An Early Incised Stone from Danger Cave, Utah

STEVEN R. JAMES

While reanalyzing the faunal remains from Danger Cave (42T013) in northwestern Utah, I was surprised to find an incised stone among the bones. The provenience of the artifact indicates it was recovered from Feature 26, Level III. This level has been radiocarbon dated between 5150 B.C. and 4620 B.C. (Marwitt and Fry 1973: 3; Jennings 1978: Fig. 16). Only one other incised stone (of unknown provenience) has been reported from the cave (Jennings 1957: 219). Since the present artifact is considerably earlier than most incised stones from the Great Basin, it deserves a description and comparison with other such artifacts from the region.

Steven R. James, P.O. Box 1533, Carson City, NV 89702.

DESCRIPTION

The specimen (Utah Museum of Natural History [UMNH] Catalog No. 22862/10) is a very small, elongated slab of fine-grained, light-brown limestone. It measures 7.8 cm. in length by 2.8 cm. in width by 0.6 cm. in thickness and weighs 19.5 g. The edges and incised surface have been artificially smoothed; the opposite side of the stone is rough and unmodified. The artifact has sustained some damage by the removal of small chips exposing a dark brown interior at the broad end of the incised surface (Fig. 1).

The lightly incised design is confined to the narrow tip of the smoothed surface and consists of several short lines forming a chevron, or branched pattern suggestive of a plant (Figs. 1-2). The design is so faint that at first glance it is easily missed. It is best viewed macroscopically if the stone is held at an oblique angle under a bright lamp.

Examination of the artifact at low magnification (7 to 15x) revealed some interesting aspects of the design and its manufacture (cf. Marshack 1972). In cross-section, the incisions are U-shaped and are wider than they are deep. All cuts appear to have been executed with the same engraving tool; a single stroke was employed to make each incision. Since the stone is a soft limestone, the incisions could have been produced by an unmodified flake. To test this assumption, the design was replicated on a piece of soft, tabular limestone using an unmodified flake held at a slight angle. The design was easily incised in a few minutes. A retouched flake or small engraving tool could also have been used.

The probable steps taken to incise the design can be inferred from the microscopic analysis and replicated design. The overlap of several incisions indicates that the upper portion of the design was etched first. Here, the design consists of the upper three diagonal...
Fig. 1. Photograph of incised stone from Level III of Danger Cave (7.8x2.8 cm.).

Fig. 2. Drawing of incised stone from Level III of Danger Cave.

lines to the right of the centerline, the vertical centerline, and a single diagonal line at the top left (see Fig. 2). The precision with which the three, upper right diagonal lines were incised suggests that the stone was held in the left hand and the incising tool in the right. Next, the lower portion of the design was added. This is indicated by two closely spaced diagonal lines on the left which appear to be superimposed over the bottom portion of the upper centerline. Apparently, the last incision to be made was the bottom right diagonal line since it overlaps the lowest left diagonal and the centerline. Other details of the incising order were obscured.

COMPARISON WITH OTHER INCISED STONES

The previously reported incised stone from Danger Cave (UMNH Catalog No. 22539), in contrast to the present specimen, contains several longitudinal zig-zag lines on
INCISED STONE FROM DANGER CAVE 249

one side. At right angles to these are three parallel lines that circumscribe the stone near one end (Jennings 1957: 219, Fig. 201).

Other incised stones have been described from various sites throughout the Great Basin (see Elsasser 1957; McKee and Thomas 1972; Santini 1974; Thomas 1983a; Tuohy 1967, 1983). Many have been reported near Danger Cave in western Utah and eastern Nevada (Fig. 3). These sites include Swallow Shelter and Thomas Shelter (Dalley 1976), Hogup Cave (Aikens 1970; see also Jennings 1978: 61, Fig. 58), North Wig Mountain (Holliman 1967, 1969), Promontory Caves and vicinity (Steward 1937: 77-79), Stansbury Cave II (Jameson 1958), Bear River and Injun Creek sites (Aikens 1966, 1967), Nephi Mounds (Sharrock and Marwitt 1967), Spotten Cave (Mock 1971), and four open camp sites (42MD59, 42TO61-63) in Millard and Tooele Counties (Rudy 1953).

With the exception of one specimen from Promontory Cave No. 4 (Steward 1937: 79, Fig. 35), none of the incised designs from the northwestern Utah sites bear any resemblance to the Danger Cave specimen described here. There are, however, several other incised stones from elsewhere in the Great Basin that are similar. Interestingly enough, the design resembles an incised green slate found in association with an historic aboriginal structure in the Panamint Mountains of southeastern California (Ritter 1980: Fig. 4c). It is also very similar to several incised stones from sites in central Nevada, including Gatecliff Shelter (McKee and Thomas 1972: Figs. 3-4; Thomas 1983a: Figs. 112c, 115t). Over 400 incised stones have since been recovered and analyzed from Gatecliff Shelter (Thomas 1983a, 1983b). Incised stones first appear about 3300 B.C., and thus are much older than McKee and Thomas' (1972: 101) original estimate of A.D. 400 for their initial occurrence in the region.

Other early examples of dated incised stones have been reported from several Utah sites. At Swallow Shelter, they occur initially in Stratum 4, dated at 900 B.C., and are represented throughout the rest of the sequence (Dalley 1976: Table 8). An earlier date for their appearance in northwestern Utah comes from Stratum 7 in Hogup Cave, which is radiocarbon dated at about 4240 B.C. (Aikens 1970). Older specimens with painted, as well as incised, designs are reported from Cowboy Cave in the Colorado Plateau of southeastern Utah (Hull and White 1980: Table 26). The earliest of these is assigned to Stratum Ib, a herbivore dung layer radiocarbon dated between 11,090 and 9070 B.C. (Jennings 1980: Table 3). Stratum Ib, however, is considered to be noncultural, so the stone may have intruded from the over-
lying cultural level, Stratum IIb, dated between 6325 and 6640 B.C. Nevertheless, nearly half of the 45 incised and painted stones from Cowboy Cave were from strata dated older than 4725 B.C.

FUNCTION OF INCISED STONES

The function of incised stones from the Great Basin and adjacent regions is not known with any certainty. Some may have served as magico-religious items connected with hunting (McKee and Thomas 1972: 101-102) and healing stones used by shamans for treating illness (Heye 1927; Ritter and Ritter 1976: 175). Other incised stones may have been pendants (Rector, Swenson, and Wilke 1981: 64; Rogers 1939: Plate 17e, i-j) or even utilitarian objects.

It would seem that the context of incised stones might provide some clue to their function. Perhaps those specimens found in isolated contexts, such as caches or burials, had a ritual significance attached to them. In contrast, many incised stones from northwestern Utah were recovered in the general refuse deposits of temporary habitation sites, such as caves and rockshelters. On this basis, the context in which they were discovered suggests they served more mundane purposes. The Danger Cave stone may have served a similar function.

CONCLUSIONS

The literature review indicates that the Danger Cave specimen is one of the earliest incised stones recovered in the Great Basin. There are, however, earlier examples from Cowboy Cave in the Colorado Plateau.

In general, incised stones appear to have served a multiplicity of functions, ranging from utilitarian to magico-religious objects. An important clue to their function is the context with which they are associated. Therefore, the Danger Cave stone appears to have served a secular function, but we can only speculate at the present.

Another approach not considered here involves comparisons between parietal rock art and incised stones. Such comparisons have been made in several studies as a means of dating rock art styles and assessing the function of incised stones, as well as rock art (see Butzer et al. 1979; Thackeray et al. 1981; Thomas 1983b: 345-347). Whatever their function, the use of incised stones in the Great Basin and Colorado Plateau appears to have had a very long tradition, extending throughout much of the prehistory of the region.

ACKNOWLEDGEMENTS

I thank Cashion Callaway, Robert Elston, Donald K. Grayson, Karen Nissen, David H. Thomas, and Donald R. Tuohy for their comments and suggestions on this paper. Shelly Moore prepared the line drawings. The photograph was taken by Judith Silverstein.

NOTE

1. The analysis of the Danger Cave faunal remains was supported by National Science Foundation grant BNS81-07548 awarded to Donald K. Grayson and Paul W. Parmalee.

REFERENCES

Aikens, C. Melvin

Butzer, K. W., G. J. Fock, L. Scott, and R. Stuckenrath

Dalley, Gardiner F.
Although I have not seen the slicks described by True and Waugh (1981:84-115), a notable slick exists on a vertical rock face near the north end of Rincon Reservation which I will describe.

In company with several San Luiseno elders, we were tracing the pre-1900 irrigation works built and maintained by the Rincon Band prior to the days of Indian Agency control. After following flume and irrigation canals, they led me to the northern part of the reservation to see an earthen reservoir built to supply water to this part of the reservation which was too high to receive water from the river. The Rincon men walked a short distance beyond the reservoir to a large boulder over two meters tall. They called me to come, they wanted to show me something to see if I knew what it was. They pointed to a polished, glassy surface about 25 cm. high by 20 cm. wide on the vertical face of the boulder and about 1.2 meters above the ground. The men then demonstrated the use of the slick, indicating that it was used by both men and women on their return from hunting, gathering, or some other errand. Starting at the rough outer edge, one ground and smoothed a fingernail thereby removing extra length and trimming rough edges. I used the slick in this manner and discovered that working from the edge toward the center produced beautifully smoothed and polished fingernails. The Rincon men told me that Rincon people had used this particular slick at least until 1920.

The boulder was a hard, fine-grained Bonsall Tonolite, and weathering had not yet affected the glassy polished surface of the slick. Located outside the protohistoric village, the boulder occurred along the trail entering the village from upper Portrero Creek. I suggest that the slicks of the Frey Creek area be examined to determine if they are comparable to this slick of Rincon.

REFERENCE

True, D. L., and G. Waugh