM(28); ZZ(4) = -9.99 * ZZ(5) = 9.99 * ZZ(6) = 0: PRINT "INITIAL DC VOLTAGE = "; GOSUB 10100: IF ZE(0) = 1 THEN 2360
2380 ZM(28) = ZZ(3); ZM(24) = ZM(28); ZA(2) = 24: GOSUB 21000
2400 VTAB 5; ZZ(3) = ZM(29); ZZ(4) = -9.99 * ZZ(5) = 9.99 * ZZ(6) = 0: PRINT "FINAL DC VOLTAGE = "; GOSUB 10100: IF ZE(0) = 1 THEN 2400
2420 ZM(29) = ZZ(3)
2440 VTAB 8; ZZ(3) = ZM(17); ZZ(4) = 0.0001 * ZZ(5) = LI: PRINT "MINIMUM FREQUENCY = "; GOSUB 10100: IF ZE(0) = 1 THEN 2440
2460 ZM(17) = ZZ(3); ZA(3) = 17: GOSUB 21000
2480 VTAB 10; ZZ(3) = ZM(16); ZZ(4) = ZM(17); ZZ(5) = LI: PRINT "MAXIMUM FREQUENCY = "; GOSUB 10100: IF ZE(0) = 1 THEN 2480
2500 ZM(16) = ZZ(3); ZA(3) = 16: GOSUB 21000
2520 VTAB 12; ZZ(3) = ZM(20); ZZ(4) = 0.01 * ZZ(5) = 9.99 * ZZ(6) = 0: PRINT "AC OUTPUT VOLTAGE = "; GOSUB 10100: IF ZE(0) = 1 THEN 2520
2540 ZM(20) = ZZ(3); ZA(3) = 20: GOSUB 21000: ZM(21) = ZZ(3); ZA(3) = 21: GOSUB 21000
2560 IF ZR(4) = 1174 THEN 2700
2580 IF ZM(28) = ZM(29) OR ZM(16) = ZM(17) THEN ZM(30) = ZM: GOTO 2640
2600 VTAB 15; ZZ(3) = ZM(30); ZZ(4) = 2; ZZ(5) = ZM / 2; ZZ(6) = 1: PRINT "# OF FREQUENCY STEPS = "; GOSUB 10100: IF ZE(0) = 1 THEN 2600
2620 ZM(30) = ZZ(3)
2640 VTAB 17; ZZ(3) = ZM(4); ZZ(4) = 1; ZZ(5) = 3; ZZ(6) = 1: PRINT "WAVEFORM:";
2660 PRINT
1 = TRIANGULAR": PRINT
2 = SINE": PRINT
3 = SQUARE": GOSUB 10100: IF ZE(0) = 1 THEN 2660
2680 ZM(4) = ZZ(3); ZA(4) = 4: GOSUB 21000
2700 IF CLX = 0 THEN 1000
2720 HOME: GOSUB 12000: VTAB 5: PRINT "THE DATE IS: "; ZZ(4); VTAB 7: PRINT "THE TIME IS: "; ZZ(5)
2740 VTAB 12: PRINT "AT WHAT TIME WOULD YOU LIKE": VTAB 14: PRINT "MEASUREMENTS TO BEGIN?"
2760 VTAB 16: INPUT "HH.MM:"; ZO; GOTO 1000
3000 HOME: PRINT "TAKING MEASUREMENTS IN NODE O "; CGX
3010 VTAB 3: PRINT "IMPEDANCE SCALE FACTOR = "; ZM(27)
3020 POKE 54, 3: REM SET TEXT WINDOW
3030 ZA(4) = 19; ZM(19) = ZM(17); GOSUB 21000: ZA(4) = 18; ZM(18) = ZM(17); GOSUB 21000
3040 FMX = (ZM(16) / ZM(17)) ^ (1 / (ZM(30) - 1))
3050 VADD = 0: IF ZM(30) < ZM THEN VADD = (ZM(29) - ZM(28)) / (INT (ZM / ZM(30) - 0.5))
3060 ZM(0, 0) = 1
3070 ZM(0, 1) = ZM(0, 0) + ZM(30) - 1
3080 FOR II = 1 TO BP(0) + 441 + 60: NEXT II
3090 FOR JN = ZM(0, 0) TO ZM(0, 1)
3100 FOR II = 1 TO BP(0) + 441: NEXT II: REM DELAY IN SECONDS
3110 ZM(15) = 1: IF ZM(19) > BP(1) THEN ZM(15) = 2: IF ZM(19) > BP(2) THEN ZM(15) = 3: IF ZM(19) > BP(3) THEN ZM(15) = 4.
3120 ZA(5) = 15: GOSUB 21000: REM SET INTEGRATION
3130 IF CGX = 4 OR CGX < 0 THEN 3170
3140 ZA(12) = ZM(12) = 1: GOSUB 21000: REM SET 'X'
3150 ZM(12) = JZ = 1: GOSUB 22000: REM MEASURE
3160 X1 = ZM(11, JZ) + 12 = ZM(2, JZ): REM INITIAL 'X'
3170 ZA(12) = ZM(12) = 2: GOSUB 21000: REM SET 'Y' MODE
I: GOSUB 22000: REM MEASUREMENT
3190 VTAB 5: CALL - B68: PRINT "REAL 'Z' = i'ta(1,JIN): VTAB 24: PRINT "TOTAL " ; II
3200 VTAB 7: CALL - B68: PRINT "REAL 'Y' = j'ta(1,JIN): ta(3,JIN) = ta(1,JIN): GOSUB 9000
3210 VTAB 8: CALL - B68: PRINT "IMAG. 'Y' = j'ma(2,JIN): ma(4,JIN) = ma(2,JIN): GOSUB 9000
3220 IF CQX > 3 THEN 3280
3230 ZM(0,0) = 1: GOSUB 21000: REM SET 'Y'
3240 IN(0,0) = 1: GOSUB 22000: IF CQX < 0 THEN 3260
3250 ZM(1,JIN) = ZM(1,JIN) + X1 / 2: ZM(2,JIN) = (ZM(1,JIN) + X2) / 2: REM 'Y' MEAN
3260 VTAB 10: CALL - B68: PRINT "REAL 'X' = i'ta(1,JIN): GOSUB 9000
3270 VTAB 11: CALL - B68: PRINT "IMAG. 'X' = j'ma(2,JIN): GOSUB 9000
3280 ZM(19) = ZM(19): IF ZM(19) > 59 AND ZM(19) < 61 THEN 3280
3300 IF ZM(19) = 61 THEN ZM(19) = 1
3310 IA(2,0) = IA(1,JIN): GOSUB 21000: REM SET DISPLAY F
3320 REM CALCULATE IMPEDANCE
3330 IF ABS (CQX) = 1 THEN X1 = X1 + X2: ZM(1,JIN) = ZM(1,JIN) + X2
3340 IF ABS (CQX) = 2 THEN X1 = X1 + X2: ZM(1,JIN) = ZM(1,JIN) + X2
3350 IF ABS (CQX) = 3 THEN X1 = X1 + X2: ZM(1,JIN) = ZM(1,JIN) + X2
3360 IF ABS (CQX) = 4 THEN X1 = X1 + X2: ZM(1,JIN) = ZM(1,JIN) + X2
3370 GOSUB 9500: IF X1 = 1.00 THEN ZM(19) = X1
3380 ZM(1,JIN) = IN(1,JIN): GOSUB 9000
3390 ZM(2,JIN) = ZM(1,JIN)
3400 GOSUB 9900
3410 VTAB 14: CALL - B68: PRINT "REAL 'Z' = i'ta(1,JIN): GOSUB 9000
3420 VTAB 15: CALL - B68: PRINT "IMAG. 'Z' = j'ma(2,JIN): GOSUB 9000
3430 VTAB 16: CALL - B68: PRINT "MAGNITUDE = i'ta(3,JIN): GOSUB 9000
3440 VTAB 18: CALL - B68: PRINT "PHASE/DEG. = j'ma(4,JIN): GOSUB 9000
3450 VTAB 25: ZD*(0) = ZD*(0) + M N((ZD*(0),5):ZM(5,JIN) = VAL (ZD*(0)): VTAB 20: CALL - B68: PRINT "VOLTAGE = i'ta(3,JIN)
3460 IA(0,0) = 1: GOSUB 21000
3470 IF PEEK (-16384) = 128 THEN GOTO 3520: REM ABORT RUN
3480 IF ZM(19) > 0 THEN 3520
3490 NEXT JIN
3500 ZM(24) = ZM(24) + VADD: ZM(0,0) = JIN
3510 ZM(19) = ZM(17): IA(0,0) = IA(1,0): GOSUB 21000: GOTO 3070
3520 POKE 34,0:IN(0) = ZM(0): GOTO 1000
4000 HOME: VTAB 9: PRINT "LOADING BODE PLOT PROGRAM":MPZ = 1
4010 PRINT CHR$(4);"LOAD CHAIN,A520,S6,D1,4"";VBX
4020 CALL 520"DMS4.BODE,D1";
4030 HOME: VTAB 9: PRINT "LOADING NYQUIST PROGRAM":MPZ = 1
4040 PRINT CHR$(4);"LOAD CHAIN,A520,S6,D1,4"";VBX
4050 CALL 520"DMS4.NYQUIST,D1"
4600 REM SAVE DATA TO DISK
4600 ZD*(0) = ZD*(0) + STR$(INT (ZM(3) + 0.5)): RETURN
7000 REM RETRIEVE DATA FROM DISK

I-6
7020 ZZ(I) = 78: GOSUB 11300: ZNZ = ZN(1,0) : GOTO 1000
8000 REM MEASUREMENT CONFIGURATION
8020 HOME: VTAB 5: PRINT "WHICH INPUT CONFIGURATION?"
8040 VTAB 8: PRINT "1,....(Y-I)/(X)"
8060 VTAB 11: PRINT "2....(X)/(Y-I)"
8100 VTAB 12: PRINT "3,....(Y/I)"
8120 VTAB 14: PRINT "4,....Y"
8130 VTAB 16: PRINT "1;IZZ(3)
8140 60SUB 10100:
8160 IF l£X(O) THEN
8180 CO% = ZZ(3)
8200 IF CO% < 4 THEN YTAB 18: PRINT "2 OR 3 "EASURE"ENTS? 3": SET 21$(0):
8220 IF ZD$(O) = '2' THEN
8240 VTAB 22: ZZ(3) = 1"(25): ZZ(4) = 0.01: ZZ(5) = 1E12: ZZ(6) = 0: PRINT "STANDARD RESISTANCE = "
8260 IF ZZ(6) = 1 THEN 8260
8280 ZZ(27) = ZZ(3)
8300 GOTO 1000
9000 REM DISPLAY COUNTER ROUTINE
9010 HTAB 30: PRINT "*: RETURN
9240 PR# 0: INPUT ID$(0); PR# 0: INPUT ZD$(0): IN# 0: RETURN
9500 REM COMPLEXDIVISION
9520 ZZ(5) = ZZ(1) $ ZZ(2) $ ZZ(2)
9540 ZZ(6) = (ZZ(3) $ ZZ(1) $ ZZ(4) $ ZZ(2)) / ZZ(5)
9560 ZZ(4) = (ZZ(4) $ ZZ(1) $ ZZ(3) $ ZZ(2)) / ZZ(5)
9580 ZZ(3) = ZZ(6): RETURN
9700 HOME: VTAB 9: PRINT "LOADING ANALYSIS PROGRAM":NP\ = 1
9710 PRINT CHR$(4): "LOAD CHAIN,A,64,01,Y"VB$= 9720 CALL 520"DMS4. ANALYSIS,D1"
9730 RETURN
9770 REM MAG. & PHASE
9780 ZZ(3,JZM) = SQR (ZN(1,JZM) $ ZN(1,JIM) + ZN(2,JZM) $ ZN(2,JIM))
9782 IF ZZ(1,JZM) = 0 THEN ZZ(1,JZM) = 1E - 10
9784 ZZ(4,JZM) = ATN (ZN(2,JZM) / ZZ(1,JZM)) $ (180 / 3.141592654)
9790 ZZ(5,JZM) = LOG (ZN(3,JZM)) / ZZ(0): RETURN
10000 REM Y/N SUBR
10010 ZZ(0) = 0: INPUT ";ZD$(0): IF LEFT$(ZD$(0),1) = "Y" THEN ZZ(3) = 2: RETURN
10020 IF LEFT$(ZD$(0),1) = "N" OR ZZ(0) = "" THEN ZZ(3) = 1: RETURN
10030 ZZ(1) = 1: GOSUB 10050: RETURN
10050 REM ERROR SUBR
10060 PRINT CHR$(7): ZZ(0) = 1: RETURN
10100 REM 1/P SUBR
10100 CALL R5B
10120 ZZ(0) = 0: PRINT ZZ(3): INPUT ";ZD$(0): IF ZZ(0) = "" THEN ZZ(7) = ZZ(3): GOTO 10170
10130 FOR 1 = 1 TO LEN (ZD$(0)) : Z# = MID$(ZD$(0), 1,1)
10140 IF Z# = "*" OR Z# = "-" OR Z# = "": OR Z# = "E" THEN 10160
10150 IF Z# < "0" OR Z# > "9" THEN 10050
10160 NEXT 1: ZZ(7) = VAL (ZD$(0))
10170 IF ZZ(7) < ZZ(4) OR ZZ(7) > ZZ(5) THEN 10050
10180 ZZ(3) = ZZ(7): IF ZZ(6) = 1 THEN ZZ(3) = INT (ZZ(7))
10190 FOR I = 0 TO 200: NEXT I: RETURN
10200 REM FIXED REAL SUBR
10210 POKE 36336, 13: POKE 36337, ZZ(4): POKE 36338, 0: POKE 36340, 64: GOTO 10240
10220 POKE 36336, 14: POKE 36337, ZZ(5): POKE 36338, 1: POKE 36340, 64: GOTO 10240
10230 POKE 36336, 13: POKE 36337, ZZ(6): POKE 36338, 1: POKE 36340, 64
10240 CALL 36379: PRINT ZH(ZZ(7), 1): RETURN
11300 REM ASK SLOT,DRIVE AID
11310 GOSUB 11500
11320 POKE 98, 90: POKE 99, ZZ(6): CALL 38152
11330 PRINT CHR$ (4); 'BSAVE' ZH$(Ol, A' PEEK 138394) + PEEK (38395) - 256, ' 256'
11340 PRINT: PRINT: RETURN
11400 REM SAVE ARRAY
11410 GOSUB 11500
11420 POKE 98, 90: POKE 99, ZZ(6): CALL 38104
11430 PRINT CHR$ (4); 'SAVE' ZH$(Ol, A' PEEK 13B394) + PEEK (38395) - 256, ' 256'
11440 RETURN
11500 REM ASK SLOT,DRIVE AND VOLUME
11505 ZZ(3) = 2: HOME: VTAB 9: PRINT "ENTER DISK DRIVE NUMBER.."; ZZ(3); ":
11510 HOME : VTAB 5: PRINT "TO ACCESS FLOPPY DISK USE ": PRINT ": S(4),D(1 OR 2),V(0)"; VTAB 8: PRINT "TO ACCESS CORVUS DISK USE ": PRINT: PRINT I SLOT ": 51: PRINT 'VOLUME ": VZ
11515 VTAB 12: PRINT "Pointers currently set at "; PRINT ": SLOT ": 51: PRINT I DRIVE ": 51; RETURN
11520 VTAB 19: PRINT "CHANGE POINTERS (Y/N) ": I$: GET ZD$(0): IF ZD$(0) = "N" THEN 11550
11530 HOME : VTAB 5: ZZ(3) = $1; ZZ(4) = 4; ZZ(5) = 6; ZZ(6) = 0: PRINT " SLOT ": 51: GOSUB 10120: IF ZE1(0) = 1 THEN 11550
11532 S2 = INT (ZZ(5) + 0.5)
11535 VTAB 10: ZZ(3) = $1; ZZ(4) = 1; ZZ(5) = 2; ZZ(6) = 0: PRINT ": DRIVE ": 51; GOSUB 10120: IF ZE1(0) = 1 THEN 11535
11537 $Z = INT (ZZ(3) + 0.5): IF $Z < 6 THEN $Z = 0: GOTO 11550: REM FLOPPY
11540 VTAB 15: ZZ(3) = $1; ZZ(4) = 1; ZZ(5) = 6; ZZ(6) = 0: PRINT " VOLUME ": 51: GOSUB 10120: IF ZE1(0) = 1 THEN 11540
11542 VZ = INT (ZZ(3) + 0.5)
11550 PRINT: PRINT "PRESS ANY KEY TO CATALOG ": GET ZD$(0): PRINT : PRINT CHR$ (4); "CATALOG,S"SZ",D"D IZ","VZ
11560 PRINT: PRINT "ANOTHER CATALOG Y/N ": I$: GOSUB 10000: IF ZE1(0) = 1 THEN 11560
11570 IF ZZ(3) = 2 THEN 11500
11580 PRINT : PRINT "FILE NAME WILL BE PRECEDED BY DNS4-": PRINT*: PRINT" ENTER FILE NAME = DNS4-"; ID$(0); ZD$(0) = "DNS4-" + ZD$(0)
11590 RETURN
12000 RETURN : REM CLOCK
20000 REM INITIALISATION
20010 ZD$(4) = "$" + CHR$ (95) + CHR$ (ZZI + 64); ZD$(5) = "$" + CHR$ (95) + "$" + CHR$ (ZZI + 32)
20020 ZD$(6) = CHR$ (4) + "IN40" + ZD$(7) = CHR$ (4) + "PR00"
20030 ZD$(8) = CHR$ (4) + "PR03" + AAR$ = "$" + CHR$ (95) + "$" + ZD$(8) = "$" + $10; @H1
20040 RETURN
21000 REM SEND DATA TO FRA
21010 IF IA < 0 OR IA > 24 THEN ZE1(0) = 1: RETURN
21020 IF IA = 5 OR IA = 10 THEN ZE1(0) = 1: RETURN

21030 PRINT ZD$(6): PRINT ZD$(5)
21040 IF IAZ > 15 THEN 21140
21050 IF IAZ = 12 OR IAZ = 0 THEN Z1% = ZM(IAZ): GOTO 21130
21060 IF IAZ = 7 THEN 21090
21070 IF IAZ = 9 THEN 21110
21080 Z1% = ZM(IAZ) - 1: GOTO 21130
21090 IF ZM(IAZ) = 1 THEN Z1% = 0: GOTO 21130
21100 Z1% = 4: GOTO 21130
21110. IF ZM(IAZ) < 6 THEN Z1% = ZM(IAZ) + 1: GOTO 21130
21120 Z1% = ZM(IAZ) + 2
21130 PRINT ";"I2": CHR$ (IA% + 4S); STR$ (Z1%):"": GOTO 21450
21140 IF IAZ < 20 THEN GOTO 21160
21150 ON Z1% - 19 10 TO 21230,21250,21300,21320,21370
21160 ON Z1% = 16 GOTO 21180,21190,21200
21170 ZD$(1) = "F": SOTO 21210
21180 ZD$(1) = "N": SOTO 21210
21190 ZD$(1) = "S": SOTO 21210
21200 ZD$(1) = "7"
21210 Z1% = 6: IF ZM(IAZ) = 0 THEN 21460
21220 GOTO 21410
21230 Z1% = 5:ZD$(1) = "G": IF ZM(IAZ) = 0 THEN 21460
21240 ZD$(1) = "G": GOTO 21410
21250 ZD$(1) = "S": IF ZM(IAZ) = 0 THEN 21460
21260 Z3% = INT (LOG (ZM(IAZ)) / LOG (10) + 1E - 6)
21270 ZP = INT (ZM(IAZ) + 10 ^ 3) + 10 ^ 4: IF ZP = 0 THEN ZP = INT (ZP + 10 + 1E - 6)
21280 ZD$(3) = "G": IF Z3% < > 0 THEN FOR Z1 = 1 TO ABS (Z3%):ZD$(3) = ZD$(3) + "0": NEXT Z1
21290 ZD$(3) = ZD$(3) + STR$(ZP): GOTO 21440
21300 Z1% = 6:ZD$(1) = "G": IF ZM(IAZ) = 0 THEN 21460
21310 GOTO 21410
21320 ZD$(1) = "G": IF ZM(IAZ) = 0 THEN 21460
21330 ZD$(3) = STR$(ZM(IAZ) + 10 ^ 6)
21340 IF LEN (ZD$(3)) = 6 THEN ZD$(3) = "00" + ZD$(3): GOTO 21440
21350 IF LEN (ZD$(3)) = 7 THEN ZD$(3) = "0" + ZD$(3): GOTO 21440
21360 ZD$(3) = GOTO 21440
21370 ZD$(1) = "C": IF ZM(IAZ) = 0 THEN 21460
21375 ZD$(1) = "C": IF ZD$(2) = "0000": IF ZM(IAZ) < 0 THEN ZD$(2) = "0010"
21380 ZD$(3) = ABS (ZM(IAZ)): IF ZZ(3) < 1 THEN ZD$(1) = "000"
21385 IF ZZ(3) < 0.1 THEN ZD$(1) = "0000"
21390 ZD$(3) = STR$(INT (ZD$(3) + 10 ^ 2 + 6E - 5)) + ZD$(2): GOTO 21440
21400 IF ZM(IAZ) = 0 THEN Z3% = 0: GOTO 21430
21410 Z3% = INT (LOG (ZM(IAZ)) / LOG (10) + 1E - 6)
21420 Z1% = 4: IF IAZ = 20 THEN Z1% = 3
21430 ZD$(3) = STR$(INT (ZM(IAZ) + 10 ^ (Z2% - Z3%) + ZT(2))): GOTO 21440
21440 PRINT ";"I2": ZD$(1):ZD$(3):"": GOTO 21440
21450 PRINT ZD$(6): PRINT ZD$(7): RETURN
21460 ZD$(3) = "00000000": GOTO 21440
21470 IF IAZ = 5 OR IAZ > 6 THEN 21490
21480 ZD$(3) = LEFT$(ZD$(3),7) + "4"
21490 GOTO 21440
22000 REM MEASUREMENT ROUTINE
22010 ZE1(0) = 0: IF IAZ > IZM THEN ZE1(0) = 2: RETURN
22020 IZM = IZM + 1: PRINT ZD$(8)
22030 PRINT ID$(5);".S1111210T212""
22040 IF PEEK (49331) < 64 THEN 22040
22050 PRINT ID$(5);"T37"; GSUB 28000
22060 Z(I) = IR(2) = IS
22070 PRINT ID$(5);"T48"; GSUB 28500:1R=IR
22080 IF ZR(0) = 3 THEN PRINT ID$(5);"T39"; GSUB 28000:1R=IR
22090 IF ZR(0) = 2 THEN PRINT ID$(5);"T38"; GSUB 28000:1R=IR
22100 IF ZR(0) = 1 THEN PRINT ID$(5);"T37"; GSUB 28000:1R=IR
22110 PRINT ID$(5);"T47"; GSUB 28500
22120 IF IR(0) AND IFNZ = IN THEN IR = 0:ZE(0) = 1
22130 IF IR(0) AND IFNZ = IN THEN PRINT ID$(5);"T1111210T212""
22140 IN(I,IN%) = (Z(I) / 1000) * 10 * (Z(I) / 10) * 10 - 4
22150 IT = - 5 + (Z(I) / 10) * 10 - 4
22160 Z(I) = (Z(I) / 100) + INT (Z(I) / 100) * 10 * IT
22170 IT = INT (Z(I) / 10); IT = IT - (INT (IT / 10) * 10)
22180 IF IT > 3 THEN Z(I) = 10E20
22190 IF IT = 1 OR IT = 5 THEN Z(I) = Z(I) * -1
22200 ZN(I,IN%) = Z(I)
22210 IT = - 5 + (Z(I) / 1000) - (INT (Z(I) / 10) * 10) - 4
22220 Z(I) = (Z(I) / 100) + INT (Z(I) / 100) * 10 * IT
22230 IT = INT (Z(I) / 10); IT = IT - (INT (IT / 10) * 10)
22240 IF IT > 3 THEN Z(I) = 10E20
22250 IF IT = 1 OR IT = 5 THEN Z(I) = Z(I) * -1
22260 ZN(2,IN%) = Z(I)
22270 IF IR(0) AND IFNZ = IN THEN ZN = ZN + 1: GOTO 22040
22280 PRINT ID$(5);"T210";
22290 PRINT ID$(7): PRINT ID$(6)
22300 RETURN
24000 IF ZA(0) < 0 THEN ZE(0) = 1: RETURN
24010 IF ZA(0) = 24 OR ZA(0) = 31 THEN 24030
24020 ZE(0) = 1: RETURN
24030 PRINT ID$(8): PRINT ID$(5)
24040 IF ZA(0) < 16 THEN 24310
24050 ON ZA(0) - 15 GOTO 24080, 24090, 24100, 24110, 24120
24060 ON ZA(0) - 20 GOTO 24150, 24160, 24220, 24250
24070 PRINT ":T37": GSUB 28000; GSUB 27210: ZP = IR: GOTO 24470
24080 PRINT ":T3F": GSUB 24440
24090 PRINT ":T3M": GSUB 24440
24100 PRINT ":T36": GSUB 24440
24110 PRINT ":T37": GSUB 24440
24120 PRINT ":T36": GSUB 28000: ZP = IR * 10 ^ (- 5 + (IS - (INT (IS / 10) * 10))); IF ZP < 0.01 THEN ZP = 0.01
24140 GOTO 24470
24150 PRINT ":T33": GSUB 28000: ZP = IR / 1000: IF ZP < 0.01 THEN ZP = 0.01
24170 GOTO 24470
24180 PRINT ":T33": GSUB 28000: ZP = IR * 10 ^ ((IS - (INT (IS / 10) * 10)) - 7); IF ZP < 1E - 7 THEN ZP = 1E - 7

I-10
24190 Z(5) = 9999: IF ZR(4) = 1174 THEN Z(5) = 999900
24200 IF ZP > Z(5) THEN ZP = Z(5)
24210 GOTO 24470
24220 PRINT "*T3*": GOSUB 28000: ZP = ZR / 100: IF ZP < 0.2 THEN ZP = 0.2
24230 IF ZP > 99.99 THEN ZP = 99.99
24240 GOTO 24470
24250 PRINT ";T3C": GOSUB 28000: ZS1 = INT((ZS - INT(ZS / 100)) * 100) / 100
24260 IF ZS1 = 1 THEN ZR = ZR + 1
24270 IF ABS(ZP) > 9.99 THEN ZP = 9.99
24280 IF IS% = 1 THEN ZP = ZP - 1
24300 GOTO 24470
24310 PRINT ";T4": CHR$(ZS1 + 48); ";1: GOSUB 28500: PRINT ZO$(7); PRINT ZO$(6)
24320 IF ZS1 = 10 THEN ZP = ZR - 1: RETURN
24330 IF ZA% = 9 THEN 24480
24340 IF ZA% = 1 THEN ZP = ZR + 1: RETURN
24350 IF ZP < 1E - 4 THEN ZP = 1E - 4
24360 IF ZP > Z(5) THEN ZP = Z(5)
24370 IF ZP = ZR + 1: RETURN
24380 IF ZA% = 1 THEN 24410
24390 IF ZR = 0 THEN ZP = 1: RETURN
24400 ZE(0) = 1: RETURN
24410 IF ZR = 8 THEN ZP = 6: RETURN
24420 IF ZR = 4 THEN ZP = 2: RETURN
24430 ZE(0) = 1: RETURN
24440 GOSUB 28000: ZS2 = ZR: Z(5) = 9999: IF ZR(4) = 1174 THEN Z(5) = 999900
24450 IF ZP < 1E - 4 THEN ZP = 1E - 4
24460 IF ZP > Z(5) THEN ZP = Z(5)
24470 PRINT ZD$(7); PRINT ZD$(6); RETURN
24480 IF ZR = 8 THEN ZP = 6: RETURN
24490 PRINT ZD$(8); PRINT ZD$(5); PRINT ";T4*": GOSUB 28500: PRINT ZD$(6); PRINT ZD$(7); ZP = ZR - 1: RETURN
25000 PRINT ZD$(8); PRINT ZD$(5) + ";5001": PRINT ZD$(5) + ";1*: PRINT ZD$(6); PRINT ZD$(7); RETURN
26000 PRINT ZD$(8); PRINT ZD$(5); CHR$(4); ";*: PRINT ZD$(6); PRINT ZD$(7); RETURN
27000 Z7% = 1
27020 ZE(0) = 5: Z6 = (ZR * 100) + INT(ZS / 100) / 100000
27220 IF Z7% = 1 THEN GOTO 27260
27230 Z6 = INT((ZS - INT(ZS / 100)) * 100) / 10:
27240 IF Z6 = 1 OR Z6 = 5 THEN Z6 = Z6 + 1
27250 IF Z6 > 3 THEN ZE(0) = 1
27260 ZR = Z6 + 10 ^ ((ZS - (INT(ZS / 10) * 10)) - 4): Z7% = 0: RETURN
28000 PRINT ZD$(4); ";*: PRINT ZD$(7)
28010 VTAB 23: INPUT ZR, ZD$(10): Z6 = VAL(ZD$(0))
28020 PRINT ZD$(8): RETURN
28500 PRINT ZD$(4); ";*: PRINT ZD$(7); VTAB 23: INPUT ZR
28510 PRINT ZD$(8): RETURN
29000 REN KEITHLEY MODEL 192 SET-UP
29010 ID$(0) = "Y(LF)": GOSUB 29240
29020 ZD$(0) = "TFTOKQO53N0201": GOSUB 29240: RETURN
29240 REN TALK TO KEITHLEY
29260 PRINT ZD$(8); PRINT AA; ZD$(0); BB: PRINT ZD$(7); INPUT ZD$(0): PRINT ZD$(6): RETURN
I-11
1 REM DMS4.ANALYSIS 10/MAY/1982
10 HINEX: 36300: PRINT CHR$ (4)*BRUN B.VMOVE*
20 ONERR GOTO 9400
30 XNZ = ZN: CALL 37312
100 FOR JZ = 0 TO 6: HOLD(JZ) = BP(JZ): NEXT JZ
575 IF XZ > 20 AND XZ < 270 AND YZ > 10 AND YZ < 170 THEN DRAW 11 AT XZ,YZ
1000 TEXT : HOME : PRINT
1100 PRINT : PRINT "PROGRAM OPTIONS ARE:".
1120 PRINT : PRINT " 1...ANALYSIS OPTIONS"
1140 PRINT : PRINT " 2...DISPLAY OPTIONS"
1160 PRINT : PRINT " 3...CHAIN DMS4.MAIN"
1180 PRINT : PRINT " 4...CHAIN BODE PLOT"
1200 PRINT : PRINT " 5...CHAIN NYQUIST PLOT"
1220 PRINT : PRINT " 6...SAVE DATA ON DISK"
1230 PRINT : PRINT " 7...RETRIEVE DATA FROM DISK"
1240 PRINT : PRINT " 8...CHANGE CONFIGURATION"
1245 PRINT : PRINT " 9...INPUT DATA-FILES"
1250 PRINT : PRINT " 0...EXIT PROGRAM"
1260 ZZ(3) = 0: VTAB (23): ZZ(4) = 0: ZZ(5) = 9: GOSUB 10100
1280 IF ZEZ(0) = 1 THEN 1000
1300 ON ZZ(3) GOTO 1500,2000,3000,4000,5000,6000,7000,8000,9000
1320 HOME : VTAB 9: PRINT "EXIT PROGRAM": PRINT : PRINT "TYPE GOTO 1000 TO RESUME": END
1350 HOME : VTAB 5: PRINT "ANALYSIS OPTIONS ARE:".
1360 PRINT : PRINT " 1...SUBTRACT A CONSTANT"
1380 PRINT : PRINT " 2...CHAIN DATA MANIPULATE"
1400 PRINT : PRINT " 3...CHAIN LINEAR REGRESSION"
1420 PRINT : PRINT " 4...CHAIN RCR REGRESSION"
1440 PRINT : PRINT " 0...RETURN TO MAIN MENU"
1460 ZZ(3) = 0: VTAB (23): ZZ(4) = 0: ZZ(5) = 4: GOSUB 10100
1480 IF ZEZ(0) = 1 THEN 1500
1500 GOTO 1840,1920,1940,1970
1520 GOTO 1000
1540 ZZ(3) = 0: VTAB (12): ZZ(4) = 1: ZZ(5) = 4: GOSUB 10100
1560 IF ZEZ(0) = 1 THEN 1860
1580 ZZ(3) = 0: VTAB 16: INPUT "VALUE TO BE SUBTRACTED = ": ZE$ ZZ(3): GOSUB 9999
1600 FOR JZM = 1 TO ZNZ: ZZM = ZNZ(JZM) - ZZ(3)
1620 NEXT JZM: GOTO 1000
1640 ZZ(3) = 0: VTAB (12): ZZ(4) = 1: ZZ(5) = 4: GOSUB 10100
1660 IF ZEZ(0) = 1 THEN 1860
1680 ZZ(3) = 0: VTAB 16: INPUT "VALUE TO BE SUBTRACTED = ": ZZ(3): GOSUB 9999
1700 FOR JZM = 1 TO ZNZ: ZZM = ZNZ(JZM) - ZZ(3)
1720 NEXT JZM: GOTO 1000
1740 ZZ(3) = 0: VTAB 9: NPZ = 4: PRINT "LOADING DMS4.DATA MANIPULATE"
1760 VBI = 6
1780 PRINT CHR$ (4)*BLOAD CHAIN,A520,S6,D1,Y*VBI;VBI = 6
1800 CALL 520*DMS4.DATA MANIPULATE

I-12
1940 HOME: VTAB 9:NP%= 4: PRINT "LOADING DMS4.LINEAR REGRESSION"
1950 PRINT CHR$(4)="LOADING DMS4.LINEAR REGRESSION"
1960 CALL S20"DMS4.LINEAR REGRESSION"
1970 HOME: VTAB 9:NP%= 4: PRINT "LOADING DMS4.RCR REGRESSION"
1980 PRINT CHR$(4)="LOADING DMS4.RCR REGRESSION"
1990 CALL S20"DMS4.RCR REGRESSION"
2000 HOME: VTAB 5: PRINT "DISPLAY OPTIONS": PRINT "FOR EACH AXIS YOU MUST CHOOSE": PRINT "A COLUMN (0 = II)": PRINT "AND AN OPERATOR"
2040 PRINT: PRINT: PRINT "REMEMBER !!!!!!!!": PRINT: PRINT "THIS PROGRAM WILL ATTEMPT": PRINT: PRINT "TO OFFSET YOUR STUPIDITY"
2060 PRINT: PRINT: PRINT "LOS(0)=-4": PRINT: PRINT "LOS(-X)=LOS(X)": PRINT: PRINT "1/0=IE10"
2070 PRINT: GET 19$
2080 TEXT: HOME: VTAB 9: PRINT "X AXIS": PRINT: GOSUB 2800: SDSUB 2900
2090 BP(O) = II:BP(1) = ZZ1(3):AA(0) = XI:AA(1) = X2
2110 BY = ZZ1(0) = ZZ1(2) = -ZZ1(1):ZZ1(3) = -ZZ1(2)
2310 GOSUB 9999
2320 FOR I = 1 TO INII: REM MIN/MAX
2340 II = BP(O):ZE1(0) = 1:AA1 = 0: GOSUB 2600: REM X
2350 IF ZZ1(0) > ZZ1(5) THEN ZZ1(0) = ZZ1(5)
2360 IF ZZ1(1) < ZZ1(5) THEN ZZ1(1) = ZZ1(5)
2380 II = BP(2):ZE1(0) = 3:AA1 = 2: GOSUB 2600: REM Y
2385 IF ZZ1(2) > ZZ1(5) THEN ZZ1(2) = ZZ1(5)
2390 IF ZZ1(3) < ZZ1(5) THEN ZZ1(3) = ZZ1(5)
2395 NEXT I: I = 0: GOSUB 15000: II = 2: GOSUB 15000: REM SCALE AXES
2399 GOTO 12000
2400 HERR2: SCALE= 1: ROT= 0: HCOLOR= 3
2420 HPLT 20,170 TO 20,10 TO 270,10 TO 270,170 TO 19,170 TO 19,9 TO 271,9 TO 271,171 TO 19,171
2440 FOR II = 20 TO 270 STEP 25: HPLT II,8 TO II,11: HPLT II,169 TO II,172: NEXT II
2460 FOR II = 10 TO 170 STEP 16: HPLT 18,II TO 21,II: HPLT 269,II TO 271,II: NEXT II
2480 GOSUB 12500: REM LABEL AXES
2500 REM PLOT DATA
2550 FOR I = 1 TO INII
2560 XI = INT((270.5 + (250 / ZZ1(1) - ZZ1(5))) * (ZZ1(5) - ZZ1(1)))
2565 II = BP(2):ZE1(0) = 3:AA1 = 2: GOSUB 2600: REM Y
2570 YX = INT((10.5 + (160 / ZZ1(2) - ZZ1(5))) * (ZZ1(5) - ZZ1(3)))
2575 IF XI > 20 AND YX < 270 AND YX > 10 AND YX < 170 THEN HPLT XI,YX
2580 NEXT I: GOSUB 16000: REM SCALE FACTORS
2585 GET 19$: IF 19$ = "F" THEN GOTO 1000
2590 GOTO 12000
2600 ZZ1(6) = 1: IF II < 6 THEN ZZ1(6) = ZZ1(II,1): REM POINT CALCULATE
2610 ZZ1(6) = AA1(AA1 + 1) * ZZ1(6)
2620 ON BP(1E1(0)) GOTO 2660,2680,2700,2720,2730,2750
2640 ZZ1(5) = ZZ1(6): RETURN
2660 IF ZZ1(6) = 0 THEN ZZ1(5) = -4: RETURN
2665 IF ZZ1(6) < 0 THEN ZZ1(5) = LOG(- ZZ1(6)) / LOG(10): RETURN
2670 ZZ1(5) = LOG(ZZ1(6)) / LOG(10): RETURN
2680 IF ZZ1(6) = 0 THEN ZZ1(5) = -IE10: RETURN
2685 ZZ(5) = 1 / ZZ(6): RETURN
2700 ZZ(5) = ZZ(6) * ZZ(6): RETURN
2720 ZZ(5) = SQRT(ABS(ZZ(6))): RETURN
2730 ZZ(6) = ABS(ZZ(6)): IF ZZ(6) > 1E20 THEN ZZ(5) = 1E10: RETURN
2740 ZZ(5) = 1 / (SQRT(ZZ(6))): RETURN
2750 ZZ(5) = EXP(ZZ(6)): RETURN
2799 END
2800 VTAB 10: CALL -958: PRINT "PLOT WHICH COLUMN?"
2820 ZZ(3) = 1: VTAB(12): ZZ(4) = 0: ZZ(5) = 6: GOSUB 10100
2840 IF IE(1) = 1 THEN 2000 LIST 1900
2860 ZZ(3) = 0: VTAB(23): ZZ(4) = 0: IZ(5) = 6: S0SUB 10100
2880 ZZ(3) = 0: VTAB(23): ZZ(4) = 0: ZZ(5) = 6: GOSUB 31000
2900 HOME: VTAB 5: PRINT "WHAT OPERATOR?": PRINT
2920 PRINT: PRINT "1...LD6"
2940 PRINT: PRINT "2...RECIPROCAL"
2950 PRINT: PRINT "3...SQUARE"
2970 PRINT: PRINT "4...SQUARE ROOT"
2990 HOME: VTAB 6: PRINT "LOADING NUMERICAL PARAMETERS": NP% = 4
3010 CALL S20"DMS4.MAIN":D1"
3030 HOME: VTAB 9: PRINT "LOADING BODE PLOT PROGRAM": NP% = 4
3050 PRINT: PRINT "LOADING NYQUIST PROGRAM": NP% = 4
3070 HOME: VTAB 9: PRINT "LOADING DMS4.MAIN": NP% = 4
3090 FOR I9 = 0 TO 19: BP(19) = HOLD(19): NEXT I9
3110 PRINT: PRINT "LOADING DATA TO DISK"
3130 ZD$(0) = "": ZZ(3) = C897: GOSUB 6500: ZZ(3) = 4: GOSUB 6500: ZZ(3) = ZM(2): GOSUB 6500: ZZ(3) = ZM(7): GOSUB
3150 ZZ(3) = ZM(4): GOSUB 6500: ZZ(3) = ZM(9): GOSUB 6500
3170 ZZ(3) = VAL(ZD$(0)) + ZM(1, 0): ZM(2, 0): ZM(20): ZM(3, 0) = ZM(25): ZM(4, 0) = ZM(26): ZM(5, 0) = Z
3190 M(27)
3210 ZZ(8) = 100: GOSUB 11400: GOTO 1000
3230 ZD$(0) = ZD$(0) + STR$(INT(ZZ(3) + 0.5)): RETURN
3250 REM RETRIEVE DATA FROM DISK
3270 ZZ(8) = 100: GOSUB 11300: ZM(1, 0) = ZM(0): ZD$(0) = GOTO 1000
3290 REM MEASUREMENT CONFIGURATION: RETURN
3310 TEXT: HOME: VTAB 5: PRINT "RANDOM ACCESS DATA": INPUT":I = 0
3330 INPUT "WHICH DATA FILE?": DATA$ = M$ = "DATA" + M$
3350 PRINT "LOADING DATA": ZZ(3) = 1: ZZ(3) = ZZ(1)
3370 IF ZZ(2) OR I = ZZ(2) - ZZ(1) THEN PRINT CHR$(7): GOTO 9040
3390 GOSUB 17000: PRINT: PRINT "MORE DATA (Y/N)?": M$: GET ZD$(0): PRINT ZD$(0): IF ZD$(0) > > "N" THEN 9020
3400 PRINT: PRINT "FIRST DATA POINT = " + ZZ(1)
3420 PRINT:
3430 PRINT "LAST DATA POINT = " + ZZ(2)
3450 IF ZZ(2) < ZZ(1) OR I = ZZ(2) - ZZ(1) THEN PRINT CHR$(7): GOTO 9040
3470 GOSUB 17000: PRINT: PRINT "MORE DATA (Y/N)?": M$: GET ZD$(0): PRINT ZD$(0): IF ZD$(0) < > "N" THEN 9020
3480 PRINT: PRINT "MEASUREMENT CONFIGURATION: RETURN"
FOR II = 1 + 1 TO IZ: IZ(0,II) = IE: IZ(1,II) = 0: IZ(2,II) = 0: IZ(3,II) = 0: IZ(4,II) = 0: IZ(5,II) = 1: NEXT II: GOTO 1000
REM ERR HANDLING ROUTINE
TEXT
PRINT : PRINT : PRINT "ERROR @ ": PEEK (222): PRINT : PRINT "IN LINE "; PEEK (218) + PEEK (219) $ 256
PRINT : PRINT "HIT A KEY TO CONTINUE ": GET Z9$: GOTO 1000
REM COMPLEX DIVISION
IZ(5) = IZ(1) * IZ(1) + IZ(2) * IZ(2)
IZ(6) = (IZ(3) * IZ(1) + IZ(4) * IZ(2)) / IZ(5)
IZ(4) = (IZ(4) * IZ(1) - IZ(3) * IZ(2)) / IZ(5)
IZ(3) = IZ(6): RETURN
PRINT : PRINT : INVERSE: PRINT • • • • • • CAlCULATING • • • • • : NORMAL : RETURN
REM Y/N SUBR
IE%(O) = 0: INPUT " ":10$(O): IF LEFT$(10$(O),1) = 'Y' THEN ZI(3) = 2: RETURN
IF LEFT$(10$(O),1) = 'N' OR 10$(O) = '" THEN IZ(3) = 1. RETURN
IE%IO) = 1: GOSUB 10050: RETURN
REM ERROR SUBR
PRINT CHR$ (7)IE%(O) = 1: RETURN
REM I/P SUBR
CALL 868
PRINT IZ(3): IZ(0) = 1: RETURN
REM FIXED REAL SUBR
POKE 36336,13: POKE 36337,IZ(4): POKE 36338,0: POKE 36340,64: GOTO 10240
POKE 36336,14: POKE 36337,IZ(5): POKE 36338,1: POKE 36340,64: GOTO 10240
POKE 36336,13: POKE 36337,IZ(6): POKE 36338,1: POKE 36340,64
CALL 36379: PRINT IZ(7),I. RETURN
REM : LOAD ARRAY
POKE 9B,90: POKE 99,IZ(8): CALL 38152
PRINT CHR$ (4);"LOAD";10$(O),"A" PEEK (38394) + PEEK (38395) $ 256
ZI# = IZ(0): RETURN
REM SAVE ARRAY
GOSUB 11500
POKE 98,90: POKE 99,IZ(8): CALL 38152
PRINT CHR$ (4);"SAVE";10$(O),"A" PEEK (38394) + PEEK (38395) $ 256",L" PEEK (38396) + PEEK (38
397) $ 256 + PL# * 5 + 12 * SGN (PL#)"
PRINT CHR$ (4);"LOCK";10$(O)
RETURN
REM ASK SLOT,DRIVE AND VOLUME
IZ(3) = 2: HOME : VTAB 9: PRINT "ENTER DISK DRIVE NUMBER..";IZ(3)".. ;
HOME : VTAB 5: PRINT "TO ACCESS FLOPPY DISK USE ": PRINT "S(4),D(1 OR 2),V(0)"; VTAB 8: PRINT
"TO ACCESS CORVUS DISK USE ": PRINT "S(6),D(1 OR 2),V(1 TO 67)
VTAB 12: PRINT "POINTERs CURRENTLY SET AT ": PRINT " SLOT ";6%: PRINT " DRIVE ";4D
PRINT "VOLUME #:VZ
11520 VTAB 19: PRINT "CHANGE POINTERS (Y/N) ? " ; GET ZD$(0): IF ZD$(0) = "N" THEN 11550
11530 HOME : VTAB 5:ZI(5) = SI:ZI(4) = 4:ZI(5) = 6:ZI(6) = 0: PRINT " SLOT " ; GOSUB 10120: IF ZEIX(0) = 1 THEN 11530
11532 SI = INT (ZI(3) + 0.5)
11535 VTAB 10:ZI(3) = ZI:ZI(4) = 1:ZI(5) = 2:ZI(6) = 0: PRINT " DRIVE " ; GOSUB 10120: IF ZEIX(0) = 1 THEN 11535
11537 BX = INT (ZI(3) + 0.5): IF SI < 6 THEN VZ = 0: GOTO 11550: REM FLOPPY
11540 VTAB 15:ZI(3) = VZ:ZI(4) = 0:ZI(5) = 6:ZI(6) = 0: PRINT " VOLUME " ; GOSUB 10120: IF ZEIX(0) = 1 THEN 11540
11542 VX = INT (ZI(3) + 0.5)
11550 PRINT : PRINT "PRESS ANY KEY TO CATALOG " ; GOSUB 10120:
11551 PRINT : PRINT ",FILE NAME WILL BE PRECEDED BY ~S",ID$(0):ZD$(0) = "~S",ID$(0)
11590 RETURN
12000 TEXT : HOME : VTAB 5: PRINT CHR$(7): PRINT "GRAPHIC OPTIONS ARE " ; PRINT
12020 PRINT : PRINT "F = FINISH"
12040 PRINT : PRINT "G = GRAPHIC MODE"
12060 PRINT : PRINT "N = NEW PLOT"
12070 PRINT : PRINT "D = OVERLAY PLOT"
12080 PRINT : PRINT "P = DUMP TO EPSO"
12100 PRINT : PRINT "T = TEXT MODE"
12120 PRINT : PRINT "X = CHANGE X MAX/MIN"
12140 PRINT : PRINT "Y = CHANGE Y MAX/MIN"
12200 PRINT : PRINT : GET ZQ$
12220 IF ZQ$ = "F" THEN GOTO 10000
12240 IF ZQ$ = "G" THEN GOTO 24000
12260 IF ZQ$ = "N" THEN GOTO 26000
12280 IF ZQ$ = "D" OR ZQ$ = "D" OR ZQ$ = "D" THEN 18000
12290 IF ZQ$ = "P" THEN GOTO 12280
12300 IF ZQ$ = "X" THEN II = 0: GOTO 12300
12320 IF ZQ$ = "Y" THEN II = 2: GOTO 12320
12390 GOTO 12000
12400 REM CHANG A/MIN
12420 HOME : VTAB 9; PRINT ZQ$; "VECTOR " ; VTAB 12: PRINT "A", "MIN", "MAX"
12440 VTAB 14: PRINT "CURRENT": HTAB 14:ZI(6) = ZZ(II) / (10 ^ EX(II)) + .0005: GOSUB 14000: PRINT ZD$(0) + "E" + STR$(EX(II))
12450 VTAB 14: HTAB 27:ZI(6) = ZZ(II + 1) / (10 ^ EX(II)) + .0005: GOSUB 14000: PRINT ZD$(0) + "E" + STR$(EX(II))
12460 VTAB 16: INPUT "NEW VALUES " ; ZI(II)
12480 VTAB 16: HTAB 27: INPUT "ZI(II + 1)
12490 GOTO 12000
12500 REM LABEL AXES
12520 DATA "",,"","
6) = ZI(1) / (10 ^ EX(0)); GOSUB 14000: ZQ(0) = ZD(0); IX = 245; GOSUB 13000
12640 ZQ(0) = "EXP" + STR$ (EX(0)); IX = 29; YZ = 184; GOSUB 13000; IX = 245; GOSUB 13000
12660 ZI(7) = ZI(6) / (10 ^ EX(2)); GOSUB 14000; ZQ(0) = ZD(0); IX = 0; YZ = 170; GOSUB 13000; ZI(6)
12680 ZQ(0) = "EXP" + STR$ (EX(2)); IX = 9; YZ = 170; GOSUB 13000; IX = 40; GOSUB 13000
12700 ZQ(0) = "**" + ZN(8) + **'; IX = 273; YZ = 170; GOSUB 13000; ZT(0): NEXT II
12899 RETURN
12900 REM HEADING CALCULATION
12920 RETURN: FOR II = 0 TO BP(I + 1); READ ZD(0); NEXT II
12940 ZQ(0) = ZQ(0) + ZD(0) + CHR$ (60) + "COLUMN" + STR$ (BP(I)) + CHR$ (62)
12960 RETURN
13000 ROT = 0; IF ZI(7) > 0 THEN ROT = 48; REM TEXT TO SCREEN
13020 FOR II = 1 TO LEN I9t0); IX = ASC I9d$ IZlt,II,II)
13040 IF I > 127 THEN I = I - 128
13060 IF I = 32 THEN 60TO 13100
13080 DRAW I - 32 AT X%, Y%
13100 IF ZI(7) > 0 THEN YI = Y% - 7: NEXT II
13120 IF ZI(7) < 0 THEN X% = X% + 7: NEXT II
13140 RETURN
14000 REM & FORMAT SUBR
14020 ZD(0) = STR$ (IZ(6)); IF ABS (IZ(6)) < .01 THEN ZD(0) = "0.00"
14040 IF IZ(6) > 0 THEN ZD(0) = "+" + ZD(0)
14060 ZD(0) = LEFT$ (ZD(0),5): RETURN
15000 REM CALCULATE EXPONENTS
15020 IZ(6) = ABS (IZ(1) + 1 - IZ(1)): EX(I) = 0
15040 IF IZ(6) = 0 THEN RETURN
15060 IF IZ(6) < 0.98 THEN IZ(6) = 10 ^ IZ(6): EX(I) = EX(I) - 1: GOTO 15060
15080 IF IZ(6) > 9.8 THEN IZ(6) = 10 ^ -IZ(6): EX(I) = EX(I) + 1: GOTO 15080
15100 RETURN
16000 REM XY INT&SLOPE
16100 ZI(7) = 0
16120 ZQ(0) = STR$ (AA(0)); IX = 100; YZ = 175; GOSUB 13000
16140 ZQ(0) = STR$ (AA(1)); IX = 100; YZ = 184; GOSUB 13000
16150 ZI(7) = 1
16160 ZQ(0) = STR$ (AA(2)); IX = 0; YZ = 122; GOSUB 13000
16180 ZQ(0) = STR$ (AA(3)); IX = 9; YZ = 122; GOSUB 13000
16100 RESUME
17000 REM FILE TRANSFER BLOCK
17010 PRINT : PRINT "CATALOG (Y/N) ? "; GET ZD(0); PRINT ZD(0); IF ZD(0) = "N" THEN 17040
17020 PRINT CHR$ (4);"CATALOG;S5,D1,V0"
17030 GOTO 17010
17040 PRINT CHR$ (4);"OPEN;N;S;L20;S5,D1,V0"
17050 FOR II = IZ(1) TO IZ(2)
17060 PRINT CHR$ (4);"READ;N;S;R;II"
17080 I = I + 1
17090 INPUT ZN(1,1)
17100 INPUT ZN(2,1)
17110 INPUT ZN(0,1)
17120 ZN(3,1) = SQR (ZN(1,1) * ZN(1,1) + ZN(2,1) * ZN(2,1))
17140 ZN(4,1) = ATN (ZN(2,1) / ZN(1,1)) * (180 / 3.141592654)
17150 ZN(5,1) = LOG (ZN(3,1)) / ZT(0); NEXT II
17160 PRINT CHR$ (4);"CLOSE;N;S"
17180 RETURN
18000 PRINT: PRINT "GRAPPLER (G)"; PRINT " OR "; PRINT "MICROBUFFER II"; PRINT "INTERFACE ? "; GET ID$; PRINT ID$
18020 ID$(0) = "SDRS"; IF ID$ = "G" THEN ID$(0) = "GDRZ"
18100 PRINT: PRINT CHR$(4);"PR01"; PRINT CHR$(9);ID$(0)
18120 FOR II = 1 TO 10; PRINT CHR$(10); NEXT II
18140 PRINT CHR$(4);"PR00"; GOTO 12000
18200 POKE -16304,0: POKE -16299,0: GOTO 2500
30000 REM AUTO-LIST UTILITY BY ROBERT WEAVER
30020 TEXT: HOME: SPEED= 255
30030 VTAB 5: CALL -868: INPUT "ENTER FILE NAME: ";DN$=LEN(DN$)
30040 IF L > 48 THEN VTAB 20: PRINT "LIMIT TO 48 CHARACTERS"; PRINT CHR$(7); FOR I = 0 TO 20: NEXT I: GOTO 30030
30060 PRINT CHR$(4);"PR01"; PRINT CHR$(15)
30065 PRINT CHR$(9);"52P"
30070 L = INT (24 - L / 2)
30080 PRINT CHR$(9);"K"
30090 PRINT CHR$(14);
30100 PRINT TAB(L)DN$:L = L - 1
30120 FOR I = 1 TO LEN(DN$) + 2: DU$ = DU$ + CHR$(95); NEXT I
30150 PRINT CHR$(14);
30160 PRINT TAB(L)DU$
30170 PRINT CHR$(9);"122N"; PRINT CHR$(9);"112N"; PRINT CHR$(9);"11L"
30180 PRINT CHR$(9)
30190 PRINT CHR$(9);"A"
30200 LIST: PRINT
30210 PRINT CHR$(12)
30220 PRINT CHR$(18); PRINT CHR$(4);"PR00"; END
APPENDIX II

RDE CALIBRATION

1 REM RDE CALIB 04/AUG/1981
20 PI = 3.14159265
40 ONERR GOTO 1000
100 DEF FN F(T) = (SQRT(3) / (4 * PI)) & LOG (((1 + T ^ (1 / 3)) ^ 3 / (1 + T)) + (3 / (2 * PI)) & ATN
((2 * T ^ (1 / 3) - 1)) / SQRT(3) + 1 / 4
1000 TEXT HOME; SPEED= 255; POKE 34,0; VTAB 3; PRINT "ROTATING RING DISK ELECTRODE"; VTAB 5; HTAB 3;
PRINT "COLLECTION EFFICIENCY="; HTAB 3; PRINT "---------- ---------"
1020 VTAB 8; PRINT "USING THE EQUATION DERIVED BY:"; VTAB 10; PRINT "ALPERY & BRUCKENSTEIN TFS 62,1920"
(1966)"; VTAB 11; HTAB 27; PRINT "---"
1040 POKE 34,10; VTAB 14; INPUT "R1 = ";R1; PRINT ; INPUT "R2 = ";R2; PRINT ; INPUT "R3 = ";R3
1060 IF R3 < R1 THEN N = R3;R3 = R1;R1 = N
1080 IF R2 > R3 OR R2 < R1 THEN PRINT "**"; GOTO 1040
1100 A = (R2 / R1) ^ 3 - 1:B = (R3 / R1) ^ 3 - (R2 / R1) ^ 3
1120 N = 1 - FN F(A / B) + B ^ (2 / 3) & (1 - FN F(A)) - (1 + A + B) ^ (2 / 3) & (1 - FN F((A / B) &
(1 + A + B)))
1140 PRINT : PRINT "COLLECTION EFFICIENCY = ";N & 100;" %"
1160 PRINT : PRINT "HIT 'Q' TO QUIT "; GET A$; PRINT A$
1180 IF A$ < > "Q" THEN GOTO 1040
1200 POKE 34,0; END
APPENDIX III

RCR REGRESSION

1 REN DMS4.RCR FIT 26/APR/1982
10 HIMEM: 36300: PRINT CHR$(4)'BRUN 8.VMODE'
20 OKERR GOTO 9400
30 ZN1 = ZN:IN = "NONE": CALL 37312
100 TEIT: HOME: VTAB 7; PRINT "THIS PROGRAM FITS DMS4 FORMATTED DATA": PRINT: PRINT "TO A SERIES/PARALLEL RC CIRCUIT": PRINT: PRINT "USING LARRY ABLIN'S EQUATION": PRINT: PRINT "FIRST IMPLEMENTED JUN/17/1980"
1000 TEIT: HOME: PRINT
1100 PRINT: PRINT "PROGRAM OPTIONS ARE:"
1200 PRINT: PRINT "1...DISPLAY FIT"
1140 PRINT: PRINT "2...PERFORM REGRESSION"
1160 PRINT: PRINT "3...CHAIN MAIN PROGRAM"
1180 PRINT: PRINT "4...CHAIN BODE PLOT"
1200 PRINT: PRINT "5...CHAIN NYQUIST PLOT"
1220 PRINT: PRINT "6...SAVE DATA ON DISK"
1230 PRINT: PRINT "7...RETRIEVE DATA FROM DISK"
1240 PRINT: PRINT "8...CHANGE CONFIGURATION"
1250 PRINT: PRINT "0...EXIT PROGRAM"
1260 II(0) = 0: VTab (23):II(4) = 0:II(5) = 8: GOSUB 10100
1280 IF IE1(0) = 1 THEN 1000
1300 ON II(3) GOTO 1500,2000,3000,4000,5000,6000,7000,8000
1320 HOME: VTab 9; PRINT "EXIT PROGRAM": PRINT: PRINT "TYPE GOTO 1000 TO RESUME": END
2000 HOME: VTab 7; PRINT "RCR REGRESSION": PRINT: INVERSE: PRINT "WARNING!!!": PRINT: NORMAL: PRINT "THIS PROGRAM REQUIRES:"
2020 PRINT: PRINT "FREQUENCY (HZ) IN COLUMN 0": PRINT: PRINT "REAL IMPEDANCE IN COLUMN 1": PRINT: PRINT "IMAGINARY TERM IN COLUMN 2"
2040 PRINT: PRINT: PRINT "THE ARRAY MUST BE": PRINT: PRINT "AT LEAST 5 COLUMNS WIDE,": PRINT: PRINT "AND COLUMNS 3-5 WILL BE DESTROYED"
2060 PRINT: PRINT: PRINT "HIT 'Q' TO QUIT NOW": GET ZD(0); IF ZD(0) = "Q" THEN 1000
2100 HOME: VTab 5:II(3) = II(4) = II(5) = IN(1,0)+II(6) = II; PRINT "FIRST DATA POINT = "; GOSUB 1.
1000; IF ZE1(0) = 1 THEN 2100
2120 ZI(0) = II(3)
2140 HOME: VTab 8:II(3) = ZN:II(4) = AII(0) + 2:II(5) = ZN:II(6) = II; PRINT "LAST DATA POINT = "; GOSUB 10100; IF ZE1(0) = 1 THEN 2140
2160 EX(1) = II(3)
2200 GOSUB 9999
2220 FOR I = 0 TO 9:II(1) = 0; NEXT I
2240 FOR I = E1(0) TO E1(1)
2260 Wj = 6.2831853 * ZN(0,1)
2280 XI = ZN(1,1)
2300 YJ = - ZN(2,1)
2310 II(0) = II(0) + 1
2320 ZZ(1) = ZZ(1) + Y1
2340 ZZ(2) = ZZ(2) + XI
2360 ZZ(3) = ZZ(3) + W1. Y1
2380 ZZ(4) = ZZ(4) + Y1 + Y1
2400 ZZ(5) = ZZ(5) + XI + XI
2420 ZZ(6) = ZZ(6) + W1 + W1
2440 ZZ(7) = ZZ(7) + W1 + Y1 + Y1
2460 ZZ(8) = ZZ(8) + W1 + W1 + XI
2480 ZZ(9) = ZZ(9) + W1 + Y1 + XI
2600 AA(1) = (ZZ(10) + (ZZ(9) + ZZ(7)) - ZZ(2) + ZZ(8) - ZZ(3) + ZZ(11)) / (ZZ(0) + ZZ(8) - ZZ(2) + ZZ(6))
2620 AA(2) = -AA(1) + (ZZ(2) + AA(3) + ZZ(3)) / ZZ(0)
2640 AA(3) = ZZ(5) + ZZ(4) + (ZZ(2) + ZZ(2) + ZZ(1) + ZZ(1)) + (2.0 + ZZ(0) - 1.0) / (ZZ(0) + ZZ(0))
2660 ZM = ZZ(5) + ZZ(4) + ZZ(0) + (AA(1) + AA(2)) + (AA(1) + AA(2)) + AA(3) + AA(3) + ZZ(7) - 2.0 + (AA(1) + AA(2) + ZZ(2) - 2.0 + AA(2) + AA(3) + ZZ(3) + AA(3) + AA(3) + AA(1) + AA(1) + ZZ(6) - 2.0 + AA(1) + ZZ(8) + ZZ(9))
2700 ZM(3,1) = AA(1)
2720 ZZ(4,1) = AA(2)
2740 ZZ(5,1) = AA(3) / AA(2)
2760 REM NOT ABOUT P(50,0) ???
2999 END
3000 HOME : VTAB 9: PRINT "LOADING DMS3.MAIN":NPX = 4
3010 PRINT CHR$(4);"BLOAD CHAIN,AS20,S6,D1,V"VBI
3020 CALL 520"DMS3.MAIN,D1"
4000 HOME : VTAB 9: PRINT "LOADING BOPE PLOT PROGRAM":NPX = 4
4010 PRINT CHR$(4);"BLOAD CHAIN,AS20,S6,D1,V"VBI
4020 CALL 520"DMS4.BOPE,D1"
5000 HOME : VTAB 9: PRINT "LOADING NYQUIST PROGRAM":NPX = 4
5010 PRINT CHR$(4);"BLOAD CHAIN,AS20,S6,D1,V"VBI
5020 CALL 520"DMS4.NYQUIST,D1"
6000 REM SAVE DATA TO DISK
6020 ZN(0,0) = ZM(25);ZN(1,0) = 2MN+2N(0) = ZM(1);ZN(3,0) = ZM(20);ZN(4,0) = ZM(9);ZN(5,0) = ZM(24)
6040 ZZ(8) = 78: GOSUB 11400: GOTO 1000
7000 REM RETRIEVE DATA FROM DISK
7020 ZZ(8) = 78: GOSUB 11300;ZN(1,0); GOTO 1000
8000 REM MEASUREMENT CONFIGURATION: RETURN
9400 REM ERROR HANDLING ROUTINE
9410 EXIT
9420 PRINT: PRINT: PRINT "ERROR "; PEEK(222): PRINT: PRINT "IN LINE "; PEEK(218) + PEEK(219) + 256
9460 PRINT: PRINT: PRINT "HIT A KEY TO CONTINUE "; GET IO
9480 PRINT: GOTO 1000
9999 PRINT: PRINT: INVERSE: PRINT "...CALCULATING...": NORMAL: RETURN
10000 REM Y/N SUBR
10010 ZE(0) = 0: INPUT ";ZD(0),1; IF LEFT$ (ZD(0),1) = "Y" THEN ZZ(3) = 2: RETURN
10020 IF LEFT$ (ZD(0),1) = "N" OR ZD(0) = "" THEN ZZ(3) = 1: RETURN
10030 ZE(0) = 1: GOSUB 10050: RETURN
10050 REM ERROR SUBR
10060 PRINT CHR$(7);ZD(0) = 1: RETURN
10100 REM I/P SUBR
10110 CALL. - B68

III-2
10120 ZE(0) = 0: PRINT ZI(3): INPUT "?ZD$(0); IF ZD$(0) = "" THEN ZI(7) = ZI(3): GOTO 10170
10130 FOR I = 1 TO LEN(ZD$(0]): Z$ = MID$(ZD$(0),I,1)
10140 IF Z$ = "*" OR Z$ = "-" OR Z$ = "." OR Z$ = = "$" THEN 10160
10150 IF Z$ < "0" OR Z$ > "9" THEN 10050
10160 NEXT I:ZI(7) = VAL(ZD$(0))
10170 IF ZI(7) < ZI(4) OR ZI(7) > ZI(5) THEN 10050
10180 ZI(3) = ZI(7): IF ZI(6) = 1 THEN ZI(3) = INT(ZI(7))
10190 FOR I = 0 TO 200: NEXT I: RETURN
10200 REM FIXED REAL SUBR
10210 POKE 36336,13: POKE 36337,ZI(4): POKE 36338,0: POKE 36340,64: GOTO 10240
10220 POKE 36336,14: POKE 36337,ZI(5): POKE 36338,1: POKE 36340,64: GOTO 10240
10230 POKE 36336,13: POKE 36337,ZI(6): POKE 36338,1: POKE 36340,64
10240 CALL 36379: PRINT ZN(ZI(7),1): RETURN
11500 REM : LOAD ARRAY
11510 GSUB 11500
11520 POKE 98,90: POKE 99,ZI(6): CALL 39152
11530 PRINT CHR$(4):"LOAD";ZD$(0);","A" PEEK (38394) + PEEK (38395) + 256
11540 ZW$ = ZD$(0): RETURN
11550 REM : SAVE ARRAY
11560 GSUB 11500
11570 POKE 98,90: POKE 99,ZI(6): CALL 38104
11580 PRINT CHR$(4):"SAVE";ZD$(0);","A" PEEK (38394) + PEEK (38395) + 256",L" PEEK (38396) + PEEK (38397) + 256 + 12 + 8: GOSUB (PL$)*
11590 PRINT CHR$(4):"LOCK";ZD$(0)
11600 RETURN
11500 REM ASK SLOT, DRIVE AND VOLUME
11505 ZI(3) = 2: HOME : VTAB 9: PRINT "ENTER DISK DRIVE NUMBER..";ZI(3)..;"
11510 HOME : VTAB 5: PRINT "TO ACCESS FLOPPY DISK USE 1;: PRINT "S(4, D(1 OR 2), V(1): VTAB 8: PRINT "TO ACCESS DISK USE :; PRINT "S(6, D(1 OR 2), V(1 TO 67)
11515 VTAB 12: PRINT "POINTERS CURRENTLY SET AT :; PRINT : PRINT "SLOT :";SZ; PRINT " " VOLUME :";VZ
11520 VTAB 19: PRINT "CHANGE POINTERS (Y/N) ? "; GET ZD$(0): IF ZD$(0) = "N" THEN 11550
11530 HOME : VTAB 5: ZI(ZI(3)) = SI:ZI(4) = 4:ZI(5) = 6:ZI(6) = 0: PRINT " SLOT 1"; GOSUB 10120: IF ZE(0) = 1 THEN 11550
11532 SZ = INT (ZI(3) + 0.5)
11535 VTAB 10;ZI(3) = DX;ZI(4) = 1;ZI(5) = 2:ZI(6) = 0: PRINT " DRIVE 1"; GOSUB 10120: IF ZE(0) = 1 THEN 11550
11537 DX = INT (ZI(3) + 0.5): IF SZ < 6 THEN VZ = 0: GOTO 11550: REM FLOPPY
11540 VTAB 15;ZI(3) = VZ;ZI(4) = 0;ZI(5) = 6:ZI(6) = 0: PRINT " VOLUME 1"; GOSUB 10120: IF ZE(0) = 1 THEN 11540
11542 VZ = INT (ZI(3) + 0.5)
11550 PRINT : PRINT "PRESS ANY KEY TO CATALOG ": GET ZD$(0): PRINT : PRINT CHR$(4);"CATALOG S";SZ;D"D
11560 PRINT "Z",VZ
11560 PRINT : PRINT "ANOTHER CATALOG Y/N ? "; GOSUB 10000: IF ZE(0) = 1 THEN 11560
11570 IF ZI(3) = 2 THEN 11500
11580 PRINT : PRINT "FILE NAME WILL BE PRECEDED BY DNS4-": PRINT : INPUT "ENTER FILE NAME = DNS4-";ZD$(0):ZD$(0) = "DNS4-" + ZD$(0)
11590 RETURN
12000 TEIT : HOME : VTAB 5: PRINT "GRAPHIC OPTIONS ARE "; PRINT
12020 PRINT : PRINT "F = FINISH"
12040 PRINT : PRINT "G = GRAPHIC MODE"
12060 PRINT : PRINT "N = NEW PLOT"
12080 PRINT: PRINT "P = DUMP TO EPSON"
12100 PRINT: PRINT "T = TEXT MODE"
12120 PRINT: PRINT "X = CHANGE X MAI/MIN"
12140 PRINT: PRINT "Y = CHANGE Y MAI/MIN"
12200 PRINT: PRINT : GET Z$#
12220 IF Z$# = "F" THEN GOTO 1000
12240 IF Z$# = "E" THEN GOTO 2400
12260 IF Z$# = "N" THEN GOTO 2080
12280 IF Z$# = "P" THEN PRINT: PRINT CHR$ (4);"PR01"; PRINT CHR$ (9);"GBR2"
12290 IF Z$# = "P" THEN FOR II = 1 TO 9: PRINT CHR$ (10); NEXT II
12290 IF Z$# = "P" THEN PRINT CHR$ (4);"PR00"; GOTO 12000
12300 IF Z$# = "X" THEN II = 0: GOTO 12400
12320 IF Z$# = "Y" THEN II = 2: GOTO 12400
12380 PRINT CHR$ (7): GOTO 12000
12400 REM CHANGE MAI/MIN
12420 HOME: VTAB 9; PRINT Z$#;":"AXIS"; VTAB 12: PRINT ";","MIN","MAX"
12440 VTAB 14: PRINT ";CURRENT";: HTAB 14:II(1) = III(1) / (10 ^ EZ(II)) + .0005: GOSUB 14000: PRINT ZD$(0) + "E" + STR$(EZ(II))
12450 VTAB 14: HTAB 27:III(1) = III(1) + 1 / (10 ^ EZ(II)) + .0005: GOSUB 14000: PRINT ZD$(0) + "E" + STR$(EZ(II))
12460 VTAB 16: INPUT "NEW VALUES ";III(1)
12480 VTAB 16: HTAB 27: INPUT ";III(1) + 1"
12490 GOTO 2400
12500 REM LABEL AXES
12520 DATA ";","LOG","/","SG","SGR".
12540 Z$# = "":II = 2: GOSUB 12900: REM Y
12560 Z$ = ZD$ + " Versus ";II = 0: GOSUB 12900: REM X
12580 III(7) = 0: REM HORIZONTAL
12600 III(7) = 10;YZ = 0: GOSUB 13000
12620 III(7) = 0:III(6) = III(0) / (10 ^ EZ(0)): GOSUB 14000:ZD$ = ZD$(0):III(6) = ZZ(1) / (10 ^ EZ(1)): GOSUB 14000:ZD$ = ZD$(0):Y$ = ZZ(0):XX = 32: YZ = 175: GOSUB 13000:III(6) = ZZ(1) / (10 ^ EZ(1)): GOSUB 14000:ZD$ = ZD$(0):XX = 32: YZ = 175: GOSUB 13000
12640 ZD$ = "EXP" + STR$(EZ(0)):XX = 29: YZ = 184: GOSUB 13000:XX = 29: YZ = 184: GOSUB 13000
12660 III(7) = 1:III(6) = III(2) / (10 ^ EZ(2)): GOSUB 14000:ZD$ = ZD$(0):XX = 0: YZ = 170: GOSUB 13000:III(6) = ZZ(3) / (10 ^ EZ(3)): GOSUB 14000:ZD$ = ZD$(0):Y$ = 40: GOSUB 13000
12680 ZD$ = "EXP" + STR$(EZ(2)):XX = 0: YZ = 170: GOSUB 13000:XX = 0: YZ = 170: GOSUB 13000
12700 ZD$ = "(" + ZZ$ + ")":XX = 273: YZ = 170: ZD$ = LEFT$(ZD$,22): GOSUB 13000
12899 RETURN
12900 REM HORIZONTAL CALCULATION
12920 RESTORE : FOR II = 0 TO BP(1) + 1: READ ZD$(0): NEXT II
12940 ZD$ = ZD$ + ZD$(0) + CHR$(66) + "COLUMN " + STR$(BP(1)) + CHR$(62)
12960 RETURN
13000 ROT$ = 0: IF ZD$(7) > 0 THEN ROT$ = 48: REM TEXT TO SCREEN
13020 FOR II = 1 TO LEN(ZD$):I = ASC (MID$(ZD$,II,1))
13040 IF I > 127 THEN I = I - 128
13060 IF I = 32 THEN GOTO 13100
13080 DRAW I - 32 AT XX,YZ
13100 IF ZZ(7) > 0 THEN YZ = YZ - 7: NEXT II
13120 IF ZZ(7) = 0 THEN XX = XX + 7: NEXT II
13140 RETURN
14000 REM & FORMAT SUBR
14020 ZD$(0) = STR$(ZZ(6)): IF ABS (ZZ(6)) < .01 THEN ZD$(0) = "0.00"
14040 IF ZZ(6) > 0 THEN ZD$(0) = "*" + ZD$(0)

III-4
14060 ZD$(0) = LEFT$(ZD$(0),5): RETURN
15000 REM CALCULATE EXPONENTS
15020 ZI$(6) = ABS (ZI$(I + 1) - ZI$(I)): EX$(1) = 0
15040 IF ZI$(6) = 0 THEN RETURN
15060 IF ZI$(6) < 0.99 THEN ZI$(6) = 10 ^ ZI$(6): EX$(1) = EX$(I) - 1: GOTO 15060
15080 IF ZI$(6) > 9.8 THEN ZI$(6) = ZI$(6) / 10: EX$(1) = EX$(I) + 1: GOTO 15080
15100 RETURN
16000 REM XY INT & SLOPE
16010 ZI$(7) = 0
16020 ZR# = STR$(AA(0)): Xl = 100: Yl = 175: GOSUB 13000
16040 ZR# = STR$(AA(1)): Xl = 100: Yl = 184: GOSUB 13000
16050 ZI$(7) = 1
16060 ZR# = STR$(AA(2)): Xl = 0: Yl = 122: GOSUB 13000
16080 ZR# = STR$(AA(3)): Xl = 9: Yl = 122: GOSUB 13000
16100 : RETURN
30000 REM AUTO-LIST UTILITY BY ROBERT WEAVER
30020 TEXT : HOME : SPEED = 255
30030 VTAB 5: CALL -868: INPUT "ENTER FILE NAME:"; DN$; L = LEN (DN$)
30040 IF L > 48 THEN VTAB 20: PRINT "LIMIT TO 48 CHARACTERS"; PRINT CHR$(7); FOR I = 0 TO 20: NEXT I: GOTO 30030
30060 PRINT CHR$(4);"PRIO"; PRINT CHR$(15)
30065 PRINT CHR$(9);"SP";
30070 L = INT (24 - L / 2)
30080 PRINT CHR$(9);"K"
30090 PRINT CHR$(14);;
30100 PRINT TAB(L) ; DN$ = L - 1
30120 FOR I = 1 TO LEN (DN$) + 2: DU$ = DU$ + CHR$(95): NEXT I
30150 PRINT CHR$(14);;
30160 PRINT TAB(L) ; DU$;
30170 PRINT CHR$(9);"122"; PRINT CHR$(9);"112R"; PRINT CHR$(9);"11L"
30180 PRINT CHR$(15)
30190 PRINT CHR$(9);"A"
30200 LIST : PRINT
30210 PRINT CHR$(12)
30220 PRINT CHR$(18): PRINT CHR$(4);"PRIO"; END
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.