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ABSTRACT     19 

Skin temperature detection thresholds have been used to measure human cold and warm 20 

sensitivity across the temperature continuum.  They exhibit a sensory zone within which neither 21 

warm nor cold sensations prevail. This zone has been widely assumed to coincide with steady-22 

state local skin temperatures between 32-34ᵒC,  but its underlying neurophysiology has been 23 

rarely investigated.  Here we employ two approaches to characterize the properties of sensory 24 

thermo-neutrality, testing for each whether neutrality shifts along the temperature continuum 25 

depending on adaptation to a preceding thermal state.  The focus is on local spots of skin on the 26 

palm. Ten participants (30.3±4.8 y) underwent two experiments. Experiment 1 established the 27 

cold-to-warm inter-detection-threshold range for the palm’s glabrous skin, and its shift as a 28 

function of 3 starting skin temperatures (26, 31 or 36ᵒC).  For the same conditions, Experiment 2 29 

determined a thermally neutral zone centered around a thermally neutral point in which 30 

thermoreceptors’ activity is balanced.  The zone was found to be narrow (~0.98 to ~1.33ᵒC) 31 

moving with the starting skin temperature over the temperature span 27.5-34.9ᵒC (Pearson r= 32 

0.94; p<0.001). It falls within the cold-to-warm inter-threshold range (width: ~2.25 to ~2.47ᵒC) 33 

but is only half as wide. These findings provide the first quantitative analysis of the local sensory 34 

thermo-neutral zone in humans, indicating that it does not occur only within a specific range of 35 

steady-state skin temperatures (i.e. it shifts across the temperature continuum) and that it differs 36 

from the inter-detection-threshold range both quantitatively and qualitatively. These findings 37 

provide insight into thermoreception neurophysiology. 38 

39 

NEW AND NOTEWORTHY: 40 



Contrary to a widespread concept in human thermoreception, we show that local sensory thermo-41 

neutrality is achievable outside the 32-34ᵒC skin temperature range. We propose that sensory 42 

adaption underlies a new mechanism of temperature integration. Also, we have developed from 43 

vision research a new quantitative test addressing the balance in cutaneous cold and warm 44 

thermoreceptors’ activity. This could have important clinical (assessment of somatosensory 45 

abnormalities in neurological disease) and applied (design of personal comfort systems) 46 

implications.   47 

48 
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52 



INTRODUCTION 53 

Temperature detection in humans is a separate sensory modality (see Filingeri, 2016 for a 54 

comprehensive review), extending in a single dimension in opposite directions (neutral->cool-55 

>cold; neutral->warm->hot). This is in a way similar to the black-grey-white axis in vision,56 

which since Hering (Hering 1874) has been regarded not as unipolar but bi-directional, i.e. 57 

reaching from grey to black on one side and from grey to white on the other, something for 58 

which there is a functional and indeed structural neural basis (see Westheimer, 2007 for a 59 

review).   60 

Detection thresholds have traditionally been the first step in analyzing the perception of sensory 61 

signals; accordingly, extensive knowledge is available about the minimum detectable 62 

temperature increments and decrements of non-noxious thermal stimuli applied to the human 63 

skin (Lele 1954; Kenshalo et al. 1968; Yarnitsky and Ochoa 1991).  64 

We know that detection thresholds are asymmetrical between cold and warm temperatures and 65 

that, depending on the starting skin temperature (Kenshalo et al. 1961) and on the body region 66 

and size of the area stimulated (Stevens et al. 1974; Defrin et al. 2009), temperature increments 67 

or decrements of 0.003 up to 10◦C are required to trigger warm and cold thermal sensations 68 

(Hardy and Oppel 1937; Lele 1954).  From this knowledge it is possible to quantify the inter-69 

detection-threshold range, a range of temperatures within which it is not possible to create a 70 

temperature change sufficient to induce a perceived change in cold and warm sensations (Oppel 71 

and Hardy 1937; Lele 1954; Darian-Smith 1984; Hirosawa et al. 1984).   72 

While threshold studies have been essential for our fundamental understanding of human 73 

thermosensation  and for the development of clinical diagnostic tools (e.g. evaluation of 74 

somatosensory abnormalities) (Arendt-Nielsen and Yarnitsky 2009; Moloney et al. 2012), they 75 



 

have however been limited for assessing the characteristics of sensory thermo-neutrality, where 76 

under normal conditions and functioning, neither a clear warm nor a cold sensation prevail.  77 

A human sensory thermo-neutral zone does indeed appear to exist.  When a resting standard-78 

sized individual (i.e. body mass 70 Kg; body surface area 1.8 m2, clothing insulation: 0.6 clo) 79 

(Du Bois and Du Bois 1916) is exposed to an environment whose ambient temperature  is 80 

~24°C), natural skin temperatures across the body range between ~30 and ~34°C (Hensel 1973; 81 

Gagge and Gonzalez 1996). At these skin temperatures, individuals do not usually report any 82 

prevailing warm or cold thermal sensation and are therefore believed to be in a state of sensory 83 

thermo-neutrality. 84 

Evidence from primate studies has indicated that on-going activity in cold- and warm-sensitive 85 

cutaneous thermoreceptors overlaps at steady state skin temperatures in the range of 32 to 35°C 86 

(Hensel 1973; Darian-Smith 1984). The coincidence of the skin temperature ranges for sensory 87 

thermo-neutrality and for thermoreceptors’ firing balance has therefore contributed to the 88 

prevalent views that 30 to 34°C is the sole range of local skin temperatures within which thermal 89 

neutrality can be achieved (Gagge et al. 1967; Hensel 1973), and also that the sensory thermo-90 

neutral zone depends on neural balance between cold and warm afferent inputs (see Fig. 1 for 91 

steady state response curves at different skin temperatures).  92 

These beliefs are now incorporated into current clinical testing of temperature detection 93 

thresholds, where it is a prescribed and standardized requirement to start the local assessment of 94 

detection thresholds from a baseline skin temperature in the range of  ~30 and ~34 °C (Rolke et 95 

al. 2006a; Backonja et al. 2013), as this is described as the “neutral range” (Rolke et al. 2006b). 96 

However, it is important to highlight here that the perceptual and neurophysiological nature of 97 

the zone of sensory thermo-neutrality between warm and cool sensations is still largely unknown.  98 



While previous report have provided insights on some parameters of thermo-neutrality (e.g. this 99 

could vary from a range of starting temperatures, i.e. 15 - 38ᵒC) (Lele 1954), the latter has never 100 

been assessed directly with a specifically designed quantitative test. 101 

Accordingly, there is a need to examine the properties of the sensory thermo-neutral zone, to 102 

quantify its width, and assess whether it is fixed or shifts with adaptation to preceding skin 103 

temperature. Characterizing the perceptual and neurophysiological nature of sensory thermo-104 

neutral zone could also provide insights into the central integration of peripheral thermal 105 

afferents. 106 

The aim of this study was to characterize the properties of the local cutaneous sensory thermo-107 

neutral zone in humans. To this end, we adapted a psychophysical testing procedure used in 108 

visual neuroscience to assess dichromatic vision (Hurvich and Jameson 1960), to assess sensory 109 

thermo-neutrality on a local representative skin site. Our method is designed to allow a 110 

concurrent assessment of the quantitative (i.e. thermo-neutral temperature and range) and 111 

qualitative (i.e. whether sensations were experienced as warm or cold) aspects of the thermal 112 

stimuli used within the same individual test. It can therefore provide insights not only into the 113 

boundaries of thermal detection (i.e. upper and lower temperature limits of the thermo-neutral 114 

zone) but also into the quality of the sensation experienced within these boundaries (i.e. absence 115 

of prevalence in either cold or warm sensation).  116 

As temperature detection thresholds have been known to change as a function of starting skin 117 

temperatures (e.g. cold and warm thresholds become smaller with colder and warmer skin 118 

temperatures respectively) (Lele 1954; Kenshalo et al. 1968; Hirosawa et al. 1984), it might be 119 

reasonable to hypothesize that the sensory thermo-neutral zone might also similarly shift across 120 

the temperature continuum. Accordingly, we evaluated two hypotheses: 1) the zone of sensory 121 



 

thermo-neutrality falls within the inter-threshold range for warm and cold temperature detection; 122 

2) contrary to a current belief, the sensory thermo-neutral zone shifts across the temperature123 

continuum as a function of starting skin temperature, rather than being maintained only within a 124 

specific range of steady-state skin temperatures. 125 

126 

METHODS 127 

Participants 128 

A power calculation was performed with an α of 0.05, a β of 0.05, and an effect size f of 2.63 129 

(based on pilot testing) to determine a required sample size of 6 individuals for the current study 130 

(G*Power 3 software, Heinrich-Heine-Universität Düsseldorf, Germany). Ten participants, four 131 

females (all Caucasians) and six males (3 Caucasians and 3 Asians) (age: 30.3 ± 4.8 y; body 132 

mass: 67.8 ± 11.1 Kg; height: 171.0 ± 18.0 cm; body surface area: 1.8 ± 0.2 m2), volunteered to 133 

participate in experiments 1 and 2. All participants were college students and junior researchers 134 

without any neural or perceptual contraindications, non-smokers, moderately active (performing 135 

at least 5h of exercise a week) and had lived in the Berkeley area (California, USA) for at least 3 136 

months prior to the test. They were naïve as to the purpose of the experiments and they each 137 

gave written informed consent. Two female participants were tested during the follicular phase 138 

of their menstrual cycle (i.e. within day 1 to 14) while the other two during the luteal phase of 139 

their menstrual cycle (i.e. within day 15 to 28). The latter two participants were also taking oral 140 

contraceptives during the study. All testing occurred during February and March 2016. The 141 

project conformed to the Helsinki Declaration and was approved by the Institutional Committee 142 

for the Protection of Human Subjects of the University of California at Berkeley. All participants 143 

attended a familiarization trial prior to the main experimental sessions. 144 



 

145 

Experimental design  146 

To determine the properties of the sensory thermo-neutral zone we performed two experiments, the 147 

first one involving a traditional approach to temperature detection thresholds, and the second one 148 

involving our new method to assess thermo-neutrality.  149 

In Experiment 1, temperature detection thresholds and their shift as a function of different 150 

starting skin temperatures (i.e. 26, 31 or 36°C) were determined with a classical staircase method 151 

(Rolke et al. 2006b). The resulting inter-threshold range represents a zone of thermal 152 

insensitivity1 where changes in temperature do not give rise to perceptible changes in the on-153 

going thermal sensation (Hensel 1981). In Experiment 2, we characterized the sensory thermo-154 

neutral zone and determined the skin temperature range in which neither warm nor cold 155 

sensation prevail.  This too was done for the same range of starting skin temperatures.  The 156 

center of the palm on the glabrous skin of the hand was chosen as the target local skin site for 157 

assessment in all testing because of its accessibility and of common use within clinical 158 

assessment of temperature thresholds (Walk et al. 2009).  159 

All experiments were performed in an environmental chamber maintained at an ambient 160 

temperature of 25 ᵒC and 50% relative humidity. Participants reported to the laboratory on 3 161 

separate occasions at the same time of day.  During each of the 3 visits to the laboratory, both 162 

temperature detection thresholds (i.e. experiment 1) and thermo-neutral zone (i.e. experiment 2) 163 

were assessed.  The tests were always carried out in the same order, with a 15 minute seated 164 

break period between experiment 1 and 2. The difference between visits consisted in the starting 165 

skin temperature (i.e. 26, 31 or 36°C) from which the experiments were performed.  166 

1 Hensel used the term ‘thermal indifference’ for describing this zone (Hensel 1981).  Although detecting change is 
the same as detecting a ‘difference’, the term ‘indifference ‘ most typically is used to indicate disinterest or 
unimportance.  We therefore use the term ‘insensitivity’ to describe the zone between detection thresholds.   



We chose 26, 31 or 36°C starting skin temperatures as they are in the range of maximal 167 

activation of cold (i.e. 26°C) and warm (i.e. 36ᵒC) thermoreceptors, as well as within their 168 

overlapping area of activation (i.e. 31ᵒC) (Hensel 1981). 169 

Upon arrival to the laboratory, participants changed into t-shirt, running shorts and trainers and 170 

entered the environmental chamber. Five wireless thermistors (iButtons, Maxim) were taped to 171 

five skin sites on the right side of the body (i.e., cheek, abdomen, upper arm, lower back, and 172 

back lower thigh) to record local skin temperatures. The five temperature measurements were 173 

recorded at 1-min intervals throughout the tests, averaged every 5 min, and then weighted 174 

according to the work of Houdas and Ring (Houdas and Ring 1982) to give an estimate of mean 175 

skin temperature for the entire body. Following instrumentation, participants rested on a chair for 176 

15 min to allow for baseline thermometric data to stabilize. Following the stabilization period, to 177 

ensure that pre-testing whole-body and local hand thermal sensation would be within 178 

comfortable ranges, thermal sensations and comfort for whole-body and local hand were 179 

assessed on an ASHRAE 7-point scale (Olesen and Brager 2004). At this point, the experiments 180 

were initiated.  181 

182 

Experiment 1 – Detection thresholds and inter-threshold zone 183 

An electronically controlled thermode with custom written software (see testing apparatus 184 

section below) was used to deliver thermal stimuli to participants’ skin. The probe, mechanically 185 

supported, was gently lowered to make light contact with the skin of the participant’s left palm, 186 

the arm resting comfortably on a table (Fig. 2). Participants were instructed to follow the 187 

instructions on the screen visible to them when prompted. The thermode temperature was 188 

initially set to one of three starting temperatures, 26, 31 or 36°C, and maintained there 189 



throughout the run, except for the 10-sec during which increment or decrement temperature steps 190 

were delivered and participants reported their sensation. After several minutes’ adaptation, a run 191 

was started. 192 

Each run consisted of a 5-s waiting phase (message on screen: “Wait”), during which the probe 193 

temperature was set at the specific starting temperature. The participant was instructed to 194 

consider the local sensation experienced during this phase as a reference sensation. The 5-s phase 195 

was followed by a 4-s warning interval (message on screen: “Get ready”) during which the probe 196 

temperature was raised or lowered by a fixed step (see below for details). At the end of the 4-s 197 

warning interval, a signal appeared (message on screen: “Did you feel a change?”) and the 198 

participant reported on a window tab whether a change in sensation occurred from the one 199 

experienced during the waiting phase (message on screen: “Yes / No”).  (Note: according to 200 

(Hensel 1981) a 4-s interval is sufficient for a temperature pulse to penetrate the skin and reach 201 

thermoreceptors’ depth).  A 6-s interval was available for response. Immediately after the 202 

response the probe was returned to the starting temperature and a new run started. In case of a 203 

late response, the previous temperature stimulus cycle would be repeated. 204 

The temperature stimuli and the way the probe’s temperature raised or lowered during each run 205 

was based on a staircase method. First, when a warm threshold had to be determined, an up-step 206 

stimulus of 2°C from the starting temperature was delivered; depending on whether the 207 

participant detected or not such change, the successive stimulus was either 0.4°C smaller or 208 

greater than the first stimulus respectively. Whenever a stimulus was detected, the following one 209 

would be 0.4°C smaller (i.e. down-step) until the participant no longer detected a change from 210 

the starting temperature. Whenever this occurred, a reversal in the direction of the following 211 

stimulus occurred (i.e. 0.4ᵒC up-step), until the participant again detected a change from the 212 



starting temperature. A test ended whenever a participant moved between up- and down-steps 213 

0.4°C apart six consecutive times. The mean of six pairs of temperatures at which the subject 214 

first sensed and then failed to sense was determined as the participant’s detection threshold for 215 

this condition. Figure 3 presents a schematic representation of how the threshold was determined. 216 

This process was also followed for cold thresholds differing only in that the first stimulus 217 

consisted of a 2°C down-step rather than of an up-step. The size of the inter-threshold zone was 218 

calculated individually based on the difference between the relative cold and warm thresholds. 219 

220 

Experiment 2 – Sensory thermo-neutral zone 221 

During experiment 2, the same thermode as in Experiment 1 was gently applied to the palm of 222 

the hand and its temperature was initially set to one of three starting temperatures, 26, 31 or 223 

36°C , depending on the testing day.  224 

The Experiment 2 testing procedure randomly delivered one of seven temperature stimuli 225 

differing by -3, -2, -1, 0, +1, +2, +3 ᵒC from the starting temperature.  Accordingly, stimuli 226 

ranged between 23 and 29°C for the 26°C starting temperature, between 28 and 34°C for the 31 227 

ᵒC starting temperature, and between 33 and 39 ᵒC for the 36 ᵒC starting temperature.   228 

After an initial 4-s waiting phase, the first temperature stimulus was delivered; 3 s following 229 

delivery the participant was then prompted with a 2-alternative forced choice and had to report 230 

on the screen, if necessary by guessing, whether the stimulus was perceived as “warm” or “cold”.  231 

Once the participant reported the sensation, the probe temperature returned to the starting 232 

temperature, and a 4-s waiting phase initiated, after which a new temperature stimulus was 233 

delivered. Each of the seven temperature stimuli was randomly presented 15 times during each 234 



 

test, cumulating a total of 105 stimuli presentations for each starting temperature.  Figure 4 235 

presents a schematic representation of how a test was performed. 236 

This 2-alternative forced choice paradigm used a binary scoring system, with a “cold” response 237 

designated as 0 and a “warm” response as 1.  105 stimulus presentations constituted a test, after 238 

which the best-fitting Gaussian ogive relating the average score s (0>s>1.0) to the stimulus 239 

temperature was determined for each participant under each starting condition.  Determination of 240 

individual best-fitting Gaussian ogives allowed the calculation of the temperature range 241 

corresponding to sensory thermo-neutrality. Figure 5 presents a schematic representation of how 242 

this range was determined. The temperature value on the 50th percentile on the ogive corresponds 243 

to the point of subjective equality between cold and warm responses. It was therefore considered 244 

to be the neutral temperature, at which neither a cold nor a warm sensation prevails. The 245 

temperature value on the 25th percentile on the ogive corresponds to the point of subjective 246 

equality between cold responses and neutrality. It was considered the lower bound of the neutral 247 

zone, below which a cold sensation begins to prevail over a neutral one. The temperature value 248 

on the 75th percentile on the ogive corresponds to the point of subjective equality between warm 249 

responses and neutrality. It was considered the upper bound of the neutral zone, above which a 250 

warm sensation begins to prevail over a neutral one. Finally, the temperature range between 25th 251 

and 75th percentiles on the ogive corresponds to the width of the sensory thermo-neutral zone for 252 

each participant at that specific starting temperature, representing the temperature range within 253 

which neither cold nor warm sensations prevailed over the neutral. 254 

255 

Testing apparatus  256 



 

A thermosensory analyzer was used (NTA-2, Physitemp, USA), consisting of a control unit 257 

connected to a 1.32 cm2 circular thermal probe (thermode). The probe’s contact surface could be 258 

set to a precision of 0.1ᵒC within the operating range 15-42°C, and was under computer control. 259 

Temperature stimuli were delivered at a rate of temperature change of 2.43ᵒC/s. Compliance was 260 

measured by independently monitoring the skin temperature beneath the probe with a calibrated 261 

thermocouple.    262 

The delivery of the testing paradigms used in the experiments was fully automated via two 263 

custom-written python scripts, which also allowed the on-line visualization and recording of 264 

testing results. During both experiments, recorded temperatures corresponding to thresholds and 265 

neutral zone were that of the thermode, as acquired via the computer interface. It is understood 266 

that transmission, diffusion and transduction effects would make the intra-cutaneous receptor 267 

stimuli differ in unknown ways depending on their depth and areal density, but this study follows 268 

a Brindley Class A psychophysical experiment in addressing the outer arc between temperatures 269 

delivered to the skin surface and subject responses (Brindley 1970). 270 

271 

Statistical analysis 272 

All data are reported as mean ± standard deviation (SD) and 95% confidence intervals (CI) 273 

unless otherwise stated. Temperature detection thresholds and values for the width of the inter-274 

threshold range were analyzed using a two-way repeated measures ANOVA with the 275 

independent factor of starting skin temperature (3 levels: 26, 31, 36ᵒC) and modality (2 levels: 276 

cold, warm); and a one-way repeated measures ANOVA with the independent factor of starting 277 

skin temperature (3 levels: 26, 31, 36ᵒC). Neutral temperatures and values for the width of the 278 

thermo-neutral zone were both analyzed using a one-way repeated measures ANOVA with the 279 



 

independent factor of starting temperature (3 levels: 26, 31, 36ᵒC). To assess whether the neutral 280 

temperature would be a function of the starting skin temperature, we assessed the relationship 281 

between these two variables by means of correlation and linear regression analysis. Finally, 282 

mean skin temperature values recorded during each test and values for whole-body thermal 283 

sensation and comfort were analyzed separately using a one-way repeated measures ANOVA 284 

with the independent factor of starting temperature (3 levels: 26, 31, 36ᵒC). A Greenhouse-285 

Geisser correction was applied if the assumption of sphericity was violated. In the event of a 286 

significant main effect, post-hoc analysis was performed using Tukey’s range test for multiple 287 

comparisons. Statistical analysis was performed using GraphPad Prism (version 6.0, GraphPad 288 

Software, La Jolla, CA). 289 

290 

RESULTS 291 

Data Exclusion  292 

Though the majority of our participants produced concordant results, there were two exceptions. 293 

During Experiment 1, two participants did not detect temperature changes within the entire non-294 

noxious range (between ~15 and ~42ᵒC). Accordingly, detection threshold data are based on 295 

eight participants. Similarly, during Experiment 2, one participant reported the sensation of 296 

“warm” for all temperature stimuli at 26ᵒC, and another “cold” for all stimuli at 26ᵒC. These 297 

individuals’ responses under all other conditions and in Experiment 1 were not exceptional.  298 

Accordingly, data from these two subjects were excluded from the ogive ensemble average, 299 

which is therefore also based on eight participants.  300 

301 

Experiment 1 – Detection thresholds and inter-threshold range 302 



 

As can be observed in figure 6A, thermal detection thresholds were found to be asymmetrical, 303 

with warm thresholds being generally greater than cold ones (F(1, 7)=23.79; p=0.002). For 304 

example, at the 31ᵒC starting skin temperature, the warm threshold corresponds to +2.07 ± 1.33 305 

ᵒC while the cold threshold to -0.40 ± 0.30 ᵒC. It was also found that thresholds changed 306 

significantly depending on the starting skin temperature (F(2, 14)=8.513; p=0.004) (Fig. 6A). For 307 

example, at the 36ᵒC starting skin temperature, the warm threshold is significantly smaller (mean 308 

difference: -1.62 ᵒC; 95% CI -3.02 to -0.22ᵒC; p=0.021), while the cold threshold is significantly 309 

larger (mean difference: +1.40 ᵒC; 95% CI +2.80 to +0.004ᵒC; p=0.050) than the values recorded 310 

at the 31ᵒC starting skin temperature. Overall, these results indicate that at higher starting skin 311 

temperatures, participants exhibited a greater sensitivity to warmth and a lower sensitivity to cold. 312 

While detection thresholds changed depending on the starting skin temperature, the width of the 313 

inter-threshold range remained constant (F(1.474, 10.32) = 0.04; p=0.91), with average values of  314 

2.36 (±2.63), 2.47 (±1.35) and 2.25 ᵒC (±1.06) at 26, 31 and 36ᵒC starting skin temperatures 315 

respectively (Fig. 6B). 316 

317 

Experiment 2 – Sensory thermo-neutral zone 318 

Figure 7 shows Gaussian ogives fitting results from a typical participant performing the test at 319 

the 26, 31 and 36ᵒC starting skin temperatures.  320 

Overall, neutral temperatures were found to change significantly depending on the starting skin 321 

temperature (F(1.366, 9.564)=85.43; p<0.001), with average values being 27.46 (±1.54), 31.07 (±0.77) 322 

and 34.92ᵒC (±0.80) at 26, 31 and 36ᵒC starting skin temperatures respectively. As seen in 323 

Figure 8A, neutral temperatures are significantly associated with the starting skin temperatures 324 

(Pearson r= 0.94; p<0.001), the latter factor explaining 89% of the variability in the neutral 325 



 

temperatures. While neutral temperatures change depending on the starting skin temperature, the 326 

width of the thermo-neutral zone remains constant (F(1.55, 10.85)=0.6226; p=0.515), with average 327 

values of  1.27 (±1.13), 0.98 (±1.11) and 1.33 ᵒC (±0.70) at 26, 31 and 26ᵒC starting skin 328 

temperatures respectively (Fig. 8B). 329 

330 

Mean skin temperature and whole-body thermal sensation and comfort 331 

Mean skin temperature values did not differ (F(1.502, 9.013)=0.3016; p=0.686) across all 332 

experiments and conditions, being on average 34.15 ± 0.58, 33.97 ± 0.74 and 34.20 ± 0.65ᵒC at 333 

26, 31 and 36ᵒC starting skin temperature respectively. Similarly, whole-body thermal sensation 334 

(F(1.747, 15.72)=1.982; p=0.173) and comfort (F(1.966, 17.69)=3.047; p=0.0737) did not differ across all 335 

experiments and conditions, being on average in the range of ‘neutral’ to ‘slightly warm’ and of 336 

‘just comfortable’ to ‘comfortable’ respectively. 337 

338 

DISCUSSION 339 

Figure 9 summarizes the primary findings of these experiments:  the palm’s average warm and 340 

cold detection thresholds and related inter-threshold range, as well as the neutral temperatures 341 

and widths of the thermo-neutral zone as functions of the three starting skin temperatures 342 

assessed.  It is seen that the human sensory thermo-neutral zone is quite narrow (i.e. ~0.98 to 343 

~1.33 ᵒC), that over a considerable span of skin temperatures (between 27.5 and 34.9 ᵒC) it 344 

moves along with the starting skin temperature while maintaining a relatively constant width, 345 

and that it is contained within the thermally insensitive zone between the cool and warm 346 

detection thresholds. Both the sensory thermo-neutral zone and the inter-threshold range depend 347 

on the starting skin temperature; but they do not coincide. The latter is almost twice as wide 348 



 

(~2.25 to ~2.47ᵒC versus ~0.98 to ~1.33ᵒC) and has different offsets on the warm side versus the 349 

cold side.    350 

Altogether, our results indicate that sensory thermo-neutrality is not constrained to a specific skin 351 

temperature range (i.e. 32-34ᵒC) as previously thought and that, at least at a local level, can be 352 

shifted well outside this range. The observed shift in sensory thermo-neutrality across a skin 353 

temperature range of 27.5 and 34.9 ᵒC is likely the result of some form of sensory and 354 

neurophysiological adaptation.  355 

356 

Adaptive sensory thermo-neutrality: psychophysical substrates 357 

Comparing the results of the traditional staircase method used for determining detection 358 

thresholds against results from our new thermo-neutral zone method highlights the difference 359 

between qualitative and quantitative aspects of thermal sensation.  The dissociation between the 360 

quantitative (i.e. temperature detection threshold) and qualitative (whether a sensation is cool or 361 

warm) aspects of thermal sensation was first described by Kenshalo et al. (Kenshalo et al. 1961). 362 

This distinction is important in the understanding of thermoneutrality.  For example, the 363 

observation that a drop of almost 2ᵒC in skin temperature is required to trigger a change in 364 

sensation in skin adapted to 36ᵒC (see Fig. 6A) does not necessarily imply that temperatures 365 

within the 36 to 34.2ᵒC range are not perceived as warm. It could be that the ongoing sensation 366 

at 36ᵒC is that of warmth and that there is a ~2ᵒC range of thermal insensitivity to either warm or 367 

cool temperature changes.  The changes to skin temperature in detection threshold tests could be 368 

perceived by the subject as diminishing (e.g. “less warm”) or increasing (i.e. “progressively 369 

colder”) the existing sensation, or perceived as a switch to the opposite sensation.   370 



 

Hence, the staircase method discovers a zone of thermal insensitivity (in which temperature 371 

might change without conscious detection) that is not synonymous with sensory neutrality as 372 

discovered by our new test procedure.  373 

It is important to note that the difference observed between thermal insensitivity and neutrality is 374 

larger on the warm side of the temperature spectrum; the lower end of the thermo-neutral zone is 375 

closer to the cold detection threshold (see Fig. 9). The larger difference between the warm 376 

detection threshold and the upper margin of the thermo-neutral zone may be evidence of a 377 

greater temperature change needed to trigger a clear change in sensation (i.e. an unmistakable 378 

warm sensation) than the change needed to induce a loss of thermal neutrality. Cutaneous warm 379 

sensitivity appears to be lower than cold sensitivity due to lower density of warm-sensitive skin 380 

afferents (Filingeri 2016) and in their neurophysiological properties (e.g. warm thermoreceptors 381 

have significantly lower conduction velocities than cold thermoreceptors) (Darian-Smith 1973; 382 

Darian-Smith et al. 1979). Differences in depth of warm and cold receptors could also be a likely 383 

factor.   384 

385 

Adaptive sensory thermo-neutrality: neural substrates  386 

In mammalian models, physiological recording of the afferent neurons has revealed rather 387 

invariant and overlapping impulse rates in cold- and warm-sensitive cutaneous thermoreceptors 388 

at steady state skin temperatures in the range of 32 to 35ᵒC (Hensel 1973; Darian-Smith 1984). 389 

This observation has contributed to the concept that simultaneous afferent firing represents the 390 

neural substrate of sensory thermal neutrality (Hensel 1973, 1981). Accordingly, it would be 391 

reasonable to hypothesize that, as long as there is balance in firing rates between cold and warm 392 



 

thermoreceptors, thermo-neutrality might be experienced outside the 32 to 35ᵒC skin temperature 393 

range. 394 

It is known that at temperatures below the range of 30 to 34 °C, cold thermoreceptors show an 395 

increase in steady-state discharge frequency, while warm thermoreceptors become progressively 396 

silent; similar responses (however in the opposite direction) occur at temperatures above the 397 

range of 30 to 34 °C (Hensel and Kenshalo 1969; Hensel and Iggo 1971; Johnson 1973). Such 398 

changes in the balance between warm and cold receptors would indicate that if neutrality were 399 

the result of a balanced neural activity, the same would not be achievable at temperatures above 400 

or below 30–34 °C, unless some mechanism changed the reciprocal activity in warm and cold 401 

thermoreceptors. 402 

In this respect, an important feature of thermal integration in cutaneous first-order thermo-403 

sensory neurons is adaptation, a phenomenon with both short- (Darian-Smith 1984) and long-404 

term components (Kozyreva 2006). Cutaneous thermoreceptors are sensitive to dynamic changes 405 

in temperature, and undergo a decrease over time in their discharge frequency at a maintained 406 

steady state skin temperature (Darian-Smith 1984).  This underlies the progressive decrease in 407 

the magnitude of an on-going thermal sensation following initial exposure to a thermal stimulus 408 

(Kenshalo and Scott 1966).  409 

It could be speculated that the ongoing discharge of cold or warm thermoreceptors adapted to 410 

temperatures outside the overlapping range of steady state firing (30–34 °C skin temperature) 411 

would diminish within seconds from the initial change in skin temperature. The initial thermal 412 

sensation (e.g. coldness) experienced outside the 30–34 °C range would be reduced in its 413 

magnitude (i.e. less cold) to an extent proportional to the reduction in (e.g. cold) thermoreceptors’ 414 

firing rate.  415 



 

It could be argued that such a reduction in firing rate in the primarily active class of 416 

thermoreceptors (e.g. cold) would still be not enough to re-establish neural balance (hence 417 

sensory neutrality) between both classes of thermoreceptors. The results of this study tend to 418 

confirm this argument.  When starting at temperatures of 26 or 36ᵒC, thermo-neutrality did not 419 

occur exactly at 26 or 36ᵒC, but at skin temperatures slightly above and below these values (see 420 

Fig. 9). The presence of these temperature differences supports the possibility that at those skin 421 

temperatures experienced as neutral, neural balance between warm and cold receptors could have 422 

been occurring.  423 

Let us take the example of the 26ᵒC starting temperature. Under these conditions, the initial 424 

increase in firing rate in cold receptors (along with the silencing of warm receptors) would have 425 

likely been reduced (along with the initial cold sensation) after adaption had occurred (e.g. 426 

seconds after the initial exposure). At this point, a slight increase in skin temperature (as the one 427 

required to reach the neutral temperature recorded here) would have further suppressed the 428 

already low on-going firing in the cold receptors, making the balance in activity between the 429 

nearly silent warm receptors, and the minimally active cold receptors, almost “neutral”. From a 430 

sensory point of view, the warming-induced reduction in the on-going cold sensation would have 431 

likely passed through a “neutral state” before being experienced as a clearly detectable warm 432 

sensation. This is in line with previous psychophysical findings which have shown that at 433 

adapting skin temperatures outside the thermoregulatory neutral range (i.e. <30-34°C<), sudden 434 

changes in skin temperature are initially perceived as reducing the initial persisting thermal 435 

sensation (e.g. stimulus perceived as less cold), before inducing new thermal sensations (e.g. 436 

warm sensation) aligned to the direction of the temperature change (e.g. increase in temperature) 437 

(Kenshalo et al. 1961). In this particular case, changes in skin temperature from adapting values 438 



 

outside the 30-34°C range would initially reduce activity in cold fibers before reaching the level 439 

of maximal activation of warm receptors. This, along with the fact that warm sensitive fibers 440 

have a lower peak frequency response and lower cumulative impulses to sudden temperature 441 

changes when adapted to temperatures below the thermo-neutral range (Darian-Smith et al. 442 

1979), could explain why at skin temperatures outside the 30 – 34 °C range, sudden changes in 443 

skin temperature are not immediately experienced as the sensation expected for the resulting 444 

direction of temperature change, but are instead experienced as a reduction in the intensity of the 445 

opposite thermal sensation. 446 

Altogether, the evidence presented above would support the contention that the lack of a 447 

prevailing warm or cold sensation experienced outside the range of steady-state skin 448 

temperatures (i.e. ~30 to ~34ᵒC) traditionally considered to provide thermosensory neutrality 449 

(Gagge et al. 1967) has a neural substrate of balanced activity between cold and warm sensitive 450 

thermoreceptors, once these have adapted to cooler or warmer skin temperatures. It would also 451 

appear that whether the current thermal experience itself is characterized as warm, cold, or 452 

thermally neutral will depend on how the difference in the maintained discharge rates from the 453 

periphery are preserved or modulated as they are handed on to  higher neural centers in the spinal 454 

cord, brain stem and cortical regions (Filingeri et al. 2017). 455 

Finally, mention should be made that we encountered, even among only 10 not obviously 456 

unsuitable participants, two who responded quite differently from the others, and not just by 457 

magnitudes that might be thought to be still within a range of normal scatter.  In view of the ion-458 

channel molecule receptor basis of thermosensation (Vriens et al. 2014), for which genetic 459 

variation is to be expected, and in accord with the now widely-understood molecular genetic 460 

basis of color vision and its deficiencies, we expect that the application of the methods described 461 



 

here will be useful for probing individual differences in thermal sensitivity in both health and 462 

neurological disease, as well as possible psychophysical and behavioral correlates of molecular 463 

heterogeneity. 464 

465 

Other body sites 466 

A potential limitation of this study is that experiments were conducted on one local 467 

representative skin site. To address this, our group used these same methods to obtain 468 

preliminary results on another skin site (volar surface of the forearm) in 5 participants (Fig. 10). 469 

It can be observed that the forearm results closely match those for the palm (compare figures 9 470 

and 10). The forearm thermo-neutral zone is also contained within the inter-threshold range, and 471 

both zones shift with the starting skin temperature. Despite the low sample size, such patterns are 472 

already statistically significant. Interestingly, the width of the inter-threshold and thermo-neutral 473 

zones is wider in the forearm than in the palm. This observation could indicate lower thermal 474 

sensitivity in the forearm as compared to the palm.  Overall, it would therefore appear that 475 

similar mechanisms of sensory thermo-neutrality could be occurring across different skin regions 476 

and that the methods tested here could be also used to characterize regional differences in these 477 

sensory processes.  478 

Further studies will also be necessary to assess whether the width of the sensory thermo-neutral 479 

zone changes with the size of the skin region affected. Recent evidence indicates that the whole-480 

body skin temperature range for perceptual comfort (and possibly also for neutrality) might not 481 

coincide with the classic thermoregulatory thermo-neutral zone (Kingma et al. 2014). As spatial 482 

summation has been shown to play a significant role in afferent thermal integration (Stevens et al. 483 

1974), it is anticipated that if the entire skin surface of the body is considered as the ‘target area’, 484 



 

the dynamic neutral range observed here will have altered width and positioning on the 485 

temperature spectrum.  486 

487 

PERSPECTIVES 488 

From a fundamental perspective, determining the characteristics of the sensory thermos-neutral 489 

zone is essential to understanding whether and how the balance in activity between cold- and 490 

warm-sensitive afferents influences thermal sensations, whether shifts in this balance alter output 491 

sensations, and whether central modulation of peripheral afferents occurs (Filingeri et al. 2017). 492 

Clinically, this zone could be used as an objective index of neural balance in cold and warm 493 

afferents integration, much as the ON-OFF balance in the visual processing of blackness and 494 

whiteness represents for visual integration (Westheimer 2007). Such a quantitative approach 495 

could be useful in evaluating somatosensory abnormalities in neurological patients (e.g. Multiple 496 

Sclerosis, Parkinson’s Disease). 497 

From an applied perspective, characterizing the sensory thermo-neutral zone is important in the 498 

field of indoor thermal comfort (Kingma et al. 2014).  First, traditional thermo-physiological 499 

modeling is based on neutral set-points whose typically fixed values strongly influence predicted 500 

outcomes.  Second, in the effort to reduce building energy consumption and its impact on climate 501 

change (Kingma and van Marken Lichtenbelt 2015), there is major benefit in harnessing 502 

occupants’ ability to adapt to the environment (de Dear and Brager 1998; Hoyt et al. 2015).  One 503 

adaptive opportunity is in ‘personal comfort systems’ that directly heat/cool parts of occupants, 504 

such as heated/cooled chairs (Pasut et al. 2015) and local devices that condition hand, foot, and 505 

face (Zhang et al. 2015). Such systems aim at providing thermal neutrality and comfort within 506 

environments that are cooler or warmer than the traditional range of comfortable indoor 507 



 

temperatures. Understanding sensory thermo-neutrality in such complex thermal environments is 508 

key to designing energy-efficient approaches to indoor thermal comfort.  509 

510 

CONCLUSION 511 

For the first time to our knowledge, we have provided a quantitative mapping of the human 512 

sensory thermo-neutral zone and shown that, at least at a local level, this does not lie only within 513 

a specific range of steady-state skin temperatures, but that it shifts across the temperature 514 

continuum as a function of the starting skin temperature, while maintaining a relatively constant 515 

width. These findings highlight a hitherto unexamined feature of human thermoreception, that 516 

thermo-sensory neutrality is an adaptive phenomenon.  517 

518 
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FIGURE CAPTIONS 635 

Figure 1.  A schematic representation of the coincidence of the temperature ranges for sensory 636 

thermo-neutrality and for thermoreceptors’ firing balance within the 30 to 34ᵒC temperature-637 

dependent activity in peripheral cold- and warm-sensitive thermoreceptors and related cold, 638 

warm and neutral zones. 639 

Figure 2. Experimental set up. The 1.32 cm2 round thermal probe (red circle) is held in light 640 

contact with the participant’s left palm, the arm resting comfortably on a table.  The participant is 641 

prompted by a signal on a computer screen and reports the response by activating a mouse button.  642 

Figure 3. Determination of individual warm (A) and cold (B) temperature detection thresholds 643 

with the staircase method. This schematic representation shows data from a representative 644 

participant. To determine a threshold, the probe’s temperature raised or lowered during each run 645 

as following. First, an up-step (if determining a warm threshold) or a down-step (if determining a 646 

cold threshold) stimulus of 2ᵒC from the starting temperature was delivered; depending on 647 

whether the participant detected or not such change, the successive stimulus was either 0.4 ᵒC 648 

smaller or greater than the first stimulus respectively. Whenever a stimulus was detected, the 649 

following one would be 0.4 ᵒC smaller (i.e. down-step) until the participant no longer detected a 650 

change from the starting temperature. Whenever this occurred, a reversal in the direction of the 651 

following stimulus occurred (i.e. 0.4 ᵒC up-step), until the participant detected again a change 652 

from the starting temperature. A test ended whenever a participant moved between up- and 653 

down-steps 0.4 ᵒC apart for six consecutive times. Accordingly, tests presented variable duration 654 

(as it can be observed in the figure when comparing panel A and B) depending on participants’ 655 

performance. The mean of six pairs of temperatures at which the subject first sensed and then 656 

failed to sense was determined as the participant’s detection threshold. Warm and cold thresholds 657 



 

where assessed separately and the inter-threshold range was calculated based on the sum of the 658 

relative cold and warm thresholds. 659 

Figure 4. The testing procedure used during Experiment 2. This consisted in randomly 660 

delivering one of seven temperature stimuli differing by -3, -2, -1, 0, +1, +2, +3 ᵒC from either 661 

26, 31 or 36ᵒC starting temperature. Each of the seven temperature stimuli was randomly 662 

presented 15 times during each test, cumulating a total of 105 stimuli presentations for each 663 

starting temperature. Whenever a temperature stimulus was delivered, the participant was then 664 

prompted with a 2-alternative forced choice and had to report on the screen, if necessary by 665 

guessing, whether the stimulus was perceived as “warm” or “cold”.  Once the participant 666 

reported the sensation, the probe temperature returned to the starting temperature, and a 4-s 667 

waiting phase initiated, after which a new temperature stimulus was delivered.  668 

Figure 5. Determination of individual temperature range corresponding to sensory thermo-669 

neutrality. This schematic representation shows a hypothetical Gaussian ogive resulting from 105 670 

scores (i.e. warm or cold) resulting from exposure to 7 temperature stimuli in the 28-34 ᵒC range. 671 

The 50th percentile on the ogive corresponds to the point of subjective equality between cold and 672 

warm responses and it is therefore considered as the neutral temperature. The temperature values 673 

on the 25th and 75th percentiles on the ogive corresponded to the points of subjective equality 674 

between cold and neutral and between warm and neutral responses respectively, and are 675 

therefore considered as the lower and upper bounds of the thermo-neutral zone. Accordingly, the 676 

temperature range between 25th and 75th percentiles on the ogive corresponds to the width of the 677 

sensory thermo-neutral zone. 678 

Figure 6. Detection thresholds and inter-threshold range. Panel A shows relative mean (n= 8) 679 

and 95% CI values for changes in skin temperature required to induce a detectable warm and 680 



 

cold sensation at different starting skin temperatures (Tsk) (note: mean absolute detection 681 

thresholds for each starting Tsk are shown parenthetically). Panel B shows individual and mean 682 

(n= 8) and 95% CI values for inter-threshold ranges at different starting skin temperatures. * 683 

denotes p<0.05. 684 

Figure 7. Frequency of thermal responses as a function of starting skin temperature (26, 31 and 685 

36ᵒC) for a typical participant. Seven stimuli were applied with probe temperature steps 686 

randomly selected to differ  -3, -2, -1, 0, +1, +2 or +3ᵒC from the starting skin temperatures 687 

(indicated by the vertical dashed lines). A cold response is scored 0, a warm response 1, and a 688 

Gaussian ogive fitted to the seven points. It yields a mean value, the temperature of which score 689 

is 0.5 and hence midway between the temperatures at which 25% of stimuli would be sensed as 690 

cooler and the temperature at which 25% as warmer. The mean represents measure of the 691 

thermo-neutral temperature (indicated by the horizontal dashed line originating at y=0.5) while 692 

the 25th and 75th percentile represent upper and lower limits of the thermo-neutral zone (indicated 693 

by the horizontal dashed lines originating at y= 0.25; 0.75). Separate experimental runs were 694 

carried out at base skin temperature of 26, 31 and 36ᵒC. Each curve is based on 105 stimuli 695 

presentations in random order.  696 

Figure 8. Neutral temperature and thermo-neutral zone. Panel A shows individual data (n=8) for 697 

calculated neutral temperatures as a function of different starting skin temperatures (Tsk). 698 

Regression line with 95% CI band is pictured. Panel B shows individual, mean (n= 8) and 95% 699 

CI values for the width of the thermo-neutral zone at different starting skin temperatures.  700 

Figure 9. Palm’s inter-threshold and thermo-neutral zones. Mean values (n=8) for warm and 701 

cold detection thresholds and related inter-threshold range, as well as neutral temperatures and 702 

width of the thermo-neutral zone, as a function the three starting skin temperatures (Tsk) assessed, 703 



 

are pictured. CI intervals are given in Figure 4 for temperature thresholds and in Figure 6 for the 704 

thermo-neutral zone. 705 

Figure 10. Forearm’s inter-threshold and thermo-neutral zones. Mean values (n=5) for warm and 706 

cold detection thresholds and related inter-threshold range, as well as neutral temperatures and 707 

width of the thermo-neutral zone, as a function the three starting skin temperatures (Tsk)  708 

assessed, are pictured. 709 
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