Title
A TEST OF BACKBENDING MODELS USING ODD-A NUCLEI

Permalink
https://escholarship.org/uc/item/1tz415s8

Authors
Grosse, E.
Stephens, F.S.
Diamond, R.M.

Publication Date
1973-07-01
A TEST OF BACKBENDING MODELS USING ODD-A NUCLEI

E. Grosse, F. S. Stephens and R. M. Diamond

July 1973

Prepared for the U. S. Atomic Energy Commission
under Contract W-7405-ENG-48

RECEIVED
LAWRENCE
RADIATION LABORATORY

OCT 8 1973
LIBRARY AND
DOCUMENTS SECTION

TWO-WEEK LOAN COPY
This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
A TEST OF BACKBENDING MODELS USING ODD-A NUCLEI*

E. Grosse†, F. S. Stephens and R. M. Diamond

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

July 1973

Abstract:

We have studied the properties of decoupled bands in particular odd-A nuclei, and the results provide information on the origin of backbending in even-even nuclei. Our data are in agreement with the rotation-alignment model and in apparent disagreement with the pairing-collapse model. This proposed test also provides a means to determine which particles are involved in the two quasi-particle band that intersects the ground band in the rotation-alignment picture of backbending.

A process known as "backbending" has recently been discovered to occur at high spins in the ground-state rotational bands of some even-even rare-earth nuclei. The name refers to the fact that a plot of moment of inertia, \mathcal{J}, versus the square of the rotational frequency, $(\hbar \omega)^2$, for the various spin states of these nuclei has an s-shape form. That is, $\hbar \omega$ becomes temporarily smaller around $I \approx 16$, while \mathcal{J} increases rather sharply with I. Since $\hbar \omega$ is very nearly one-half the rotational transition energy, the above shape results from several

*Work performed under the auspices of the U. S. Atomic Energy Commission.
†On leave from MPI für Kernphysik, Heidelberg (Germany); under support of DAAD.
transition energies around the critical spin value being lower than those for spins just below or above this value. It is by now quite clear that this occurs for many rare-earth nuclei, but it does not occur (at least in the same spin region) for others. The change in \mathcal{J} is typically from about half the rigid-rotor value to nearly the full value.

A number of explanations for backbending have been given. One of these predated the experimental observations by some 10 years, and is known as the Mottelson-Valatin effect. This refers to a coherent collapse of the pairing correlations in the nucleus (probably only for the neutrons) due to the increasing Coriolis force as the system rotates more rapidly. An alternative explanation was proposed shortly after the experiments by Stephens and Simon, in which it is suggested that only one pair of $i_{13/2}$ neutrons is broken by the Coriolis force. The angular momentum from this pair (up to $12 \hbar$) is then aligned with that of the rotating core to produce a band which crosses the ground-state band at the backbend and for larger spin values becomes the yrast band (rotation-alignment model). Other models involving centrifugal shape changes or generalized "moment of inertia" changes have been proposed, but the two types of Coriolis effects mentioned above have thus far received the most serious consideration. It is a challenge at the present time to find ways to distinguish between these models. A number of such tests have been suggested, but these are for the most part difficult experimentally; and so far not conclusive, since both models predict much the same result. It is the purpose of this letter to propose and apply a new test to differentiate between these two explanations of backbending.
This test involves the properties of a particular type of band in odd-A nuclei. It has been shown10,11 that under the proper conditions an odd nucleon in a high-j orbital "decouples". This term refers to the alignment by the Coriolis force of the particle angular momentum, \(j \), with that of the rotor. The result is a band with spin values \(j, j+2, j+4, \ldots \) and energy spacings like the levels having spins \(0, 2, 4, \ldots \) in the adjacent even-even nuclei. Many odd-A nuclei have been shown to possess such decoupled bands. It is of importance here that the agreement between the odd-A and even-even spacings is expected to get better the larger \(I \) becomes. The decoupling described here is closely related to the rotation-alignment explanation of backbending in the even-even nuclei; the band which intersects the ground band at the backbend is, in this model, essentially composed of two decoupled \(i_{13/2} \) neutrons. However, the Pauli principle prevents the second neutron from being fully aligned with the rotation axis.

Consideration of the above properties leads to the following proposed test of the backbending models. If one considers the effect on backbending of the presence of a decoupled \(i_{13/2} \) neutron, then opposite behavior is predicted by the two models. An odd neutron, due to blocking effects, will weaken the pairing correlations, so that they should collapse sooner (at lower \(\hbar \omega \) or \(I \)) with rotation. On the other hand, such a decoupled \(i_{13/2} \) neutron interferes with the formation of the band which intersects the ground band in the rotation-alignment model, resulting in a later (higher \(\hbar \omega \) or \(I \)) intersection. Provided the decoupled odd-A bands are correctly interpreted, a comparison of their properties in the backbending region with those of the adjacent even-even nuclei should indicate which explanation is correct.
We chose ^{157}Er and ^{159}Er as the odd-A nuclei to be studied for this test since the decoupled bands had previously been observed in these nuclei and the backbends in $^{156,158,160}\text{Er}$ were all known. It seemed likely that the observation of just one or two more levels in each odd-A nucleus would suffice for the test. We bombarded metallic targets of $^{150,152}\text{Sm}$ about 10 mg/cm2 thick with ^{12}C ions of 88 and 95 MeV from the Berkeley 88'' cyclotron. Singles gamma-ray spectra were taken with a coaxial Ge(Li) detector of \sim30 cc, and with a 9 cc planar intrinsic-Ge detector. The γ-γ coincidences between these detectors were also taken, as was a two-point angular distribution of the γ-rays relative to the beam direction. Table I contains a summary of the lines assigned to the decoupled bands in $^{157,159}\text{Er}$. The bands up to spin 37/2 are considered certain since the transitions 1) had stretched E2 angular distributions, 2) could be shown to belong to the band (summed coincidences), and 3) were further shown to be in coincidence with each lower band member. Only 1) and 2) could be clearly established for the 41/2 states due to poorer statistics, but the intensities are reasonable and we believe these assignments are very likely correct. The 45/2 state in ^{159}Er was so weak that only 1) could be established, and we consider this state tentative.

In Fig. 1, the plot of $\frac{2\delta}{h^2}$ vs $(\hbar\omega)^2$ is shown for the ground band of $^{156,158}\text{Er}$ and for the decoupled band of ^{157}Er (beginning at $I = J = 13/2$). The ^{157}Er band appears to be completely decoupled in the beginning (lies midway between ^{156}Er and ^{158}Er), but clearly does not backbend at the same $\hbar\omega$ (or I) as the adjacent even-even nuclei. The plot for $^{158,159,160}\text{Er}$ is shown in Fig. 2, and is very similar, except that the ^{159}Er band is not quite completely
decoupled at the lowest spins. These plots show that the decoupled bands in both 157Er and 159Er backbend only at values of $\hbar \omega$ (and I) higher than the adjacent even-even nuclei, if they backbend at all. This is in accordance with the rotation-alignment model and in apparent contradiction to the expectations of the pairing-collapse model.

A more sensitive way to present these same data is shown in Fig. 3. Here we have plotted the ratio of transition energy in the odd-A nucleus $(E_{I+j} - E_{I+j-2})$ to that in the even-even nucleus $(E_I - E_{I-2})$ versus I. Prior to the backbend region ($I \approx 12$), both odd-A nuclei seem to be converging to a value of about 1.1. As the even-even backbend occurs, however, ($I = 14$) the ratio rises sharply since the odd-A bands do not experience the same drop in transition energy. This sharp rise at $I = 14$ is very clear in both cases. A smaller but suggestive rise in this ratio has also been seen17 in 165Yb.

We have proposed that the backbending properties of a decoupled $i_{13/2}$ band can distinguish between the two currently favored models of backbending. The expectations of the models seem to be reasonably clear and opposite. The experimental data are quite clear and go in the direction of the rotation-alignment model. Probably the greatest uncertainty in this test arises from the possibility that an entirely unforeseen effect is causing the odd-A bands not to backbend. This can be checked by looking at the $h_{11/2}$ decoupled bands in 157Ho and 159Ho. Since the rotation-alignment picture describes the crossing band as composed mainly of $i_{13/2}$ neutrons, the blocking of a proton orbital should have much less, if any, effect on the backbending. Thus, the decoupled bands in 157,159Ho should backbend like the even-even nuclei, and preliminary data18 indicate that they do. If this proves to be the case, it will not only confirm the present test, but also provide a means to analyze which configurations are important in the band intersecting the ground band.
Acknowledgments

We are indebted to Drs. A. Gizon, J. Gizon, M. R. Maier, and D. Proetel for their help in these experiments. The cooperation of the crew of the Berkeley 88" Cyclotron is also appreciated.
References

Table 1. Energies, Intensities and A_2-Coefficients of the Transitions Observed in 157Er and 159Er.

<table>
<thead>
<tr>
<th>157Er 150Sm + 12C, 92 MeV</th>
<th>159Er 152Sm + 12C, 88 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_1 \rightarrow I_f$</td>
<td>E_γ (keV)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>$17/2 \rightarrow 13/2$</td>
<td>266.1 ± 0.3</td>
</tr>
<tr>
<td>$21/2 \rightarrow 17/2$</td>
<td>415.1 ± 0.3</td>
</tr>
<tr>
<td>$25/2 \rightarrow 21/2$</td>
<td>527.2 ± 0.3</td>
</tr>
<tr>
<td>$29/2 \rightarrow 25/2$</td>
<td>622.4 ± 0.3</td>
</tr>
<tr>
<td>$33/2 \rightarrow 29/2$</td>
<td>702.2 ± 0.4</td>
</tr>
<tr>
<td>$37/2 \rightarrow 33/2$</td>
<td>765.0 ± 0.5</td>
</tr>
<tr>
<td>$41/2 \rightarrow 37/2$</td>
<td>802.9 ± 0.6</td>
</tr>
<tr>
<td>($45/2 \rightarrow 41/2$)</td>
<td>(738.4 ± 0.8</td>
</tr>
</tbody>
</table>
Figure Captions

Fig. 1. Plot of $\frac{2\phi}{h^2} \left(= \frac{hI'-2}{E_I-E_I-2}\right)$ vs. $h^2 \omega^2 \left(= \left[\frac{E_I-E_{I-2}}{2}\right]^2\right)$ for $^{156,157,158}\text{Er}$. For the even-even nuclei $I' = I$, and for the odd-A nuclei $I' = I - j$.

Fig. 2. Plot of $\frac{2\phi}{h^2}$ vs. $h^2 \omega^2$ for $^{158,159,160}\text{Er}$.

Fig. 3. Plot of the decoupled band transition energy divided by the corresponding even-even energy vs. I for $^{157,159}\text{Er}$. The even-even value used is the average of the two adjacent nuclei.
Fig. 1
Fig. 2
Fig. 3

\[
\frac{E_{I+1}-E_{I+1-2}}{E_{I}-E_{I-2}}
\]

\(159\text{Er}\)
\(157\text{Er}\)

I

1.6
1.4
1.2
1.0

2
6
10
14

XBL736-3167
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.