Lawrence Berkeley National Laboratory
Recent Work

Title
KS0 REGENERATION ON NUCLEI AND THE COHERENT PRODUCTION MODEL

Permalink
https://escholarship.org/uc/item/1sb0m0vf

Author
Uchiyama, Fumiyo.

Publication Date
1973-10-01
K_S^0 REGENERATION ON NUCLEI AND
THE COHERENT PRODUCTION MODEL

Fumiyo Uchiyama

October 1973

Prepared for the U. S. Atomic Energy Commission
under Contract W-7405-ENG-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
We use the coherent production model to calculate the energy dependence of the forward K_S^0 regeneration amplitude on nuclear targets. The agreement with experiment is satisfactory.

In this note we wish to apply the coherent production model to the analysis of K_S^0 regeneration reaction on nuclei $K_L^0 A \rightarrow K_S^0 A$. (1) A is the mass number. The data for this reaction for hydrogen, copper, and lead targets show two distinctive features:

(a) The forward differential cross sections, $d\sigma/dt$ are proportional to $P_L^2 A$ for $2.5 \leq P_L \leq 7.5$ (GeV/c) where P_L is the laboratory momentum of incoming K_L and n_A is a constant for a fixed A. There is no apparent pomeron exchange, as expected, since charge conjugation, $c = -1$ must be exchanged in the t-channel.

(b) For each nuclear target, the regeneration phases, ϕ_A, are near -45 degrees $|\phi_A + 45^\circ| \leq 15^\circ$. Strong exchange degeneracy assumption predicts -45 degrees for the regeneration phase of the nucleon target.

Since the regeneration from nucleons is a much weaker process than elastic scattering $[(d\sigma_{K_L^0 P \rightarrow K_S^0 P}/dt)/(d\sigma_{K_L^0 P \rightarrow K_L^0 P}/dt)|_{t=0} < 0.05$ for hydrogen target in the momentum region of our interest], it may be reasonably assumed that $K_L^0 \rightarrow K_S^0$ occurs at most once as the K_L^0 (and K_S^0) repeatedly scatters elastically on traversing the nucleus.

Then the coherent nuclear regeneration amplitude from nucleus A is given by $^1, ^5$

$$f_{K_L^0 A \rightarrow K_S^0 A}(q) = \frac{i k A}{2\pi} \sum_{j=1}^A \int d^2 b \ d^3 r_1 \ldots d^3 r_A \left| \psi(r_1, r_2, \ldots, r_A) \right|^2 e^{i \hat{q} \cdot \hat{b}}$$

$$\times \prod_{Z_i < Z_f} \left[1 - \Gamma_{K_L^0}^{(B - S_i)} \right] \Gamma_{Reg}^{(B - S_f)} \prod_{Z_k > Z_j} \left[1 - \Gamma_{K_S^0}^{(B - S_k)} \right],$$

where ψ is the target wave function, \hat{b} is the impact parameter of the incident particle, and S_i is impact parameter of the ith nucleon (the transverse part of \hat{r}_i). It has been assumed that the nucleus is left in the initial state; by explicit calculation we have verified that the cross section for nuclear excitation is small in the forward direction. The Γ's are profile functions which are defined in terms of the regeneration and elastic scattering amplitudes of nucleon by

$$\Gamma_{Reg}^{(B)} = \frac{1}{2\pi i k} \int f_{K_L^0 N \rightarrow K_S^0 N}(q) e^{-i \hat{q} \cdot \hat{b}} d^2 q,$$

$$\Gamma_{K_L^0}^{(B)} = \frac{1}{2\pi i k} \int f_{K_S^0 N \rightarrow K_L^0 N}(q) e^{-i \hat{q} \cdot \hat{b}} d^2 q.$$

Since the $K_S^0 N \rightarrow \bar{K}_S^0 N$ transition is much weaker than the elastic $K^0(\bar{K}^0)N \rightarrow K^0(\bar{K}^0)N$ reaction, we can safely approximate

$$f_{K_L^0 N} = f_{K_L^0 N \rightarrow K_L^0 N} = f_{K_S^0 N \rightarrow K_S^0 N} = \frac{f_{K_0 N \rightarrow K_0 N}^+ f_{\bar{K}_0 N \rightarrow \bar{K}_0 N}}{2}.$$
This assumption simplifies Eq. (2) to the form

\[f_{KL}A \to KS_A(\vec{q}) = \left[\left(\frac{N_P}{A} \right) f_{KL}^P \to KS_P(0) + \left(1 - \frac{N_P}{A} \right) f_{KL}^n \to KS_n(0) \right] \]

\[\times \int e^{i \vec{q} \cdot \vec{r}} T(b) e^{-\frac{1}{2} (1-i\sigma) \sigma T(b)} d^2b, \quad (4) \]

assuming the nuclear density \(\rho(\vec{r}, z) \) varies slower comparing to \(\Gamma(\vec{b}, \vec{S}) \) as a function of \(S \). \(N_P \) is the number of protons in the nucleus, where

\[\sigma = \left(\frac{N_P}{A} \right) \sigma_{KL}^P + \left(1 - \frac{N_P}{A} \right) \sigma_{KL}^n, \]

\[\alpha = \frac{N_P}{A} \Re f_{KL}^P(0) + \left(1 - \frac{N_P}{A} \right) \Re f_{KL}^n(0) \]

\[\beta = \frac{N_P}{A} \Im f_{KL}^P(0) + \left(1 - \frac{N_P}{A} \right) \Im f_{KL}^n(0) \]

and

\[T(\vec{b}) = A \int \rho(\vec{r}) dz. \]

The coherent regeneration cross section is then

\[\frac{d\sigma_A}{dt} = \left(\frac{d\sigma_N}{dt} \right) \left| \int J_0(qb) T(b) e^{-\frac{1}{2} (1-i\sigma) \sigma T(b)} d^2b \right|^2, \quad (5) \]

where we have defined an average nucleon regeneration forward cross section by

\[\left(\frac{d\sigma_N}{dt} \right) \left| \int J_0(qb) T(b) e^{-\frac{1}{2} (1-i\sigma) \sigma T(b)} d^2b \right|^2 \]

\[\left(\frac{d\sigma_P}{dt} \right) \left| \int J_0(qb) T(b) e^{-\frac{1}{2} (1-i\sigma) \sigma T(b)} d^2b \right|^2. \quad (6) \]

In the numerical calculation we use a Woods-Saxon nuclear density for both proton and neutron:

\[\rho(b, z) = \rho_0 \left[1 + \exp \left(\frac{r-c}{a} \right) \right]^{-1} \]

We use \(c = 1.20 A^{1/3} \) fm and \(a = 0.6 \) fm.

These nuclear parameters are larger than those from electron scattering experiments due to the finite range, strong interaction of \(K \) mesons.

The calculation requires the real parts of the nucleon regeneration amplitudes, which have not been well investigated experimentally in the energy range of interest to us. An alternative would be to use dispersion relations, but this would require fairly accurate high-energy total cross sections, which are also not available. We use instead the strong exchange degeneracy hypothesis which gives, using the optical theorem,

\[\alpha = \frac{1}{2} \left[\left(\frac{N_P}{A} \right) C_P P_L^{-\beta_P} + \left(1 - \frac{N_P}{A} \right) C_n P_L^{-\beta_n} \right], \]

\[\left(\frac{N_P}{A} \right) \sigma_{KL}^P + \left(1 - \frac{N_P}{A} \right) \sigma_{KL}^n \]

where we have parameterized \(KN \) total cross sections as constant, the \(KN \) as

\[\sigma_{KN}^P = C_P P_L^{-\beta_P}, \quad \sigma_{KN}^n = C_n P_L^{-\beta_n}, \]

and where \(P_L \) is in units of \(\text{GeV}/c \).

The numerical values used are

\[T_{KR}^P = 17.6 \text{ mb}, \]

\[T_{KN}^P = 17.7 \text{ mb}, \]

\[T_{KR}^n = (18.2 + 7.2 P_L^{-0.52}) \text{ mb}, \]

\[T_{KN}^n = (20.2 + 19.5 P_L^{-0.92}) \text{ mb}, \]
extracted from K^+ scattering experiments using charge symmetry. The fits involved in the latter two cross sections are shown in Fig. 1.

We first assumed the neutron and proton to have the same regeneration amplitude, then

$$\left(\frac{d\sigma_N}{dt} \right)_0 = \left(\frac{d\sigma_H}{dt} \right)_0 = 3.17 \cdot 10^{-1.28},$$

which is shown in Fig. 2. Finally, we obtained the results shown (as dotted lines) in Fig. 3a, which may be compared with the best fits to experiment of the form $P_L^N A$ (solid line). The agreement is on the whole satisfactory although there is a tendency for the results of the calculation to fall too fast with P_L. This potential discrepancy may be an indication of a different energy dependence of the proton and neutron regeneration cross section. The regeneration phases of nuclei ϕ_A are plotted in Fig. 3b. Again the agreement is satisfactory, the difference between the nuclear regeneration phases and that of hydrogen is larger for heavier nuclei and goes to zero with increasing momentum. Note that the fact that the nuclear regeneration phases are nearly that of hydrogen strongly justifies the assumption that proton and neutron regeneration phases are approximately equal. In addition, there is one experimental point in this momentum region for a carbon target (which has no neutron excess) in which this calculation would disagree with the forward differential cross-section measurement by a factor of about 2, but would agree with the regeneration phase measurement. Further experimental studies would be valuable in clarifying this situation.

The regeneration effect in Cu has also been successfully fitted using an optical model. The difference between the optical model and this one-step coherent production model can be summarized in two integrands below:

\begin{align}
 I_{\text{coh}} &= i [P(b) - P(b)] e^{iP(b)}, \\
 I_{\text{coh}} &= e^{iP(b)} - e^{iP(b)}, \tag{7, 8}
\end{align}

where

$$P(b) = \frac{4\pi}{k} \left[\frac{N}{A} f_{K^0} P(0) + (1 - \frac{N}{A}) f_{K^0 n}(0) \right] T(b),$$

and I's are normalized as

$$f_{K_L^0 P \to K_S^0 P}(q) = \frac{ik}{4\pi} \int I(b) J_0(qb) \, db. \tag{9}$$

Equations (7) and (8) are easily verified to be equivalent if the difference $\Delta P(b) = P(b) - P(b)$ is smaller than both 1 and $P(b)$ [and $P(b)$]. This is not always true for heavy nuclei at $b \approx 0$ due to large $T(b)$. However, the extra b in the integrand lessens the difference. The detailed quantitative discussion of the difference is given in Ref. 6.

The advantage of the present treatment is the clean separation of hadronic effects and nuclear effects shown in Eq. 5. The first factor (nucleon effects) gives most of the energy dependence, while the second (nuclear effects), controls the angular distribution. In the optical model this factorization does not occur.

ACKNOWLEDGEMENT

We would like to thank Professor J. D. Jackson, without whose suggestions and encouragements this work would not have been completed, and also thanks to Dr. J. Koplik for reading the manuscript.
FOOTNOTES AND REFERENCES

*This work was done under the auspices of the U. S. Atomic Energy Commission.

6. The nuclear radius for strong interaction will be discussed in more detail by W. L. Wang and Fumiyo Uchiyama in Lawrence Berkeley Laboratory Report No. LBL-2313, (to be submitted to Nucl. Phys.)

FIGURE CAPTIONS

Fig. 1. K^-p and K^-n total cross sections (data points from Ref. 6),
together with the best fit of the forms $\sigma_{KN} = \sigma_N^O + C_N P_L N$.
All data points between 2.5 (GeV/c) to 20.0 (GeV/c) are used to ob-
tain the parameters but only representative data points are shown
here.

Fig. 2. Hydrogen regeneration cross section extracted from Ref. 3.

Fig. 3a. Nuclear regeneration cross sections. The experimental points
are from Ref. 2; the solid line is the best fit to experiment of the
form $P_L^N A$, and the broken line is the result of the calculation.

Fig. 3b. Calculation of the nuclear regeneration phases. The points
are from Ref. 2; the values of $\Phi_A - \Phi_H$ were obtained using
$\Phi_A = 42.0^\circ \pm 3^\circ$ (Ref. 8).
Fig. 1
Fig. 3