High Throughput Identification and Structural Characterization of Multi-Protein Complexes During Stress Response in Desulfovibrio vulgaris: Microbiology Subproject

Permalink
https://escholarship.org/uc/item/1tv251kj

Author
Hazen, Terry C.

Publication Date
2014-04-21
High Throughput Identification and Structural Characterization of Multi-Protein Complexes During Stress Response in Desulfovibrio vulgaris: Microbiology Subproject

Terry C. Hazen1, Ho-Ying N. Holman2, Jay D. Keasling3,2, Aindrila Mukhopadhyay4, Swapan Chhabra2, Tamas Torkos2, Jil Geller2, Mary Singer4, Lauren Camp1, Grant M. Zane3, Tom Juba2, Kimberly Keller2, Dwanye A. Elias2, Judy D. Wall3, Mark D. Biggin1

Summary

The Microbiology Subproject is part of the Virtual Institute for Microbial Stress and Survival (VIMSS) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomes Program. The project focuses on the identification and characterization of multi-protein complexes that are involved in stress response pathways in Desulfovibrio vulgaris, a model anaerobic sulfur-reducing bacterial strain. The project aims to understand the role of these complexes in stress response and metal and radionuclide reduction, and to develop tools for protein complex characterization and imaging by the other groups.

Construction of inframe tags

The construction of a combined STF-SNAP is being constructed in order to increase throughput by using one tag for all constructs. The Gateway® Cloning procedure, verifies the recombinant approach to be adapted from the VIMSS to date: O

High Throughput Phenotyping of Tagged Strains

- Produce Engineered Strains with Tagged Proteins
- HTP Tagged Constructs Current Capacity

TOPO-GATEWAY High Throughput Strategies for Tagged-Strain Generation

Details in the TOPO-GATEWAY strategy and the Recombineering approach are in the adjoining paper.

Phenotyping of Tagged Strains

- Synthesis, consistent self-production for transcription, proteomics, metabolomics, and lipomics
- To date: >300 biomass productions, >1700 L

Large-Scale Biomass Production and Harvesting

1. 4 x 5 L and 2 x 3 L non-metallic fermenters, for anaerobic conditions
2. Potential production capacity: batch culture up to 3 L in stepwise or stress & control, and continuous
3. Currently running continuous flow productions 100 L scale

Construction of inframe tags

- For tagged proteins that do not have an associated antibiotic marker, the gene of interest and a portion of the downstream from the gene is amplified with the tag in the center, and that construct put into an entry vector that could then be put into the Gateway® plasmid containing Speciﬁcally mutant resistance gene and the kan promoter/ups gene.

Environmental Stress

The environment is the context in which genomes evolved, function, and continue to evolve. It is the only context in which they can be fully understood.

Construction of inframe tags

- The construction of a combined STF-SNAP is being constructed in order to increase throughput by using one tag for all constructs. The Gateway® Cloning procedures, verifies the recombinant approach to be adapted from the VIMSS to date: O

High Throughput Phenotyping of Tagged Strains

- Produce Engineered Strains with Tagged Proteins
- HTP Tagged Constructs Current Capacity

TOPO-GATEWAY High Throughput Strategies for Tagged-Strain Generation

Details in the TOPO-GATEWAY strategy and the Recombineering approach are in the adjoining paper.

Phenotyping of Tagged Strains

- Synthesis, consistent self-production for transcription, proteomics, metabolomics, and lipomics
- To date: >300 biomass productions, >1700 L

Large-Scale Biomass Production and Harvesting

1. 4 x 5 L and 2 x 3 L non-metallic fermenters, for anaerobic conditions
2. Potential production capacity: batch culture up to 3 L in stepwise or stress & control, and continuous
3. Currently running continuous flow productions 100 L scale

Construction of inframe tags

- For tagged proteins that do not have an associated antibiotic marker, the gene of interest and a portion of the downstream from the gene is amplified with the tag in the center, and that construct put into an entry vector that could then be put into the Gateway® plasmid containing Speciﬁcally mutant resistance gene and the kan promoter/ups gene.

Environmental Stress

The environment is the context in which genomes evolved, function, and continue to evolve. It is the only context in which they can be fully understood.

Construction of inframe tags

- The construction of a combined STF-SNAP is being constructed in order to increase throughput by using one tag for all constructs. The Gateway® Cloning procedures, verifies the recombinant approach to be adapted from the VIMSS to date: O

High Throughput Phenotyping of Tagged Strains

- Produce Engineered Strains with Tagged Proteins
- HTP Tagged Constructs Current Capacity

TOPO-GATEWAY High Throughput Strategies for Tagged-Strain Generation

Details in the TOPO-GATEWAY strategy and the Recombineering approach are in the adjoining paper.

Phenotyping of Tagged Strains

- Synthesis, consistent self-production for transcription, proteomics, metabolomics, and lipomics
- To date: >300 biomass productions, >1700 L

Large-Scale Biomass Production and Harvesting

1. 4 x 5 L and 2 x 3 L non-metallic fermenters, for anaerobic conditions
2. Potential production capacity: batch culture up to 3 L in stepwise or stress & control, and continuous
3. Currently running continuous flow productions 100 L scale

Construction of inframe tags

- For tagged proteins that do not have an associated antibiotic marker, the gene of interest and a portion of the downstream from the gene is amplified with the tag in the center, and that construct put into an entry vector that could then be put into the Gateway® plasmid containing Speciﬁcally mutant resistance gene and the kan promoter/ups gene.

Environmental Stress

The environment is the context in which genomes evolved, function, and continue to evolve. It is the only context in which they can be fully understood.

Construction of inframe tags

- The construction of a combined STF-SNAP is being constructed in order to increase throughput by using one tag for all constructs. The Gateway® Cloning procedures, verifies the recombinant approach to be adapted from the VIMSS to date: O