Title
Frames, Coherency Chains and Hierarchical Binding: The Cortical Implementation of Complex Concepts

Permalink
https://escholarship.org/uc/item/1sb3j62k

Journal

ISSN
1069-7977

Authors
Mazlack, Lawrence J.
Taylor, Julia

Publication Date
2005

Peer reviewed
Abstract
The paper combines frame theory with the theory of neural synchronization. It introduces oscillatory networks as a model for the realization of complex attribute and substance concepts in the cortex. The network has both perceptual and semantic capabilities. Coherence chains and hierarchical binding mechanisms are postulated.

Introduction
Frame theory provides us with a universal account not only for the psychology of categorization, but also for the decomposition of concepts. A frame is defined for a large domain of things and contains a fixed set of attribute dimensions each of which allows for a number of different attribute values. Frames can be nested hierarchically and mutual constraints between attribute dimensions can be incorporated (Barsalou, 1992). The frame-theoretic approach is especially interesting for the decomposition of substance concepts into attributive concepts. Whereas attributive concepts represent features that are volatile in the sense that one and the same thing can fall under different attributive concepts at different times (an object may, e.g., change its color, its size or its speed), substance concepts represent permanent features that govern the identity conditions of objects (a tomato, e.g., ceases to exist when it no longer falls under the substance concept [tomato], say, because it has been mashed). If one now assumes that the attribute values of a frame themselves predominantly are attributive concepts, each substance concept that corresponds to a category captured by a frame is likely to be decomposable into the respective attributive concepts.

When it comes to the neuronal implementation of frames, however, no biologically realistic models have been proposed yet. This paper attempts to compensate this disadvantage and tries to combine frame theory with the theory of neural synchronization (Engel & Singer, 2001), which has been developed as a solution to the binding problem. According to this theory, neurons synchronize their activity if they code properties of the same object and de-synchronize if they code for different objects. Synchronization, thus, is considered as a vital mechanism for the binding of property representations into object representations.

In the first half of the paper we will consider the composition of complex attributive concepts and their neural correlates according to the theory of neural synchronization. An example is the complex attributive concept [red vertical], which is composed from the concepts [red] and [vertical]. Complex concepts of this kind are usually not lexicalized: There is, e.g., no syntactically primitive expression for the concept [red vertical].

In the second half of the paper we will then turn to complex substance concepts. According to frame theory, a substance concept like [elephant] is complex because it can be decomposed into less complex concepts. A potential decomposition of the concept [elephant] might not only involve concepts of prototypical properties of elephants, e.g., [animate], [big], [gray], but also concepts of prototypical parts of elephants, such as [trunk], [tusks], [big ears], [short tail]. Many substance concepts are lexicalized.

A main working hypothesis of ours is that the distinction between primitivity and complexity on the conceptual level corresponds to a distinction between locality and distributivity on the neural level. We thus expect the neural correlates of primitive attributive concepts (e.g., for color, orientation) to be relatively local. In fact, cortical areas for about 30 attribute dimensions could be anatomically located in the monkey (Felleman & van Essen, 1991). In contrast, the correlates of substance concepts, we assume, are highly distributed neural states. Substance concepts are thus not expected to be realized by single cells – so-called grandmother cells – but by cell assemblies that may pertain to highly distinct parts of the cortex.

Another working hypothesis assumes that the mechanism that binds together the distributed neural activities in the case of complex attributive concepts is the intra-cortical synchronization of the electrical discharges of neurons (Engel, König, Gray, & Singer, 1990) and that this mechanism can be modelled by oscillatory networks (Schillen & König, 1994) in a biologically realistic way.

What we envisage is that the mechanism of neural synchronization is general enough to bind together also the representations of the attribute values for a complex substance concept within a frame. For this purpose neuronal coherence chains are postulated. In the case of nested frames – as is relevant, e.g., if the representations of the parts of an object are integrated in the representation of the object with its parts – a mechanism of hierarchical binding is postulated.
Oscillatory Networks

Von der Malsburg’s (1981) supposition that the synchronous oscillation of neuronal responses constitutes a mechanism that binds the responses of feature specific neurons when these features are instantiated by the same object has been frequently applied to explain the integration of distributed responses. Object-related neuronal synchrony has been observed in numerous cell recording experiments and experiments related to attention, perception and expectation (reviewed by Singer, 1999). Those data suggest the hypothesis that the neural basis of object concepts are oscillation functions and that the neural basis of predicate concepts are clusters of feature-specific neurons.

From Gestalt psychology the principles governing object concepts are well known. According to two of the Gestalt principles, spatially proximal elements with similar features (similar color/ similar orientation) are likely to be perceived as one object or, in other words, represented by one and the same object concept. The Gestalt principles are implemented in oscillatory networks by the following mechanism: Oscillators that select input from proximal stimulus elements with like properties tend to synchronize, while oscillators that select input from proximal stimulus elements with unlike properties tend to de-synchronize. As a consequence, oscillators selective for proximal stimulus elements with like properties tend to exhibit synchronous oscillation functions when stimulated simultaneously. This oscillation can be regarded as one object concept. In contrast, inputs that contain proximal elements with unlike properties tend to cause anti-synchronous oscillations, i.e., different object concepts.

In our model a single oscillator consists of two mutually coupled excitatory and inhibitory neurons, which represent a population of 100 to 200 biological cells (Fig. 1). Populations of recurrently coupled excitatory and inhibitory neurons can be found in primary visual cortex. Here, excitatory (pyramidal) cells in layers 2 and 3 are tightly coupled to local inhibitory neurons in layers 2 to 6. If the number of excitatory and inhibitory biological cells is large enough, the dynamics of each oscillator can be described by two variables x and y. They evolve over time according to the following differential equations:

\[
\begin{align*}
\dot{x} &= -\tau_x x - g_y(y) + L_0^{xx} g_x(x) + I_x + N_x \\
\dot{y} &= -\tau_y y + g_x(x) - I_y + N_y.
\end{align*}
\]

Here, $\tau_\xi (\xi \in \{x, y\})$ are constants that can be chosen to match refractory times of biological cells, g_ξ are transfer functions, L_0^{xx} describes self-excitation of the excitatory cell population, I_ξ are external inputs and N_ξ white noise, which models fluctuation within the cell populations. With I_ξ above threshold, the solutions of (1) are limit-cycle oscillations (Maye & Werning, 2004).

Oscillators are arranged on a three-dimensional grid forming a feature module. Two dimensions represent the spatial domain, while the feature is encoded by the third dimension. Spatially close oscillators that represent similar properties synchronize. The desynchronizing connections establish a phase lag between different groups of synchronously oscillating clusters. Feature modules for different feature dimensions, e.g., color and orientation, can be combined by establishing synchronizing connections between oscillators of different modules in case they code for the same stimulus region.

Stimulated oscillatory networks (e.g., by stimulus of Fig. 2a, for other stimuli see Maye & Werning, 2004), characteristically, show object-specific patterns of synchronized and de-synchronized oscillators within and across feature dimensions. Oscillators that represent properties of the same object synchronize, while oscillators that represent properties of different objects de-synchronize. We observe that for each represented object a certain oscillation spreads through the network. The oscillation pertains only to oscillators that represent the properties of the object in question.
The degree of synchrony between two oscillations lies by a natural number \(i \) their eigenvalues so that each eigenmode can be signified they may be assigned to some of the individual terms. Since oscillation functions reliably co-vary with objects, dynamics of oscillatory networks in semantic terms.

characteristic functions responding spatially invariant, but temporally evolving but spatially variant eigenmodes considered as a superposition of the temporally constant, as components. The network state at any instant is correlated network are shown in Fig. 2b. The overall dynam-

By that mode. The two stable eigenmodes of a stimu-

ues designate how much of the variance is accounted for by any eigenmode \(i \), can be measured by the value \(d_i(\phi) \in [-1, +1] \). In case of identity sentences we have:

\[
 d_i(a = b) = \Delta(\alpha(a), \alpha(b)).
\]

When we take a closer look at the first eigenmode of Fig. 2b, we see that most of the vector components are exactly zero (gray shading). However, few components in the greenness and the horizontality layers are positive (light shading) and few components in the redness and the verticality layers are negative (dark shading). We may interpret this by saying that the first eigenmode represents two objects as distinct from one another. The representation of the first object is the positive characteristic function +\(c_1(t) \) and the representation of the second object is the negative characteristic function −\(c_1(t) \) (Because of the normalization of the \(\Delta \)-function, only the signs of the eigenmode components matter). These considerations justify the following evaluation of non-identity:

\[
 d_i(\neg a = b) = \begin{cases} +1 & \text{if } d_i(a = b) = -1, \\ -1 & \text{if } d_i(a = b) > -1. \end{cases}
\]

A great advantage of the eigenmode analysis is that object representations are no longer identified with the actual oscillatory behavior of neurons, but with the eigenmode-relative characteristic functions. In this approach the representation of objects does not require strict synchronization of neural activity over long cortical distances, but tolerates a travelling phase change as it has been observed experimentally (Eckhorn et al., 2001) as well as in our network simulation.

Feature layers function as representations of properties and thus can be expressed by predicates \(F_1, ..., F_p \), i.e., to every predicate \(F \) a diagonal matrix \(\beta(F) \in \{0, 1\}^{k \times k} \) can be assigned such that, by multiplication with any eigenmode vector \(v_i \), the matrix renders the sub-vector

The Neural Correlate of Complex Attributive Concepts

An oscillation function \(x(t) \) of an oscillator is the activity of its excitatory neuron as a function of time during a time window \([0, T]\). Mathematically speaking, activity functions are vectors in the Hilbert space \(L_2[0, T] \) of functions that are square-integrable in the interval \([0, T]\).

The Hilbert space analysis allows us to interpret the dynamics of oscillatory networks in semantic terms. Since oscillation functions reliably co-vary with objects, they may be assigned to some of the individual terms \(a, b, ..., x, y, ... \) of a predicate language by the partial function \(\alpha \).

The sentence \(a = b \) expresses a representational state of the system (i.e., the representation of the identity of the objects denoted by the individual terms \(a \) and \(b \)) to the degree the oscillation functions \(\alpha(a) \) and \(\alpha(b) \) of the system are synchronous. The degree to which a sentence \(\phi \) expresses a representational state of the system, for any eigenmode \(i \), can be measured by the value \(d_i(\phi) \). In case of identity sentences we have:

\[
 d_i(a = b) = \Delta(\alpha(a), \alpha(b)).
\]

When we take a closer look at the first eigenmode of Fig. 2b, we see that most of the vector components are exactly zero (gray shading). However, few components in the greenness and the horizontality layers are positive (light shading) and few components in the redness and the verticality layers are negative (dark shading). We may interpret this by saying that the first eigenmode represents two objects as distinct from one another. The representation of the first object is the positive characteristic function +\(c_1(t) \) and the representation of the second object is the negative characteristic function −\(c_1(t) \) (Because of the normalization of the \(\Delta \)-function, only the signs of the eigenmode components matter). These considerations justify the following evaluation of non-identity:

\[
 d_i(\neg a = b) = \begin{cases} +1 & \text{if } d_i(a = b) = -1, \\ -1 & \text{if } d_i(a = b) > -1. \end{cases}
\]

A great advantage of the eigenmode analysis is that object representations are no longer identified with the actual oscillatory behavior of neurons, but with the eigenmode-relative characteristic functions. In this approach the representation of objects does not require strict synchronization of neural activity over long cortical distances, but tolerates a travelling phase change as it has been observed experimentally (Eckhorn et al., 2001) as well as in our network simulation.

Feature layers function as representations of properties and thus can be expressed by predicates \(F_1, ..., F_p \), i.e., to every predicate \(F \) a diagonal matrix \(\beta(F) \in \{0, 1\}^{k \times k} \) can be assigned such that, by multiplication with any eigenmode vector \(v_i \), the matrix renders the sub-vector

![Figure 2: a) Stimulus: one vertical red bar and one horizontal green bar. It was presented to a network with 32 × 32 × 4 oscillators. b) The two stable eigenmodes. The eigenmodes \(v_1 \) and \(v_2 \) are shown each in one line. The four columns correspond to the four feature layers. Dark shading signifies negative, gray zero and light shading positive components. c) The characteristic functions for the two eigenmodes.](image-url)
of those components that belong to the feature layer expressed by F. To determine to which degree an oscillation function assigned to an individual constant a pertains to the feature layer assigned to a predicate F, we have to compute how synchronous it maximally is with one of the oscillations in the feature layer. We are, in other words, justified to evaluate the degree to which a predicative sentence Fa (read: ‘a is F’, e.g., ‘This object is red’) expresses a representational state of our system, with respect to the eigenmode i, in the following way:

$$d_i(Fa) = \max\{\Delta(\alpha(a), f_j)|f = c_i(t)\beta(F)v_i\}. \quad (7)$$

If one, furthermore, evaluates the conjunction of two sentences $\phi \land \psi$ by the minimum of the value of each conjunct, we may regard the first eigenmode v_1 of the network dynamics resulting from the stimulus in Fig. 2a as a representation expressible by the sentence

This is a red vertical object and that is a green horizontal object.

We only have to assign the individual terms this ($= a$) and that ($= b$) to the oscillatory functions $-c_1(t)$ and $+c_1(t)$, respectively, and the predicates red ($= R$), green ($= G$), vertical ($= V$) and horizontal ($= H$) to the redness, greenness, verticality and horizontality layers as their neuronal meanings. Simple computation then reveals:

$$d_1(Ra \land Va \land Gb \land Hb \land \neg a = b) = 1. \quad (8)$$

Using further methods of formal semantics, the semantic evaluation of sentences has been extended to sentences comprising disjunction (\lor), implication (\rightarrow), and existential as well as universal quantifiers (\exists, \forall). The compositionality of meaning and the compositionality of content could be proven (Werning, 2005). Co-variation with content can always be achieved if the assignments α and β are chosen to match the network’s perceptual capabilities.

Werning (2003b) extends this approach from an ontology of objects to an ontology of events. Werning (2003a) integrates relational concepts like [in]. All complex attributive concepts that can be expressed by a first order predicate language with identity are in principal compositionally realizable in our network. We will now turn to semantically complex substance concepts.

Simple Frames and Coherency Chains

Among semanticists still some authors believe that no lexical concepts are decomposable (e.g., Fodor & Lepore, 1992). According to those so-called atomist positions, only concepts that are linguistically expressible by syntactically combined expressions can be complex. In neuroscience, moreover, some authors still hold that substantial features like that of being an elephant, or even features as particular as that of being my grandmother are represented by highly specific single neurons (Logothetis & Sheinberg, 1996).

The position we advocate is contrary to those, in two respects: We think that (i) some lexical substance concepts are decomposable into less complex concepts, and that (ii) the neural realization of those concepts is distributed over assemblies of neurons and meta-assemblies thereof. In psychology, philosophy and linguistics various theories have been proposed to account for the decomposition of concepts. The most prominent ones are: prototype theory (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976), lexical decomposition grammar (Hale & Keyser, 1993), and frame theory (Barsalou, 1992). For our purposes a modified version of frame theory seems to be most fruitful.

Frames are defined for large reference classes G of objects and allow for a categorization therein. Lowest-level frames can be rendered by a matrix with one row per attribute dimension (i) and the attribute values F_{ij} of the respective dimension in the j-th column:

$$\begin{bmatrix}
\text{color} & \text{red} & \text{green} \\
\text{form} & \text{round} & \text{square} \\
\text{brightness} & \text{light} & \text{dark} \\
\text{size} & \text{small} & \text{big}
\end{bmatrix}$$

Relative to a frame, a category or concept C is rendered by a matrix that results from an assignment of typicality values $C_{ij} \in \{0, 1\}$ to each attribute value. C_{ij} tells how typical the j-th attribute value, regarding the i-th attribute dimension, is for an object that satisfies the concept C. Relative to the frame shown above, the matrix for the concept [cherry] might, e.g., look as follows:

$$\begin{bmatrix}
0.8 & 0.2 \\
1 & 0 \\
0.1 & 0.9 \\
0.9 & 0.1
\end{bmatrix}$$

If we assume that the list of attribute values in each dimension are a partitioning of the reference class G, and if we choose an appropriate system of many-valued logic, we can prove the following inequality for the fuzzy value $d(\in [-1, +1])$ of the existential claim $\exists x Cx$ (read:
'There are C's', e.g., 'There are cherries'):

\[
d(\exists x \text{ C}x) \geq \max_{\pi \in \Pi} \min_{i=1}^{n} (C_{i\pi(i)}d(F_{i\pi(i)}x)). \tag{11}
\]

Here, C is the predicate expressing the concept C, II is the set of all variations of the index j at i-th position in a sequence of length n, where n is the number of attribute dimensions in the reference frame.

To the result of equation 11 we can directly apply the neuronal interpretation of the value \(d(F_{i\pi}x)\), which has already been developed in equation 7. From these considerations we may infer the following hypothesis:

Hypothesis 1 (Coherency chains). Provided that a concept, relative to a frame, is completely decomposable into primitive attributive concepts according to its matrix C, the lowest boundary of the degree to which the network represents an object as an instance of the concept is given by the strength of the strongest (max) weighted coherency chain (weights: \(C_{ij}\)) that pertains to layers of neurons selective for the attribute values \(F_{ij}\) of the frame in question. Here, any coherency chain is regarded just as strong as the weakest (min) weighted coherence among the activities of the feature-selective neurons involved (see Fig. 3).

Nested Frames and Hierarchical Binding

So far all substance concepts that are analyzable by simple frames can in principle be dealt with. Their neural correlate can be conceived of as characteristic chains of synchronized activity across various feature modules. Long-range synchronization between distributed neuronal populations has been experimentally demonstrated (Engel, König, Kreiter, & Singer, 1991). In fact it has been shown that oscillatory activity may be instrumental for establishing long-range synchronization (König, Engel, & Singer, 1995). Some complex concepts, however, are not directly decomposable into primitive attributive concepts because their analysis requires nested frames. This might, e.g., be because the objects of the category in question have characteristic parts. A frame for animals may, e.g., contain attribute dimensions for head, legs and body. The attribute values for the dimension legs might then be captured by another frame with attribute dimensions of its own (number, length, orientation, etc.).

This hierarchy of frames poses a dilemma for the theory of neural synchronization. If one, on the one hand, were to bind the attribute values of daughter frames to the attribute values of the mother frame by the overall synchronization of the corresponding feature-selective neurons, the information to which frame an attribute value belongs would be lost. If one, on the other hand, were to refrain from binding the attribute values together by some synchronization mechanism, the information that those attribute values are features of the parts of one and the same object would not be preserved. To illustrate this dilemma, take, e.g., an animal with long, vertically oriented legs and a small horizontally oriented body, say a flamingo. You can’t simply represent the flamingo by synchronizing neurons for the features long, vertical, small and horizontal. But you can’t either assume that there is no binding mechanism between the features of the legs and those of the body. For, how do you then represent the fact that legs and body belong to the same object?

What is in need to escape the dilemma obviously is a mechanism of hierarchical binding as schematically shown in Fig. 4. To explore this option, we stimulated our network with a complex figure: a red manikin (Fig. 5a). The first eigenmode represents the stimulus as one object, while the second and third eigenmode represent parts of the object (head, arms, belly, legs) as distinct from each other (Fig. 5b). A look at the characteristic functions of Fig. 5c reveals an interesting fact: The representation of the whole object, i.e., the first characteristic function, contains the second and third characteristic function as an envelope. In the frequency spectra of the characteristic functions (Fig. 5d) one recognizes that they are made up of the same frequencies, although their temporal correlation measured by the \(\Delta\)-function is close to zero. One might hence hypothesize that the envelope relation as well as the exploitation of the same frequencies might provide a hierarchical binding mechanism consistent with the theory of neural synchronization.

Conclusion

Both, complex attributive concepts as well as substance concepts that can be directly composed from attributive concepts can be modelled by oscillatory networks in a biologically realistic way. With regard to the latter, coherency chains are required. Further research needs to be done to account for substance concepts that decompose into concepts of parts. Here, mechanisms of hierarchical binding are postulated. Frame theory and the theory of neural synchronization may be combined to identify the neural correlate of complex concepts.
Figure 5: a) Stimulus: a red manikin with horizontally spread arms. b) The first three eigenmodes. \(v_1\) represents the manikin’s body as a single object. \(v_2\) represents two parts of the body as distinct objects: the head (white) and the pair of arms (black). \(v_3\) distinguishes between the body’s upper (head plus arms) and lower part (belly plus legs). c) The characteristic functions of the three eigenmodes. \(c_1(t)\), which represents the whole body, is an envelope of the representations of the body parts \(\pm c_2/3(t)\). d) Power spectra of the three characteristic functions.

References

