Carbon dioxide emitted from live stems of tropical trees is several years old.

Permalink
https://escholarship.org/uc/item/1sv3580t

Authors
Muhr, J
Angert, A
Negrón-Juárez, RI
et al.

Publication Date
2013-07-01

DOI
10.1093/treephys/tpt049

License
CC BY 4.0
Carbon dioxide emitted from live stems of tropical trees is several years old

Jan Muhr¹,6, Alon Angert², Robinson I. Negrón-Juárez³, Waldemar Alegría Muñoz⁴, Guido Kraemer⁴, Jeffrey Q. Chambers⁵ and Susan E. Trumbore¹

¹Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena 07745, Germany; ²The Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; ³Ecology and Evolutionary Biology, Tulane University, 400 Lindy Boggs, New Orleans, LA 70118, USA; ⁴Universidad Nacional de la Amazonía Peruana, Facultad de Ciencias Forestales, Calle Pevas 584, Iquitos, Peru; ⁵Lawrence Berkeley National Laboratory, Climate Sciences Department, Cyclotron Rd MS 50-4037, Berkeley, CA 94720, USA

Corresponding author (jmuhr@bgc-jena.mpg.de)

Received January 24, 2013; accepted June 24, 2013; published online July 25, 2013; handling Editor Daniel Epron

Storage carbon (C) pools are often assumed to contribute to respiration and growth when assimilation is insufficient to meet the current C demand. However, little is known of the age of stored C and the degree to which it supports respiration in general. We used bomb radiocarbon (¹⁴C) measurements to determine the mean age of carbon in CO₂ emitted from and within stems of three tropical tree species in Peru. Carbon pools fixed >1 year previously contributed to stem CO₂ efflux in all trees investigated, in both dry and wet seasons. The average age, i.e., the time elapsed since original fixation of CO₂ from the atmosphere by the plant to its loss from the stem, ranged from 0 to 6 years. The average age of CO₂ sampled 5-cm deep within the stems ranged from 2 to 6 years for two of the three species, while CO₂ in the stem of the third tree species was fixed from 14 to >20 years previously. Given the consistency of ¹⁴C values observed for individuals within each species, it is unlikely that decomposition is the source of the older CO₂. Our results are in accordance with other studies that have demonstrated the contribution of storage reserves to the construction of stem wood and root respiration in temperate and boreal forests. We postulate the high ¹⁴C values observed in stem CO₂ efflux and stem-internal CO₂ result from respiration of storage C pools within the tree. The observed age differences between emitted and stem-internal CO₂ indicate an age gradient for sources of CO₂ within the tree: CO₂ produced in the outer region of the stem is younger, originating from more recent assimilates, whereas the CO₂ found deeper within the stem is older, fueled by several-year-old C pools. The CO₂ emitted at the stem–atmosphere interface represents a mixture of young and old CO₂. These observations were independent of season, even during a time of severe regional drought. Therefore, we postulate that the use of storage C for respiration occurs on a regular basis challenging the assumption that storage pools serve as substrates for respiration only during times of limited assimilation.

Keywords: bomb radiocarbon ¹⁴C, non-structural carbohydrates, storage carbon pools, tree respiration

Introduction

Trees allocate carbon (C) to a number of different processes including growth, respiration, reproduction and storage (Chapin et al. 1990). Storage, in this context, is the sum of any non-structural carbohydrates (NSC) pools within the plant that can be remobilized for other processes, e.g., respiration or growth (i.e., transformation into structural carbohydrates). By definition, storage includes not only reserve NSC pools but also recycling, for example, of defense compounds. Although storage in trees has been investigated for a long time, our understanding of when and to what extent storage NSC pools...
are mobilized still is limited, and storage NSC pools are often not accounted for in ecosystem-level C budgets (Chapin et al. 1990, Le Roux et al. 2001, Körner 2003, Trumbore 2006, Litton et al. 2007). It is a common assumption, reflected in many of the current models of tree growth, that trees preferentially use recently assimilated C for growth and respiration (Le Roux et al. 2001). From this perspective, storage C is used only when current assimilation becomes insufficient to meet current C demand (Sala et al. 2010). This perspective has been questioned based on recent findings using continuous in situ 13C labeling (Keel et al. 2006), which indicate the use of storage reserves during the growth of new tissues, but not the degree to which these contribute to plant respiration fluxes. Kuptz et al. (2011) also used 13C labeling to demonstrate that respired CO$_2$ originates partly from current assimilation and partly from pre-label NSC storage pools. These studies showed the use of pre-label NSC in studies that ranged from weeks up to 4 years. However, it is impossible to make any prediction about whether storage C considerably older than this exists and to what degree it is used as a substrate for respiration. Further, all measurements to date are in temperate forest trees, with no data from tropical forests. Improved understanding of C turnover in trees requires better information on the age of storage reserves (Richardson et al. 2012) and how and when these reserves are used to support plant respiration.

‘Bomb-radiocarbon’, i.e., radiocarbon (14C) produced during atmospheric testing of thermonuclear weapons during the early 1960s, provides an excellent tool for measuring the age of C in trees on an annual to decadal timescale. Before 1950, 14C was present in the atmosphere at approximately constant levels for several hundred years (‘pre-bomb 14C’). In the late 1950s and early 1960s, atmospheric thermonuclear weapon tests nearly doubled the abundance of 14C in the atmosphere. The period of atmospheric testing was relatively short, as they were banned in 1964, and hence could be described as an unintentional pulse-labeling of the atmosphere and the global C cycle. Following the nuclear-test-ban treaty, atmospheric 14C levels have decreased every year due to net uptake of excess ‘bomb’ 14C into oceanic and terrestrial C pools and due to the emission of 14C-free CO$_2$ from the combustion of fossil fuels (Levin and Kromer 2004). In the southern hemisphere, the peak 14C was attenuated and occurred a year later than that of the northern hemisphere (Hua and Barbetti 2004) (Figure 1).

The fixation of C from the atmosphere by plants results in an automatic labeling of each year’s photosynthetic products with a distinct 14C signature. Radiocarbon data are reported to remove the effects of mass-dependent fractionation by using the measured 13C signature and the assumption that 14C is fractionated twice as much as 13C (Stuiver and Polach 1977). Hence, the reported 14C signatures measured in the same year are identical for CO$_2$ and the photosynthetic products fixed from it. The current annual rate of decline in atmospheric Δ^{14}CO$_2$ and, consequently, the 14C of photosynthetic products is \sim4–5‰ per year, larger than the current precision of 14C measurements of 2–3‰. Consequently, we are able to determine the year when C was assimilated between the mid-1960s and today by measuring the 14C signature of a sample and comparing it to the atmospheric record (Levin and Kromer 2004, Currie et al. 2011).

The easiest and most direct approach to determine the age of C substrates being respired by a tree is to measure the resulting CO$_2$. The amount of CO$_2$ emitted from tree stems can account for up to 16% of the C taken up by gross primary production in a forest (Ryan et al. 1997, Chambers et al. 2004, Litton et al. 2007). Although there is an ongoing discussion concerning the origin of CO$_2$ emitted from tree stems (Teskey et al. 2008), it is assumed to predominantly originate from respiratory processes that occur within rather than outside the tree. Hence, its isotopic signature will reflect the average C sources, including NSC pools, the tree uses for respiration. Thus, by measuring Δ^{14}C, i.e., the ratio of 14C : 12C in CO$_2$ emitted from a tree stem, corrected for mass-dependent isotopic fractionation and expressed as the deviation in parts per thousand relative to a pre-industrial wood standard, we have a tool for detecting the use of C reserves that have been stored for a year or more in the trees. Carbon that has been assimilated and respired by the tree in the same year will have the same Δ^{14}C in both respired and atmospheric CO$_2$. In other words, the difference between the Δ^{14}C of the respired CO$_2$ and atmospheric CO$_2$, defined here as $\Delta\Delta^{14}$C, would be zero. The use of C from older storage pools would be reflected in $\Delta\Delta^{14}$C values $>$ 0, since C assimilated in the past (1965 to today) has a higher Δ^{14}C than the current atmosphere.

In 2010, the Amazon experienced an extensive drought (Lewis et al. 2011, Marengo et al. 2011). During this anomalous dry season and the subsequent wet season, we collected radiocarbon in CO$_2$ emitted from and in the stems of three species of trees growing in a forest reserve near Iquitos, Peru. We hypothesized that storage reserves in these mature trees would be old enough (>1 year) to detect their use for respiration, and further hypothesized that the contribution of CO$_2$ derived from older C reserves to respiration would be greatest during the dry season.

Materials and methods

Site description

The study was carried out at the Center for Research and Forest Learning (CIEFOR, 3°49'53.8"S, 73°22'28.2"W) of the National University of the Peruvian Amazon (UNAP) in the community of Puerto Almendras, located 16 km southwest of the city of Iquitos, Peru. The study site was located within
1300 ha of forested area managed by the UNAP Faculty of Forest Engineering (FCF). Average canopy height in the area is around 30 m. More than 500 tree species are found within the area, and the more common species include *Hymenolobium pulcherrimum* Ducke (Mari Mari), *Tachigali paniculata* Aublet (Tangarana), *Simarouba amara* Aublet (Marupa), *Euterpe precatoria* C. Martius (Huasai) and *Guarea glabra* M. Vahl (Requia).

Meteorological information is available from the Meteorological and Hydrological National Service of Peru (SENAMHI), which has a meteorological station at CIEFOR (www.senamhi.gob.pe). They report an average annual rainfall of 2979 mm for the years 1971–2000. A dry season with reduced precipitation typically occurs between May to October. In 2010, the region was affected by the widespread drought in the Amazon basin (Lewis et al. 2011), and rainfall deficits were observed from May 2010 to February 2011, with anomalously low rainfall in August (43 mm) and September (102 mm), corresponding to 20 and 41% of average rainfall for these months, respectively. Our measurements were carried out in the first week of October 2010 (dry season) and in April 2011 (the following wet season).

For this study, we selected three trees per species of three common tree species: *H. pulcherrimum*, *T. paniculata* and *S. amara*. *Hymenolobium pulcherrimum* and *T. paniculata* are both members of the family Fabaceae, whereas *S. amara* belongs to the family Simaroubaceae. The three species differ in wood density, with *H. pulcherrimum* (0.53 g ml⁻¹) and *T. paniculata* (0.65 g ml⁻¹) having higher wood densities than *S. amara* (0.35 g ml⁻¹) (Chambers et al. 2004). For the measurements, we installed chambers and in-stem probes at heights between ca. 1.3 to 2 m. Data about tree diameter and estimated height can be found in Table 1.

Installation of stem chambers and sampling of emitted CO₂

We used chambers based on a design developed by Ubierna et al. (2009b). Chambers were built from polypropylene (PP) T-pieces (Ostendorf HTRE DN 110, outer diameter 11 cm) that come with a threaded lid for closing the center aperture. The other two openings (the ones facing each other) were welded shut with PP disks. The T-piece was then cut longitudinally, thus removing a segment of the tube opposite to the threaded lid and creating an opening along the whole length of the tubing (length 27.2 cm, width 7.0). The chambers were individually fit to the shape of the tree trunk at the exact spot of installation and kept in place by two sets of lashing straps. To provide a gas-tight seal, we applied hot glue all along the contact surface of the chamber and the stem. Chambers were tested for leaks by measuring [CO₂] inside the chamber with a portable infrared gas analyzer system featuring a Li-820 (LI-COR Environmental - GmbH, Bad Homburg, Germany) while blowing respiratory air through a piece of tubing on all potential leaky spots, a method that is both easy and effective due to high [CO₂] in respiratory air. On the detection of a leak, more hot glue was applied to the spot, and the procedure was repeated until the chambers were leak-free. When not in use for sampling, the chambers’ openings were covered with a lid made from stainless-steel mesh, both enabling ventilation and preventing insect infestation. For measurements, the chambers were closed with a specially equipped lid fitted with gas-sampling ports.

In October 2010, we used evacuated 1 l glass flasks, equipped with two O-ring valves (Louwers Glasotechniek en Technisch Keramiek BV, Hapert, The Netherlands, 12 mm OD, 9 mm ID). The flasks were connected to the lid of the chamber by two sequential capillaries (flow-restricting capillary: length...
8 cm, ID 0.17 mm; extension capillary: length 2 m, ID 1.00 mm). The chambers were incubated for several hours to increase [CO$_2$] in them before sampling. The flasks were opened, with the small-diameter capillary restricting the flow from the chamber to the flask and expanding the filling time of the flasks to ca. 20 min. To avoid a sudden rapid drop of pressure inside the chamber, atmospheric air was allowed to enter the chamber through a 300 ml plastic trap filled with soda lime (AnalaR NORMAPUR, VWR International BVBA, Leuven, Belgium) that removed atmospheric CO$_2$ from the filled air. After sampling, the flasks were closed and sent to the WM Keck Carbon Cycle Accelerator Mass Spectrometry laboratory at the University of California, Irvine (UCI), USA, for further processing. One gas sample (from the H. pulcherrimum chamber taken in the dry season) was lost during shipment when the flask broke.

In April 2011, we used a simpler procedure. A smaller flask (volume of 45 ml, not evacuated, but filled with local atmospheric air, and equipped with one 12 mm O-ring valve) was directly connected to the lid and opened as soon as the chamber was closed. The flask was left in place for several days, equilibrating with the gas inside the chamber. At the end of the incubation period, the flasks were closed and sent to the Max-Planck-Institute of Biogeochemistry (MPI-BGC) in Jena, Germany, for further processing.

Installation of in-stem probes and sampling of internal CO$_2$

For sampling gas from inside the stem, we have slightly modified the design of Ubierna et al. (2009b). After the removal of the bark, we drilled a 5-cm deep hole (12 mm diameter) into the stem, and then hammered in a stainless-steel tube with an outer diameter (12.7 mm) that slightly exceeded that of the hole. After the installation of the tube, we applied hot glue around the edges of the drill hole to seal the wound against possible leaking or infection by microorganisms or insects. As described in Angert et al. (2012), we connected the sampling flasks (with volumes of 45 or 12.5 ml during first and second samplings, respectively) filled with air at atmospheric pressure directly to the stainless-steel tube using rubber tubing to secure an air-tight seal. The flasks, which had a valve with an O-ring seal (Louwers H.V. glass valves, 12 mm OD, 9 mm ID), were left open for 10 days, then sealed by closing the valve and were removed. This approach is simpler than the original design of Ubierna et al. (2009b), which required injecting acidified water into an equilibration volume to replace air removed, while simultaneously collecting the sample with a syringe. Stem gas was sampled once during the dry and once during the wet season.

Measurement of Δ^{14}C

All gas samples for measuring Δ^{14}CO$_2$ were cryogenically purified and converted to graphite targets using the modified sealed tube zinc reduction method described by Xu et al. (2007). Samples from the 1-l flasks were purified and graphitized at UCI, whereas samples from the smaller flasks (45 and 12.5 ml) were purified and graphitized at the MPI-BGC. All graphitized samples were analyzed by the Keck Carbon Cycle AMS facility at UCI with a precision and accuracy of 2–3‰ (Xu et al. 2007). Radiocarbon data are expressed as Δ^{14}C, which is the per mil deviation from the 14C/12C ratio of oxalic acid standard in 1950. The sample 14C/12C ratio has been corrected to a δ^{13}C value of −25‰ to account for any mass-dependent fractionation effects (Stuiver and Polach 1977). Thus, our Δ^{14}C values can be directly compared with the record of 14C in atmospheric CO$_2$ for the southern hemisphere. Note that as a byproduct of the extraction process the total amount of C in each flask is quantified, effectively allowing calculation of the [CO$_2$] of the sample.

14C-based estimates of CO$_2$ age

To estimate the mean time elapsed between the time C was fixed and when it was respired, we used the atmospheric curve to estimate the year when the 14C of CO$_2$ (and newly fixed C) had the same value as the C in our respiration sample (Figure 1). We sampled the atmospheric air using pre-evacuated 1-l glass flasks to get an atmospheric reference for the time of our measurement campaign (Figure 1). The flasks were opened, with 14C of a sample (2007). Samples from the 1-l flasks were purified and graphitized at UCI, whereas samples from the smaller flasks (45 and 12.5 ml) were purified and graphitized at the MPI-BGC. All graphitized samples were analyzed by the Keck Carbon Cycle AMS facility at UCI with a precision and accuracy of 2–3‰ (Xu et al. 2007). Radiocarbon data are expressed as Δ^{14}C, which is the per mil deviation from the 14C/12C ratio of oxalic acid standard in 1950. The sample 14C/12C ratio has been corrected to a δ^{13}C value of −25‰ to account for any mass-dependent fractionation effects (Stuiver and Polach 1977). Thus, our Δ^{14}C values can be directly compared with the record of 14C in atmospheric CO$_2$ for the southern hemisphere. Note that as a byproduct of the extraction process the total amount of C in each flask is quantified, effectively allowing calculation of the [CO$_2$] of the sample.

14C-based estimates of CO$_2$ age

To estimate the mean time elapsed between the time C was fixed and when it was respired, we used the atmospheric curve to estimate the year when the 14C of CO$_2$ (and newly fixed C) had the same value as the C in our respiration sample (Figure 1). We sampled the atmospheric air using pre-evacuated 1-l glass flasks to get an atmospheric reference for the time of our measurement campaign (Figure 1). The flasks were opened, with 14C of a sample (2007). Samples from the 1-l flasks were purified and graphitized at UCI, whereas samples from the smaller flasks (45 and 12.5 ml) were purified and graphitized at the MPI-BGC. All graphitized samples were analyzed by the Keck Carbon Cycle AMS facility at UCI with a precision and accuracy of 2–3‰ (Xu et al. 2007). Radiocarbon data are expressed as Δ^{14}C, which is the per mil deviation from the 14C/12C ratio of oxalic acid standard in 1950. The sample 14C/12C ratio has been corrected to a δ^{13}C value of −25‰ to account for any mass-dependent fractionation effects (Stuiver and Polach 1977). Thus, our Δ^{14}C values can be directly compared with the record of 14C in atmospheric CO$_2$ for the southern hemisphere. Note that as a byproduct of the extraction process the total amount of C in each flask is quantified, effectively allowing calculation of the [CO$_2$] of the sample.
were sent to the UCI for further processing as described above. The atmospheric Δ\(^{14}\)C values of previous years were taken from datasets from measurement stations in the southern hemisphere (Currie et al. 2011, Graven et al. 2012). The data were expressed relative to our reference data (reference date: 7 October 2010, reference Δ\(^{14}\)C: 41.9 ± 1.4‰, n = 2), then we calculated a non-linear regression through the origin \((y = 104.9 \times (\exp(0.037 \times x)) − 1))\). The inverse function was used to calculate the time elapsed between original fixation of C and the time of our measurement campaign. We refer to this as the mean ‘age’ of respired C. Samples that had a ΔΔ\(^{14}\)C that was within ±6‰ (two times the measurement precision) of zero were assumed to have an age of zero. Note that a ΔΔ\(^{14}\)C of 6‰ would be equivalent to an estimated age of 1.5 years, so by this definition we could only determine the age of samples with C fixed on an average of at least 1.5 years previously.

Statistics

Owing to the low number of replicates, we used non-parametric tests for statistical analysis. For comparing data from the dry and the wet season within the same species, we used a Mann–Whitney U test. For comparing data from the three different tree species, we used the Kruskal–Wallis one-way analysis of variance. On detection of significant differences, we used the Mann–Whitney U test to further analyze the specific sample pairs for significant differences. All statistical analyses were performed in the R statistical environment (R Core Development Team v2.13.1).

Results

Results from chamber samples

All chamber samples contained a mixture of CO\(_2\) derived from C fixed recently and several years previously (Table 1). The average time elapsed since fixation was estimated to be between 0 and 6 years. We found no significant differences in the mean age of the respired CO\(_2\) between the dry and the wet season for any of the three tree species.

Differences in the sampling technique between dry and wet season resulted in differences in the absolute sample size (not shown), thus always being considerably higher than simultaneous chamber measurements on the same tree (Figure 3).

In-stem samples had CO\(_2\) concentrations ranging from 1.1 to 8.8% (Figure 2), thus always being considerably higher than the atmospheric CO\(_2\) concentration (0.04%). We found no significant differences between the dry and wet season measurements for S. amara \((P = 1.0), T. paniculata \((P = 0.5)\) or H. pulcherrimum \((P = 0.4)\). Owing to the differences in flask size, the total C content (data not shown) was greater in dry season samples than in wet season samples, but neither CO\(_2\) concentration nor sample size affected the measured Δ\(^{14}\)C values. We found no systematic differences in CO\(_2\) concentration between the three species.

Discussion

Age estimates based on radiocarbon measurements presented here provide clear evidence that C sources fixed prior to the year of sampling contribute to in-stem and emitted CO\(_2\) in all three Peruvian rainforest tree species we sampled. The reproducibility among trees of the same species makes it unlikely that the old CO\(_2\) is produced solely from decomposition in the stems. Indeed as discussed in more detail below, the ages of stored C reported in the literature are consistent with the mean ages of CO\(_2\) we observed. The lack of seasonal variation means it is unlikely that the older CO\(_2\) is produced in response to
seasonal stress, e.g., potential drought stress, even in an extreme drought year (2010). Rather, our results suggest that the investigated trees consistently rely on a mixture of recent assimilates and storage C. There are few studies we are aware of that provide clear evidence for trees using storage C as a C source. Kuptz et al. (2011) and Nogués et al. (2006) both used 13C labeling to determine the contribution of older C sources to CO$_2$ emitted from the tree stem. However, owing to methodological restrictions, these two studies could only conclude that the age of storage reserves pre-dated their label application, i.e., older than several days to weeks. Similarly, a 14C pulse labeling experiment by Carbone et al. (2007) indicated that C assimilated during the labeling event still contributed to root and canopy respiration even 30 days post-labeling. Application of the bomb-radiocarbon approach to root-respired CO$_2$ from boreal forest black spruce trees revealed mean ages of several years (Czimczik et al. 2006, Schuur and Trumbore 2006), supporting our findings.

Other evidence for the use of storage reserves in trees comes from the age of newly grown plant tissues. Measurements of 14C in newly grown roots from tropical (Trumbore et al. 2006) and temperate forests (Gaudinski et al. 2009) showed that they grew from C sources that were <2 years old. In contrast, Vargas et al. (2009) showed that newly grown fine roots in a forest recovering after a hurricane had 14C signatures indicating that they were grown from C fixed between 4 and 11 years previously, providing clear evidence for the ability of trees to use several-year-old storage reserves of C to recover from disturbance. If we assume that the CO$_2$ respired during growth should have the same 14C as the new growth itself, respired CO$_2$ in this system would have been expected to have mean ages of at least several years. Keel et al. (2006) reported isotope measurements from newly formed tree ring biomass in a mature temperate deciduous forest subjected to continuous fumigation with 13C-labeled CO$_2$. Even after 4 years of continuous labeling, they found ~9% of the C used to grow new tree rings came from unlabeled C pools. While this could indicate the use of C >4 years old for growth, the authors also indicated that it could have resulted from incomplete labeling of the trees.

Richardson et al. (2012) recently reported mean ages of roughly a decade for NSC (sugars and starch) extracted from the outermost 2 cm of tree stems, with maximum ages being as high as 31 and 24 years for starch and sugar, respectively. These surprisingly old NSC pools could serve as substrates for respiration and explain the presence of several-year-old CO$_2$ as found in our measurements. The similar ages found by Richardson et al. (2012) for the starch and the sugar pools were interpreted as evidence that they must regularly exchange C, further supporting the idea of trees’ availability to remobilize C fixed years previously. In summary, a number of observations indicate that the C which is fixed for years previously contributes to tree growth as well as maintenance metabolism. The reported ages are in accordance with most of our measurements, but to our knowledge this is the first time that the contribution of C as old as 23 years to respired CO$_2$ has been shown.

What is the source of the CO$_2$ we measure? There is increasing evidence that the CO$_2$ in and emitted from stems is actively transported within the tree (Teskey et al. 2008). In a

![Figure 3](image-url)
related study (Angert et al. 2012) we measured the apparent respiration quotient (ARQ) (Table 2), or the relative decrease in \(\text{O}_2 \) compared with the increase in \(\text{CO}_2 \), in the same trees and at the same time as the \(^{14}\text{C}-\text{CO}_2 \) measurements. All trees consumed a larger amount of \(\text{O}_2 \) than the amount of \(\text{CO}_2 \) they emitted. Apparent respiration quotient values averaged 0.6 in the chambers, but were much lower (0.2–0.3) in the in-stem gases. Assuming that carbohydrates are the main respiratory substrates, we expect a respiration quotient close to 1.0. Because of the low solubility of \(\text{O}_2 \) compared with \(\text{CO}_2 \) in stem water, Angert et al. (2012) concluded that the low ARQ values indicate net transport of \(\text{CO}_2 \) out of the region underlying our chambers (Trumbore et al. 2013). Given the evidence for considerable \(\text{CO}_2 \) transport in stem water, we have to consider that some of the \(\text{CO}_2 \) we measured could have been respired elsewhere in the plant. At the same time, uptake of \(\text{O}_2 \) (being significantly less soluble in water than \(\text{CO}_2 \), thus reflecting predominantly local processes) is a good proxy for respiration occurring in the stem directly underlying the chamber (Angert et al. 2012), so at least part of the \(\text{CO}_2 \) we measured originates from local respiration. Possible sources of \(\text{CO}_2 \) potentially transported into the area beneath the chamber include (i) root-respired \(\text{CO}_2 \), (ii) \(\text{CO}_2 \) produced by microorganisms in the soil and (iii) \(\text{CO}_2 \) produced by micro-organisms within the tree trunk.

Aubrey and Teskey (2009) used measurements of sap flow and of stem-internal [\(\text{CO}_2 \)] to suggest that as much as 50% of all the \(\text{CO}_2 \) produced by roots is transported upward in the transpiration stream, where it might contribute to \(\text{CO}_2 \) effux from above-ground tissues. While it is still unclear that this is important in tree species other than the ones studied by Aubrey and Teskey (2009), it is possible that a considerable amount of \(\text{CO}_2 \) in our samples could have originated from root respiration rather than local stem respiration. However, regardless whether the old \(\text{CO}_2 \) comes from root or stem respiration, both ultimately represent the respiration of live tree tissue and thus tree metabolism, hence the overall conclusion in both cases would be identical: trees metabolize C from several-year-old pools on a regular basis. For now, we have to assume that our samples consist of a mixture of \(\text{CO}_2 \) produced in the stem as well as in roots.

Unlike root-respired \(\text{CO}_2 \), \(\text{CO}_2 \) produced by microorganisms in the soil would have to be taken up into the root first before being transported upward with sap flow. Observations of \(^{14}\text{C} \) in soil pore space \(\text{CO}_2 \) made in Brazilian tropical forests indicate values of \(\Delta \Delta \text{^{14}C} \) that range from 10‰ near the surface, up to ~30‰ at several meters depth (Trumbore et al. 2006). While these values are consistent with some of our measurements, they cannot explain the extremely high \(\Delta \Delta \text{^{14}C} \) values observed in \(H. \text{pulcherrimum} \) stems. The uptake of soil pore space \(\text{CO}_2 \) into the root might be restricted by root anatomical features, which—in the absence of aerenchyma—might limit the inflow of molecules other than water into the roots (Colmer 2003, De Simone et al. 2003). Labeling studies by Ford et al. (2007) and Ubierna et al. (2009a) concluded that the uptake of soil \(\text{CO}_2 \) by roots of mature forest trees likely is very small to irrelevant. In addition, the ARQ in the soil pore space adjacent to the trees we studied was measured (Angert et al. 2012). Net removal of \(\text{CO}_2 \) from the soil (i.e., more \(\text{CO}_2 \), being transported away relative to the less soluble \(\text{O}_2 \)) would change the \(\text{CO}_2 : \text{O}_2 \) ratio and hence result in an ARQ < 1. Instead, the average ARQ (±SD, \(n = 5 \)) measured in soil air was close to 1.0 (± 0.14) (Angert et al. 2012). In summary, it seems unlikely that \(\text{CO}_2 \) produced by soil microorganisms contributes substantial amounts of C to our samples.

Live trees can become infected by fungi which then decompose parts of the stem (‘heart rot’) and consequentially produce \(\text{CO}_2 \) that might add to the stem-internal \(\text{CO}_2 \) pool (Good et al. 1968). The \(\Delta ^{14}\text{C} \) of the \(\text{CO}_2 \) produced by such decomposition would depend on the \(\Delta ^{14}\text{C} \) of the decomposed tissue, which is given by the \(\Delta ^{14}\text{C} \) of the atmosphere (Figure 1) in the year of tissue formation (Hua and Barbetti 2004). Thus, the range of possible \(\Delta ^{14}\text{C} \) values associated with the decomposition of stem tissue ultimately depends on the age of the tree and the \(\Delta ^{14}\text{C} \) of \(\text{CO}_2 \) actually produced this way on the exact location of the site of decomposition within the tree. It seems unlikely that all nine trees investigated here are decomposing in exactly the same way, as is indicated by the agreement among trees within a given species. In particular, it is difficult to explain the consistently high \(\Delta ^{14}\text{C} \) values of the \(H. \text{pulcherrimum} \) trees. Interestingly, the three trees of this species differed widely in diameter, with one being considerably smaller than the other two (Table 1). For explaining the results with decomposition, we would nevertheless have to assume that all these three trees were affected by fungi in the areas of the stem with the same age, contributing comparable amounts of \(\text{CO}_2 \) to the

<table>
<thead>
<tr>
<th>Tree species</th>
<th>#</th>
<th>Chambers ARQ</th>
<th>In-stem ARQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dry</td>
<td>Wet</td>
</tr>
<tr>
<td>S. amara</td>
<td></td>
<td>1</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.75</td>
</tr>
<tr>
<td>T. paniculata</td>
<td></td>
<td>1</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.80</td>
</tr>
<tr>
<td>H. pulcherrimum</td>
<td></td>
<td>1</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Table 2. Apparent respiratory quotient measured for chamber and in-stem samples. For chambers, data were measured during dry and wet season; for in-stem probes, data are available for two different dates in the dry season (modified from Angert et al. (2012)). Missing data are indicated as not available (n.a.).
overall stem CO₂ pool, which we consider a highly unlikely scenario.

Comparison of our in-stem vs. chamber measurements indicates large differences in respired C age, suggesting that more recently fixed C is added between 5-cm depth and the stem surface in two of the three tree species (*H. pulcherrimum*, *T. paniculata*). We assume that the CO₂ produced in the outermost stem regions derives predominantly from recent assimilates (i.e., ΔΔ¹⁴C = 0) transported in the phloem from the canopy source to the sink organs. As noted above, the CO₂ deeper within the tree stem (ΔΔ¹⁴C > 6‰) could either originate from local mineralization of old storage pools, resulting from the transport of CO₂ respired elsewhere in the stem or roots, or possibly a mixture of both. Interestingly, the trees with the oldest CO₂ inside the stem (*H. pulcherrimum*) are also the trees with the highest wood density and slowest growth rate compared with the two other species investigated. Given observations by Richardson et al. (2012) that the mean age of NSC increases with depth in the stem, we would speculate that perhaps the constant 5-cm depth in-stem probes penetrated to older wood and therefore older NSC in the slowest growing tree, which might explain the greater age of CO₂ in *H. pulcherrimum* stems.

The concentration of CO₂ inside stems is much higher than the ambient air outside the stem, indicating that the diffusion of CO₂ must supply at least some of the CO₂ that accumulates in a chamber placed over the stem surface. Assuming that the accumulated CO₂ represents a mixture of two components: one with the isotopic signature of CO₂ measured with the in-stem probe and the second assumed to be derived from recent photosynthetic products (e.g., in phloem tissue), we can apply an isotope mixing model (Phillips and Gregg 2001) to calculate the relative contributions of each to the measured chamber CO₂ (Figure 4, Table 3). This calculation makes the following assumptions: (i) The age of CO₂ respired in the phloem and the surrounding tissue is zero, i.e., CO₂ produced there preferentially originates from the mineralization of assimilates that were photosynthesized very recently and thus have the same Δ¹⁴C as atmospheric CO₂. (ii) The Δ¹⁴C measured in the in-stem probes is a good approximation of the average isotopic signature of the older stem-internal pool, i.e., of the second source associated with the respiration of local storage pools. This calculation is only possible for trees where we have simultaneous measurements of the Δ¹⁴C of internal and emitted CO₂, and where Δ¹⁴C of the emitted CO₂ was bracketed by the Δ¹⁴C of the assumed sources. Further, if the differences between the emitted and in-stem Δ¹⁴C are small compared with the precision of Δ¹⁴C measurements, it limits the ability to partition sources.

The relative contribution of the two sources to total CO₂ emissions varies widely between the different trees (Table 3). The *H. pulcherrimum* trees, which had the largest difference between in-stem and chamber ¹⁴CO₂, had the most consistent results, with storage C contributing between 15 and 19% of the total emitted CO₂. For the other tree species, the sources were not as isotopically distinct and the estimates vary over a

Figure 4. Illustration of the application of the two-source mixing model by Phillips and Gregg (2001) for calculating the relative contribution of a young and an old pool to the total CO₂ efflux as presented in Table 3. The left side illustrates sampling differences in the in-stem probes vs. the chambers, while the right side illustrates how the isotopic signature of a mixture sample would change depending on the relative contribution of both sources (here given as the percentage of the mixture originating from the older in-stem CO₂ pool).
Table 3. Relative contribution (f) of CO$_2$ from a hypothetically young C pool associated with the metabolizing of assimilates transported in the phloem, and an older pool located deeper within the stem, associated to metabolizing of storage C or transported CO$_2$. Relative contributions were calculated by applying a two-source mixing model as described by Phillips and Gregg (2001) with error propagation. Calculation was done for all available pairs of simultaneous measurement of Δ^{14}C of emitted CO$_2$ and stem-internal CO$_2$, as long as the conditions for the application of the mixing model were met (see the text). Missing data are indicated as not available (n.a.).

<table>
<thead>
<tr>
<th>Tree species</th>
<th>#</th>
<th>Dry season</th>
<th>Wet season</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>f (young) \pm SE</td>
<td>f (old) \pm SE</td>
</tr>
<tr>
<td>S. amara</td>
<td>1</td>
<td>0.37 \pm 0.26</td>
<td>0.63 \pm 0.26</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.76 \pm 0.07</td>
<td>0.24 \pm 0.07</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>T. paniculata</td>
<td>1</td>
<td>0.46 \pm 0.16</td>
<td>0.54 \pm 0.16</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.14 \pm 0.25</td>
<td>0.86 \pm 0.25</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.55 \pm 0.12</td>
<td>0.45 \pm 0.12</td>
</tr>
<tr>
<td>H. pulcherrimum</td>
<td>1</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.85 \pm 0.02</td>
<td>0.15 \pm 0.02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.81 \pm 0.02</td>
<td>0.19 \pm 0.02</td>
</tr>
</tbody>
</table>

Wide range and with much larger calculated standard errors. With reference to Richardson et al. (2012), these findings could be interpreted as a fast cycling young pool, which is characterized by a relatively high contribution to the overall flux, and a slower cycling old pool, which contributes less to the overall flux. It should be noted that the application of a two-source mixing model is based on the implicit assumption that there is no difference between the two CO$_2$ pools with regard to the main transport pathways away from the site of production. With regard to the possibility of CO$_2$ being transported away along with the transpiration stream, this assumption is probably not correct. It is far more likely that much of the CO$_2$ produced in the outer regions of the stem diffuses out of the stem into the atmosphere, while a relatively bigger portion of the CO$_2$ produced deeper within the stem is transported along with the transpiration stream. Thus, our mixing model calculation would likely underestimate the contribution of the internal CO$_2$ pool, and thus the role of storage C pools, to the overall tree CO$_2$ efflux.

In summary, our findings provide clear evidence for the use of several-year-old storage C as a substrate for respiration in tree metabolism. This implies that the assumption of a typical mean turnover time of the assimilate pool that supplies substrates for respiration in trees of >1 year has to be reconsidered, and suggests that these trees make use of C assimilated in previous years on a regular basis. If this can be verified for more trees in other ecosystems, the use of storage reserves can provide a buffer and a potential mechanism for the survival of periods when C assimilation is reduced. Given the question of whether elevated CO$_2$ concentrations in the atmosphere have influenced the allocation to NSC pools (Körner 2003), the dynamics and the amount of NSC reserves is an important factor for describing C balance in trees.

Acknowledgments

We thank our colleagues from the W.M. Keck Carbon Cycle AMS Laboratory at the University of Irvine, California, especially Xiaomei Xu, for their invaluable help with measuring the 14C samples.

Conflict of interest

None declared.

Funding

Research by A.A. and S.E.T. was partly funded by the GIF grant #1139/2011.

References

Muhr et al.

