Testing local and global stressor impacts on a coastal foundation species using an ecologically realistic framework

Permalink
https://escholarship.org/uc/item/1tn0x73s

Journal
Global Change Biology, 21(7)

ISSN
1354-1013

Authors
Cheng, BS
Bible, JM
Chang, AL
et al.

Publication Date
2015

DOI
10.1111/gcb.12895

Peer reviewed
Testing local and global stressor impacts on a coastal foundation species using an ecologically realistic framework

BRIAN S. CHENG1,2, JILLIAN M. BIBLE1,3, ANDREW L. CHANG4, MATTHEW C. FERNER4, KERSTIN WASSON5, CHELA J. ZABIN2, MARILYN LATTA6, ANNA DECK4, ANNE E. TODGHAM7 and EDWIN D. GROSHOLZ1,2
1Bodega Marine Laboratory, University of California, Davis, Davis, CA, USA, 2Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA, 3Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA, 4San Francisco Bay National Estuarine Research Reserve, Tiburon, CA, USA, 5Elkhorn Slough National Estuarine Research Reserve, Watsonville, CA, USA, 6California State Coastal Conservancy, Oakland, CA, USA, 7Department of Animal Science, University of California, Davis, Davis, CA, USA

Abstract

Despite the abundance of literature on organismal responses to multiple environmental stressors, most studies have not matched the timing of experimental manipulations with the temporal pattern of stressors in nature. We test the interactive effects of diel-cycling hypoxia with both warming and decreased salinities using ecologically realistic exposures. Surprisingly, we found no evidence of negative synergistic effects on Olympia oyster growth; rather, we found only additive and opposing effects of hypoxia (detrimental) and warming (beneficial). We suspect that diel-cycling provided a temporal refuge that allowed physiological compensation. We also tested for latent effects of warming and hypoxia to low-salinity tolerance using a seasonal delay between stressor events. However, we did not find a latent effect, rather a threshold survival response to low salinity that was independent of early life-history exposure to warming or hypoxia. The absence of synergism is likely the result of stressor treatments that mirror the natural timing of environmental stressors. We provide environmental context for laboratory experimental data by examining field time series environmental data from four North American west coast estuaries and find heterogeneous environmental signals that characterize each estuary, suggesting that the potential stressor exposure to oysters will drastically differ over moderate spatial scales. This heterogeneity implies that efforts to conserve and restore oysters will require an adaptive approach that incorporates knowledge of local conditions. We conclude that studies of multiple environmental stressors can be greatly improved by integrating ecologically realistic exposure and timing of stressors found in nature with organismal life-history traits.

Keywords: additive, climate change, diel-cycling hypoxia, latent, multiple stressors, Olympia oyster, Ostrea lurida, salinity, synergy, warming

Received 16 October 2014; revised version received 16 January 2015 and accepted 22 January 2015

Introduction

Climate change is predicted to have substantial effects on nearly all living organisms planetwide (Walther et al., 2002; Thomas et al., 2004). In addition, local-scale environmental stressors (e.g. land-use change, invasive species, pathogens, contaminants) operate in conjunction with climate change and can have large implications for organismal function and population persistence (Sala et al., 2000; Jetz et al., 2007). Both global and local stressors can interact in nonlinear ways that can produce sudden transitions between alternate states (e.g. clear vs. eutrophic ‘green’ lakes; Scheffer et al., 2001; Hobbs et al., 2009), and can frustrate attempts to predict dynamics based on responses to individual stressors. To understand the potential for interacting effects in coastal systems, there has been a proliferation of research investigating the effects of multiple stressors (both global and local in scale) on a range of organisms (e.g. Vinebrooke et al., 2004; Crain et al., 2008; Todgham & Stillman, 2013). While the majority of previous studies have tested simultaneous and constant stress, the temporal patterning of multiple stressors in nature is often not simultaneous and exhibits variation that may critically alter organismal responses.

Developing a generalized theory of organismal responses to multiple stressor impacts has proven
challenging, in part because of complex variation in the temporal and spatial extent of environmental stressors in nature (Schulte et al., 2011; Niehaus et al., 2012; Pincebourde et al., 2012). An individual stressor may be constant or variable across timescales (e.g. exhibiting diel-cycling, seasonal, or annual variation); however, most stressor experiments utilize constant stressor treatments (‘steady state experiments’, Davenport, 1982; Schulte et al., 2011), perhaps so that effects can be easily compared across systems and/or because of logistical constraints. In addition, when considering multiple stressors, they may manifest as coincident (simultaneous), sequential, or latent (decoupled in time) stressors. Sequential and latent effects have been well described in response to single stressors (Pechenik, 2006; Hettenger et al., 2012; Scott & Johnston, 2012), but these timescales have not been incorporated into multiple stressor research. The need for ‘fluctuating multivariate experimental approaches’ has long been recognized (Alderdice, 1963; Davenport, 1982; Wheatly, 1988), but much recent environmental stressor work has largely focused on constant stressor treatments (but see Niehaus et al., 2012; Pincebourde et al., 2012). As such, there is a pressing need to incorporate ecological realism in studies of multiple stressors to accurately assess the impacts of local- and global-scale environmental change (Wernberg et al., 2012).

Multiple stressors may produce additive (linear) effects that are cumulative and reflect the sum of each individual effect alone. Alternatively, multiple stressors can result in synergistic or antagonistic interactions (nonlinear effects) that are greater than or less than the sum of each individual effect, respectively (Crain et al., 2008). One mechanism that may produce nonlinear effects is cross-tolerance, when one stressor increases tolerance to a secondary stressor, potentially resulting in stressor antagonism. Cross-tolerance is thought to increase an organism’s ability to mount a cellular stress response to secondary stressors (Todgham et al., 2005). In contrast, nonlinear effects may also arise from cross-susceptibility, when a stressor reduces tolerance to another stressor (Chen & Stillman, 2012), potentially inducing synergistic effects. For example, higher temperature causes an exponential increase in metabolic rates, resulting in increased oxygen demand, which can exacerbate the impacts of hypoxia (oxygen-depleted waters; Vaquer-Sunyer & Duarte, 2008; McBryan et al., 2013).

Among the many important global stressors is the warming of surface waters, which can influence the physiology and ecology of virtually all aquatic organisms (Rosenzweig et al., 2008), and even small increases in temperature can significantly impair physiological function (Pörtner & Knust, 2007). Warming in coastal ecosystems can occur in tandem with other global-scale stressors (e.g. ocean acidification; Parker et al., 2010; Byrne, 2011; Gazeau et al., 2013) and/or local stressors such as hypoxia (Vaquer-Sunyer & Duarte, 2008). Hypoxia is increasing in spatial extent and intensity in large part due to greater anthropogenic nutrient input (Diaz & Rosenberg, 2008). Furthermore, hypoxia is hypothesized to synergistically interact with warming because warmer waters hold less dissolved oxygen and promote a more stratified water column that limits the diffusion of oxygen into bottom waters (Vaquer-Sunyer & Duarte, 2008; Altieri & Gedan, 2014). Warming also increases the metabolic rate and oxygen demand of organisms and can interact with hypoxia to reduce survival times under oxygen depletion (Vaquer-Sunyer & Duarte, 2011). However, these conclusions are derived from studies that exposed species to constant hypoxia and warming conditions. Diel-cycling hypoxia (daily oscillation of oxygen depletion driven by the balance of photosynthesis and respiration) is commonly observed in near-shore marine ecosystems (Diaz & Rosenberg, 2008), and the temporal variability of this stressor may alter its interaction with temperature, but has not been examined. Hypoxia and warming may also interact with latent environmental stressors, such as low salinity, that are driven by changing patterns of precipitation. In this case, atmospheric warming drives a near exponential increase in atmospheric water-holding capacity, increasing the frequency of extreme precipitation events (Bromirski et al., 2003; Min et al., 2011) that can substantially reduce seawater salinity and increase the osmoregulatory stress experienced by estuarine organisms. However, estuaries in Mediterranean climates that experience distinct wet and dry seasons, such as those along the coasts of California and southern Oregon, are typically exposed to low-salinity events only during the winter wet season and are temporally decoupled from the summer dry season when maximum warming and hypoxia occur.

Global and local stressors are negatively affecting coastal ecosystems and critical species within them such as oysters (Lotze et al., 2006; Waldbusser & Salisbury, 2014). Worldwide, oyster stocks have suffered up to 90% declines in abundance, and as much as 85% of oyster reefs have been entirely eliminated following overfishing and habitat degradation (Beck et al., 2011; Zu Ermgassen et al., 2012). Along the west coast of North America, Olympia oysters (Ostrea lurida) are an important foundation species that increase the diversity of associated species by provisioning additional habitat (Kimbro & Grosholz, 2006). Oysters settle from a larval planktonic stage in the summer when they may be exposed concurrently to diel-cycling hypoxia (Hughes et al., 2011) and thermal stress (Fig. 1). If oysters
survive these stressors, they then experience benign environmental conditions (i.e. normoxia, decreasing temperature, high salinity) for several months until winter storms deliver precipitation that reduces estuarine salinity and increases osmoregulatory stress (Fig. 1).

Here, we used an ecologically realistic framework to explore multiple stressor impacts upon Olympia oysters, a species of conservation and restoration concern (McGraw, 2009). Our primary goal was to experimentally examine the potential interaction of global-scale environmental stressors (warming and low salinity)
with local-scale stress (diel-cycling hypoxia) under a temporal schedule that followed the life-history traits of the Olympia oyster. We quantified stressor effects on oyster survival and growth because they are key components of population demography and organismal fitness. Survival and growth are also easily tracked using image analysis, a nondestructive approach that allows the use of the same individuals across all stressor experiments. Our secondary goal was to compare organismal responses to environmental exposure across North American west coast estuaries (spanning 760 km), to understand the regional-scale environmental context under which oysters undergo stress.

Materials and methods

Stressor levels and experimental design

To test for multiple stressor effects, we used newly settled oysters reared from San Francisco Bay adult broodstock at the Bodega Marine Laboratory (for husbandry details see Data S1). We used this life stage because invertebrate postsettlement juveniles are known to be sensitive to physiological stress and have high mortality, sometimes exceeding mortality rates found during the larval stage (reviewed in Gosselin & Qian, 1997; Hunt & Scheibling, 1997). In addition, settled juveniles are much longer lived than larvae, which allowed us to test exposures to stressors over greater time periods with high replication and statistical power to discern treatment effects. Oysters were settled onto 10 × 10 cm PVC tiles and standardized to 20 oysters per tile. We randomly assigned these experimental oyster tiles to one of six initial stressor treatments comprised of two temperature levels (20 and 24 °C) and three dissolved oxygen levels (extreme hypoxia, hypoxia, normoxia, defined below) in a stratified factorial design (referred to as ‘Phase 1’). The 20 °C temperature reflects average water temperatures during the summer in Californian estuaries; 24 °C is a more extreme temperature that is observed only for short periods of time in San Francisco Bay and Elkhorn Slough (Fig. 1). Dissolved oxygen levels were chosen without a priori knowledge of specific hypoxia thresholds for this species. Therefore, we selected 2.0 mg L\(^{-1}\) as a moderate level of hypoxia (referred to as ‘hypoxia’) and 0.6 mg L\(^{-1}\) as a more extreme level of oxygen depletion (referred to as ‘extreme hypoxia’). Control dissolved oxygen levels (referred to as ‘normoxia’) were maintained at 6.4–7.0 mg L\(^{-1}\) (depending on water temperature). Each treatment level had three tank replicates (2 temperature × 3 dissolved oxygen × 3 tank replicates = 12 tile replicates = 216 experimental units). Dissolved oxygen treatments were maintained by covering the seawater surface of all tanks with plastic to limit gas exchange and bubbling the water column with the following: 100% nitrogen gas (extreme hypoxia), 85% nitrogen and 15% ambient air (hypoxia), or 100% ambient air (normoxia). Both hypoxia manipulations were applied for 10 h every night on a diel cycle using electronic actuated valves, simulating diel-cycling hypoxia (Fig. S1) commonly observed in U.S. west coast estuaries (Fig. 1). After 14 days of the initial experimental treatments, we photographed each tile (Fig. S2) for growth measurements (shell area) using image analysis software (IMAGEx version 1.46; National Institutes of Health, Bethesda, MD, USA). Shell area is a nonlethal measurement of oyster size and is correlated with dry tissue weight (Hettinger et al., 2012). We measured oyster size (cm\(^2\)) by randomly selecting half of the oyster images (\(N = 108\)) and a random subset of eight oysters per tile. To quantify survival during this phase, we surveyed all tiles for the number of living and dead oysters. An oyster was determined to be dead if it was gaping or unresponsive to probing (oysters typically contract their valves when probed). After this 14-day experimental phase, environmental conditions were returned to normoxia and 20 °C.

To evaluate the persistence of these early life-history stressor effects and simulate latency in salinity stress (Fig. 1), we exposed oysters to benign environmental conditions (typical during the fall season in western U.S. estuaries) for 86 days after the initial temperature and dissolved oxygen treatment (Phase 2). Initially, oysters were held at 20 °C for 30 days. After this time, the temperature was decreased by 1 °C per week for an additional 56 days to a target of 12 °C, which follows the average temperature trajectory entering the winter months (Fig. 1). On the last day of Phase 2, we photographed each tile for image analysis as in Phase 1.

To simulate acute low-salinity events typical of the winter season in western U.S. estuaries, we conducted a salinity trial (Phase 3) using the same 216 oyster tiles from the previous experiments. Each oyster plate was assigned to one of four constant salinity treatments (33.0, 15.0, 10.0, and 5.0 psu) using a stratified random design to ensure equal representation of early life-history treatments (temperature and dissolved oxygen) across salinity treatments. Because the identity of each oyster plate is tracked throughout all experiments, we are able to assess the interaction between early life-history exposure to stress and salinity tolerance. The salinity manipulation was conducted for 8 days because pilot experiments indicated that this duration is the beginning of oyster mortality in response to low-salinity stress (Fig. S4). Pilot experiments also indicated no difference in salinity tolerance between oysters raised from San Francisco Bay and Elkhorn Slough broodstock (Fig. S4), which suggests that these results generalize to both estuaries. Across western U.S. estuaries, low-salinity events (<15.0 psu) are common but rarely last more than 6 days. The 33.0 and 15.0 psu treatments therefore reflect current and commonly experienced levels of salinity, whereas 10.0 and 5.0 psu are more extreme and have only been observed for the north bay region of San Francisco Bay. We chose these latter two values to reflect a continuum of potential extreme events that may be expected under future climate change. The salinity manipulations were carried out in 80-L aquaria with 3 tank replicates per treatment, yielding a total of 12 experimental aquaria. Oysters were acclimated to the target salinity by adding distilled water at a rate of 5.0 psu day\(^{-1}\) and were held at 12 °C for the duration of this experimental phase. After the low-salinity treatment exposure, we increased seawater salinity to 33.5 psu and monitored oysters for an additional 14 days to account for delayed mortality.
Statistics

To measure the effect of environmental stressor treatments on oyster growth, we used linear mixed models (LMMs) with a Gaussian error distribution and identity link function. Oyster size was analyzed at the end of Phase 1 (day 14) and after Phase 2 (day 100). For these analyses, we used the fixed effects of temperature, dissolved oxygen, and their interaction to predict oyster size. For random effects, we used tank and tile nested within tank. We used the Kenward–Roger approximation for denominator degrees of freedom. To meet the normality and equal variance assumptions, we graphically evaluated the data using probability plots and examined model predictions against residuals. Phase 1 data were natural log-transformed because of increasing variation with dissolved oxygen content, whereas Phase 2 data were untransformed. To confirm no random size bias prior to the experiment, we analyzed initial oyster size (day 0) using temperature and dissolved oxygen treatments and their interaction as fixed effects, which revealed no initial difference in oyster size across treatment groups (temperature – $F_{1,12} = 0.371$, $P = 0.553$; dissolved oxygen – $F_{2,12} = 0.396$, $P = 0.681$; interaction – $F_{2,12} = 0.324$, $P = 0.730$).

To measure the effect of environmental stressor treatments on oyster survival (a binary response), we used generalized linear mixed models (GLMMs) with a binomial error distribution and a logit link function. We assessed oyster survival after Phase 1 and Phase 3 of the experiment as separate analyses because Phase 3 involved a new environmental stressor (low salinity). We used full statistical models in Phase 1 (temperature × dissolved oxygen) and Phase 3 (temperature × dissolved oxygen × salinity) with all possible interaction terms because our analyses were restricted to relatively few independent variables. We evaluated model overdispersion by comparing residuals to residual degrees of freedom. Because we did not find overdispersion in either of these GLMMs, we compared treatment effects using Wald chi-squared tests. All analyses and graphics were produced using R (R Core Team 2014) and the packages: ‘lme4’, ‘ggplot2’, and ‘lmerTest’.

Environmental context

To assess the environmental context of Olympia oyster environmental stressor tolerance and to parameterize ecologically relevant treatment levels as well as extreme climate change scenarios, we accessed available physical time series data across multiple estuaries along the west coast of the United States where oysters are known to occur (Table 1). Each record was passed through quality assurance and quality control treatments from each providing agency. We then applied a rate of change filter to the data to exclude abnormal values that reflect instrument noise. For temperature and dissolved oxygen, we truncated data to complete years (see Table 1 for dates of coverage) to eliminate bias from partial annual records and plotted kernel density estimates. For each salinity time series record, we calculated the number of events that continuously exceeded a low-salinity threshold (2.5, 5.0, 7.5, 10.0, 12.5, and 15.0 psu) and calculated the duration of time that each event persisted beneath each threshold.

Results

Early life-history stress

Our experiments revealed strong opposing effects of increased temperature and hypoxia. Olympia oysters grown in diel-cycling hypoxic treatments (for 14 days under control temperature of 20 °C) were significantly smaller (up to 61.5%) than those grown under normoxia (Fig. 2; Fig. S2, $F_{2,12} = 110.2$, $P < 0.001$). Oysters grown in temperatures simulating future global warming (24 °C) were significantly larger (22.1%) than those grown at a representative current summer temperature (20 °C; Fig. 2; Fig. S2, $F_{2,12} = 23.39$, $P < 0.001$). We found no evidence for an interaction between temperature and dissolved oxygen (additive effects, Fig. 2, $F_{2,12} = 0.074$, $P = 0.929$). In other words, the effects of temperature were consistently positive across all dissolved oxygen treatments and partially offset negative hypoxia effects. Survival of oysters during this initial phase of the experiment was high (Fig. S3; 91.8%, 1928 survivors of 2110), and no treatment effect upon survival was detected for oxygen (Wald $\chi^2 = 2.130$, $P = 0.3448$), temperature (Wald $\chi^2 = 1.007$, $P = 0.3155$), or their interaction (Wald $\chi^2 = 0.1083$, $P = 0.9473$).

Early life-history stress effects were still evident after 86 days of recovery (i.e. exposure to benign environmental conditions). Hypoxia still exhibited negative effects on growth (oysters were up to 24.8% smaller; Fig. 2, $F_{2,12} = 36.85$, $P < 0.001$), whereas elevated temperature exposure induced positive effects on growth (oysters exposed to warmer water were up to 11.7% larger; Fig. 2, $F_{1,12} = 21.55$, $P < 0.001$). The effect size of both these treatments was reduced over time. There was still no evidence for an interactive effect between temperature and dissolved oxygen after 86 days of recovery (additive effects, Fig. 2, $F_{2,12} = 0.199$, $P = 0.822$).

Latent stress

Our experiment also revealed significant lethal effects of low-salinity exposure, but only at the most extreme level and regardless of exposure to hypoxia or temperature during early life history. In other words, we did not find a latent effect of early life-history temperature or hypoxia stress on performance under low salinity. In this experiment, oysters exhibited threshold responses to low salinity (during an 8-day exposure, see Methods, Fig. S4), where survival was high in all treatments except for the most extreme low salinity of 5.0 psu (Fig. 3, Wald $\chi^2 = 438.1$, $P < 0.001$). We found no evidence for two-way interactions (temperature × salinity, Wald $\chi^2 = 0.672$, $P = 0.880$; salinity × oxygen,
Environmental exposure

Our analysis of oyster exposure to environmental conditions in four estuaries along the west coast of North America revealed significant effects of salinity, temperature, and dissolved oxygen. We observed that oyster size was influenced by temperature and dissolved oxygen manipulations. Specifically, under normoxia conditions (6.4–7.0 mg L\(^{-1}\)), hypoxia (2.0 mg L\(^{-1}\)), and extreme hypoxia (0.6 mg L\(^{-1}\)), oyster size varied significantly. Analyses of variance (ANOVA) and post-hoc comparisons indicated that temperature and oxygen levels interacted significantly, with a three-way interaction observed (Wald \(\chi^2 = 5.81, P = 0.444\); temperature \times oxygen, Wald \(\chi^2 = 0.483, P = 0.785\)) or a three-way interaction (salinity \times temperature \times oxygen, Wald \(\chi^2 = 2.84, P = 0.829\)).

Environmental exposure

Data from all stations were analyzed for low-salinity events; whereas temperature and dissolved oxygen data were taken from sites denoted by (*).

BOON, Bodega Ocean Observing Node (Bodega Marine Laboratory); NERRS, National Estuarine Research Reserve System; USGS, United States Geological Survey; UCD, University of California, Davis.

Table 1 Environmental time series metadata

<table>
<thead>
<tr>
<th>Estuary</th>
<th>Site</th>
<th>Latitude/Longitude</th>
<th>Years</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elkhorn Slough, CA</td>
<td>Kirby Park (L02)*</td>
<td>36.8408/−121.7478</td>
<td>2004–2012</td>
<td>MBARI</td>
</tr>
<tr>
<td>Elkhorn Slough, CA</td>
<td>Azevedo Pond</td>
<td>36.8457/−121.7538</td>
<td>1995–2013</td>
<td>NERRS</td>
</tr>
<tr>
<td>San Francisco, CA</td>
<td>San Pablo Strait</td>
<td>37.9647/−122.4283</td>
<td>1989–2006</td>
<td>USGS</td>
</tr>
<tr>
<td>San Francisco, CA</td>
<td>China Camp*</td>
<td>38.0012/−122.4604</td>
<td>2006–2013</td>
<td>NERRS</td>
</tr>
<tr>
<td>Tomales Bay, CA</td>
<td>Pelican Point</td>
<td>38.1879/−122.9277</td>
<td>2011–2013</td>
<td>BOON</td>
</tr>
<tr>
<td>South Slough, OR</td>
<td>Valino Island*</td>
<td>43.3451/−124.3287</td>
<td>1999–2013</td>
<td>NERRS</td>
</tr>
<tr>
<td>South Slough, OR</td>
<td>Charleston Bridge</td>
<td>43.3172/−124.3216</td>
<td>2002–2013</td>
<td>NERRS</td>
</tr>
</tbody>
</table>

Data from all stations were analyzed for low-salinity events; whereas temperature and dissolved oxygen data were taken from sites denoted by (*).

© 2015 John Wiley & Sons Ltd, Global Change Biology, 21, 2488–2499
America (South Slough, Oregon; Tomales Bay, San Francisco Bay, and Elkhorn Slough, California; Table 1) revealed striking differences across estuaries in hypoxia and low-salinity occurrence, but less so for temperature (Fig. 4). San Francisco Bay and Elkhorn Slough were warmest but still infrequently experienced 24 °C (0.2 and 0.3% of observations, respectively; Fig. 4a). Generally, all four sites exhibit broad thermal overlap and suggest high warming tolerance (i.e. difference between LT$_{50}$ and habitat temperature; sensu Deutsch et al., 2008; Fig. 4a) especially in Tomales Bay and South Slough. In contrast, dissolved oxygen content was most depressed in Elkhorn Slough and was observed frequently below 2.0 mg L$^{-1}$ (Fig. 4b). In the summer months (June–August) of 2010 and 2011 at Elkhorn Slough (Kirby Park), 14.0% and 20.1% of all dissolved oxygen measurements were below 2.0 mg L$^{-1}$ (Fig. 4b). In the summer months (June–August) of 2010 and 2011 at Elkhorn Slough (Kirby Park), 14.0% and 20.1% of all dissolved oxygen measurements were below 2.0 mg L$^{-1}$ (Fig. 4b). The remaining estuaries all exhibited some degree of hypoxia (<2.0 mg L$^{-1}$), but these events were typically episodic and not as pronounced as in Elkhorn Slough (Fig. 4b). In terms of low-salinity magnitude and duration, San Francisco Bay exhibited salinities significantly lower than the other estuaries. According to our lethal salinity experiments, 5.0 psu for 192 h is sufficient to induce oyster mortality (Fig. 3 and Fig. S4). In San Francisco Bay, maximum durations of 111 and 185 h were observed for 5.0 and 7.5 psu, respectively (Fig. 4c). The 7.5 psu treatment is beyond the resolution of our laboratory experiment, and it is possible that this level is sufficient to result in oyster mortality. The remaining estuaries (South Slough, Tomales Bay, and Elkhorn Slough) exhibited low salinities (<5.0 psu), but of durations of <100 h (Fig. 4c) and therefore are not likely extreme enough to induce mortality.

Discussion

The elevation of climate change research to a global research priority has motivated many new studies of multiple stressor impacts (Vinebrooke et al., 2004; Crain et al., 2008; Todgham & Stillman, 2013). This is deservedly so, as the combination of climate change and other anthropogenic stressors may be one of the most pervasive threats to modern day fauna and flora.
Recent research incorporating multiple stressors has predominantly focused on chronic coincident stressors, largely revealing nonlinear interactive effects between stressors (i.e., synergism and antagonism). We show that diel-cycling hypoxia and warming generated linear, predictable effects, despite research suggesting that hypoxia and warming are likely to result in synergistic outcomes (Vaquer-Sunyer & Duarte, 2011; McBryan et al., 2013). We suspect that temporal variation in stress (i.e., hypoxia at night and normoxia during the day) mediated the additive vs. synergistic responses. We also found that a high latency between stressors resulted in a decoupling of stressor effects. This suggests that long temporal delays may attenuate latent effects and render multiple stressor effects independent of each other. We suggest that a more ecologically realistic approach is essential for multiple stressor studies to more accurately assess how different combinations of stressors interact at the organismal level. This approach must also involve a balanced investigation of both local and global stressors across timescales that incorporate the variability and latency found in natural systems.

This study is among the first to test the interaction between warming and diel-cycling hypoxia (but see earlier studies on natural variation in tidepools; Morris & Taylor, 1984; Truchot, 1986). Our results are seemingly divergent from studies and syntheses that have shown synergistic interactions between hypoxia and warming, where impacts of hypoxia are magnified at greater temperatures (Vaquer-Sunyer & Duarte, 2011; McBryan et al., 2013). This difference is most likely due...
to the temporal variation in hypoxia that was modeled from field conditions. Prior experiments have almost universally exposed test organisms to chronic hypoxia, which is relevant for systems that experience seasonal or persistent hypoxia such as the Gulf of Mexico or Black Sea (Diaz & Rosenberg, 2008). In contrast, numerous estuarine systems around the world are known to exhibit diel-cycling or periodic hypoxia (Flindt et al., 1997; Diaz & Rosenberg, 2008; Tyler et al., 2009). Therefore, we exposed oysters to a diel-cycling hypoxia regime that simulated daytime normoxia (driven by photosynthesis in nature) as well as nighttime hypoxia (driven by respiration). During hypoxia, oysters undergo metabolic depression, reducing their activity and consumption of oxygen, to better match energy demand with limited energy supply (Widdows et al., 1989). Under warming, ectotherms will exhibit increased metabolic rates and oxygen demand, potentially creating a synergistic interaction with hypoxia. However, warming can also accelerate the acquisition of resources during daytime normoxia, compensating for the oxygen debt incurred during the nighttime and negating synergistic effects if hypoxia is diel cycling (Stickle et al., 1989). Under constant hypoxia exposure, organisms would not have any temporal refuge from low energy supply conditions, thereby responding with synergistic interactions under warming conditions, where energy demand is increased. We caution that this experiment found additive ‘linear’ effects when measuring growth and survival, metrics that integrate numerous biological processes. However, it is possible that the measurement of other variables (e.g. fecundity) may have yielded synergistic effects.

We suggest that temporal variation and latency between stressors may be a critical determinant in driving linear vs. nonlinear organismal responses. For example, under conditions of high latency, multiple stressors may be additive, whereas low latency may result in nonlinear effects driven by cross-tolerance or cross-susceptibility (Todgham et al., 2005). In this view, our findings of adaptivity with diel-cycling hypoxia and warming do not conflict with past findings of chronic hypoxia and warming, resulting in synergy. It is also possible that the synergism between warming and hypoxia would only be observed at threshold temperatures that exceed conditions simulated in our experiments (McBryan et al., 2013). Here, the expectation may be that warming partially reduces effects of stressors (e.g. hypoxia) up to a thermal performance optimum. Past the thermal optimum, the interaction may switch to a synergism where warming intensifies other stressors such as hypoxia. Nonetheless, our experimental conditions were based on direct field observations, and in the near term, these data suggest oysters will first experience additive effects (Fig. 2a).

Positive effects of warming occur when optimal temperatures are greater than habitat temperatures (i.e. positive thermal safety margin; Deutsch et al., 2008), and this suggests a potential for warming to buffer the effects of other environmental stressors. This thermal safety margin has been observed in temperate insects, frogs, lizards, and turtles (Deutsch et al., 2008) and may be due to the more variable thermal environment that temperate latitude organisms experience and subsequent selection for broad thermal tolerance. In contrast, tropical and polar species are selected for narrow thermal tolerance and generally exhibit small thermal safety margins (e.g. Addo-Bediako et al., 2000; Peck et al., 2004; Ghalambor et al., 2006; Pörtner et al., 2007).

Several marine examples also support this observation of greater performance at higher temperatures in temperate ectotherms. The intertidal mussel Mytilus californianus exhibits greater growth under warmer temperatures in the field (Menge et al., 2008) and the keystone predatory seastar Pisaster ochraceus, increased growth rates under warming in laboratory experiments (Gooling et al., 2009). Our experiment subjected O. lurida to a temperature (24 °C) never experienced for such a long duration in western U.S. estuaries, and despite this, oysters still exhibited increased growth. Taken together, this suggests that some temperate marine and terrestrial ectotherms possess a significant thermal safety margin and may benefit under limited warming in the near future. It is possible that warming may therefore offset the effects of other global and local stressors for mid-latitude species (Kroeker et al., 2014), whereas tropical species may experience negative effects of warming due to limited acclimation capacity and/or warming tolerance (Deutsch et al., 2008). Despite this apparently large thermal safety margin, we caution that warming may have negative population level consequences that manifest through sublethal or indirect effects such as pathogens or predator–prey interactions (Harvell et al., 2002; Pincebourde et al., 2012).

Our results suggest an important effect of latency, or temporal decoupling, among environmental stressors that can elicit additive rather than synergistic physiological responses to stress. The observed lack of an interaction between the early life stressors (warming and hypoxia) and the latent stressor (low salinity) is likely explained by the large delay in the salinity stress. Here, the latency of low salinity (86-day delay) was likely responsible for unimportant early life-history effects in determining responses to low salinity. Stressor events with decreased latency (less lag time) may be more likely to exhibit synergisms or antagonisms. For example, short latencies (2 weeks) in stressors
(hypoxia and limited resource availability) applied to gastropod larvae have shown latent effects (Li & Chiu, 2013). Greater temporal delays between stressors may thus be more likely to result in additive (and therefore predictable) responses, as we found with Olympia oysters. Therefore, the temporal pattern (e.g., variation, coincidence, latency) of climate change stressors with respect to existing local stressors will play a large part in driving biological responses. We suspect that fine-scale temporal variability in stress may be particularly important for sessile species that have limited capacity to behaviorally respond to environmental stress. Mobile organisms may migrate in response to transient stressors (Menge & Sutherland, 1987). In contrast, sessile species such as bivalves must isolate themselves from the ambient environment or mount a biochemical response (Berger & Kharazova, 1997).

It has been proposed that the management of multiple environmental stressors should depend on the nature of the interaction (or lack thereof) among multiple stressors (Brown et al., 2013). Under a scenario involving synergistic interactions, managers should theoretically reduce a local stressor effect because that will mitigate global-scale climate change effects that would otherwise be difficult to reverse. For scenarios with antagonistic interactions, managers should only reduce local stressors within climate refugia, in effect reducing both stressors in tandem. In contrast, additive interactions among multiple stressors dictate that managers should evaluate which stressor effects are greatest and then reduce the stressor with the largest effect (Brown et al., 2013). Here, we show that multiple stressors resulted in additive effects upon Olympia oysters, and we suggest that the corresponding management action should consider ameliorating the stressors with the greatest relative effect. However, field data suggest that environmental stress among western U.S. estuaries is highly heterogeneous, and therefore, the management of Olympia oysters must be on the local scale. This heterogeneity also suggests the potential for local adaptation in estuarine organisms that have limited population connectivity, which is consistent with recent work indicating that marine populations may be selected for local- or regional-scale environmental conditions (e.g., Pespeni et al., 2013). For Olympia oysters, low-salinity events that can result in oyster mortality are most likely to be observed in northern San Francisco Bay where freshwater input is greatest due to its large watershed, which drains 40% of the State of California. Indeed, in March of 2011, there was a low-salinity event (~7.5 psu) of nearly 8 days, which resulted in near 100% mortality of oysters at the San Francisco Bay National Estuarine Research Reserve (Fig. 4c and b; B.S. Cheng, unpublished data). However, low-salinity events of sufficient duration to result in oyster mortality have yet to be measured in Elkhorn Slough, Tomales Bay, and South Slough. In contrast, local stress such as hypoxia is pervasive within Elkhorn Slough (Figs 1 and 4b) where high nutrient inputs and restricted flow structures have created conditions favoring oxygen depletion (Hughes et al., 2011). Hypoxia is expressed to a lesser extent in all of the other estuaries (Fig. 4b), but historically has been a severe issue in south San Francisco Bay (Cloern & Oremland, 1983) and in southern California estuaries that harbor Olympia oysters (e.g., Nezlin et al., 2009).

Local actions, such as ameliorating nutrient enrichment or establishing marine protected areas, present a key leverage point for managers to potentially enhance ecosystem resilience under climate change and have been recommended for other eutrophic systems (e.g., Micheli et al., 2012; Falkenberg et al., 2013). Under these multiple stressor scenarios, knowledge of how stressors will interact will be critical for management response. Our ability to predict and therefore prepare for the effects of multiple stressors in natural ecosystems will be enhanced by considering the relative effect of local and global stressors as well as the temporal scale and nature of their interaction as they relate to organismal life history.

Acknowledgements

We would like to thank C. Knight, C. Norton, D. Hooper, E. Seubert, N. Miller, and S. Boles for invaluable laboratory support. We would also like to thank the Bodega Marine Laboratory staff, J. Newman, K. Menard, D. Hall, and P. Smith. Thanks to D. Trockel for providing helpful coding script. We also thank E. Sanford, J.J. Stachowicz, N.A. Fangue, S.L. Williams, K.J. Kroeker, L.M. Komoroske, and two anonymous reviewers for helpful comments on earlier versions of the manuscript. Funding support was provided by the National Estuarine Research Reserve System Science Collaborative (NOAA Grant # NA09NOS4190153), Bodega Marine Laboratory Graduate Fellowship, NSF GK-12 Fellowship (NSF Grant # 0841297), and NERRS Graduate Research Fellowship (to BSC).

References

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. Dissolved oxygen conditions for an example 3-day period of the lab experiment.

Figure S2. Experimental tiles after 14 days of exposure to 20 °C and extreme hypoxia (left plate) and 24 °C and normoxia (right plate).

Figure S3. Proportional oyster survival (Mean ± SEM) after the temperature and dissolved oxygen treatments (day 14).

Figure S4. Low salinity duration and oyster survival trial.

Data S1. Experimental oyster broodstock, spawning, and husbandry details.

Table S1. Olympia oyster broodstock collection sites within San Francisco Bay and Elkhorn Slough, California.