Lawrence Berkeley National Laboratory
Recent Work

Title
ENERGY CONTENT OF BIOMASS: CALCULATION FROM ELEMENTAL COMPOSITION

Permalink
https://escholarship.org/uc/item/1vj7w8sq

Author
Otvos, J.W.

Publication Date
1987
Submitted to Biomass

ENERGY CONTENT OF BIOMASS: CALCULATION
FROM ELEMENTAL COMPOSITION

J.W. Otvos

January 1987

TWO-WEEK LOAN COPY
This is a Library Circulating Copy
which may be borrowed for two weeks.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ENERGY CONTENT OF BIOMASS:
CALCULATION FROM ELEMENTAL COMPOSITION

John W. Otvos

Chemical Biodynamics Division
Lawrence Berkeley Laboratory
Berkeley, California 94720

Abstract

The heat of combustion, or energy content, of an organic compound or mixture can be estimated with reasonable accuracy from the elemental composition alone. The R-value of the fuel, which equals the number of grams of oxygen needed to burn a gram of fuel, times the factor 3.34 gives the specific heat of combustion in kilocalories per gram.
Introduction

In dealing with biomass as a renewable energy source it is useful to be able to estimate the "degree of reduction" of the total organic matter of plant material. This quantity, which we will call R, is proportional to the specific heat of combustion. It is an expression of the energy content of the biomass and can be calculated from the elemental composition alone. Such an approximation is possible and so successful because the heats of combustion of organic compounds are large compared to the differences in value among isomers. Consequently, elemental composition is much more important than molecular structure. Also, since heats of combustion of mixtures are additive, the R-value can be used to estimate relative abundances of carbohydrate and lipid, whose R-values are quite different from one another.

R-Value and Heat of Combustion

The quantity, R, is defined as the number of grams of oxygen required to burn completely one gram of fuel material to CO_2, H_2O, and N_2. The required oxygen is calculated stoichiometrically from the amounts of carbon and hydrogen present less the amount of oxygen already in the fuel. The nitrogen present merely acts as a diluent since no oxygen is needed to convert it to N_2. Thus, the expression for R in terms of the elemental composition is given by

$$R = \frac{1}{100} \left[\frac{32}{2} \times \%C \frac{16}{2} \times \%H - \%O \right]$$ (1)
where \(\frac{32}{12} \) is the weight of O required to convert 1 g of C to CO\(_2\) while
16/2 is a like factor for the conversion of H to H\(_2\)O. Figure 1 shows a
plot of specific heats of combustion (kcal per gram) of a series of 21
organic compounds versus R. (See also Table 1.) The range of values
extends over a factor greater than 20, yet all the points can be
well represented by a straight line through the origin. The slope of
this line corresponds to a single value of 3.34 kcal evolved per gram of
O\(_2\) used for combustion. Thus, the heat of combustion, \(\Delta H_c \), of a mixture
of organic compounds, or biomass, can be expressed as

\[
\Delta H_c (\text{kcal/g}) = 3.34R
\]

(2)

Discussion

This constancy of the heat of combustion based on oxygen consumed
rather than fuel consumed is remarkable and, at first, rather surprising
when it is noted that elemental carbon and hydrogen have such different
values for that quantity (kcal per gram of O\(_2\) consumed): 2.95 and 4.27,
respectively. However, even in a wide variety of organic compounds the
%w of carbon in the CH portion of the molecule varies only between about
80% and 92%. Therefore, the kcal per gram of O\(_2\) consumed varies only
between 3.5 and 3.2 for the extreme H/C rations of 3/1 and 1/1. Most
compounds of interest in biomass lie near the middle of that range,
corresponding to the value of 3.34 mentioned above. Therefore, a
calculation for the heat of combustion of an unknown from its R value
[Equation (1)] should be good to within about 3%.

Just as N acts as a diluent in the combustion process so also does
ash. Therefore the actual elemental composition of the whole sample
must be used in Equation (1) and not the composition expressed on an ash-free basis. The presence of moisture in the sample causes no problem either. The additional amounts of H and O cancel each other in Equation (1) and water thus becomes another diluent. Ash and nitrogen must be determined, however, so that oxygen may be computed by difference.

Application to Mixtures of Biological Compound Types

Given the constancy of the heat of combustion based on oxygen consumed and also the near constancy of elemental composition of compound types such as protein, carbohydrate, and lipid, Spoehr and Milner were able to determine the percentage of these three compound classes in Chlorella grown under different conditions from their R-values and nitrogen contents. From %N they obtained a protein value by assuming that all the nitrogen was in protein whose N content was 16%. Then, assuming additivity in R-value and average R-values for protein, carbohydrate, and lipid of 1.68, 1.12, and 1.70, respectively, they calculated carbohydrate and lipid content. Table 2, taken from their paper, gives an example of their results. They state: "The calculated percentages of lipid agreed closely with the values which were obtained by means of solvent extraction".

Acknowledgement: The preparation of this paper was sponsored by the Assistant Secretary for Conservation and Renewable Energy, Office of Renewable Energy, Biofuels and Municipal Waste Technology Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
References

<table>
<thead>
<tr>
<th>Compound</th>
<th>Formula</th>
<th>R</th>
<th>Heat of Combustion (kcal/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>CH₄</td>
<td>4.00</td>
<td>13.18</td>
</tr>
<tr>
<td>Ethane</td>
<td>C₂H₆</td>
<td>3.73</td>
<td>12.28</td>
</tr>
<tr>
<td>Propane</td>
<td>C₃H₈</td>
<td>3.64</td>
<td>11.96</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>C₅H₁₂</td>
<td>3.56</td>
<td>11.58</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>C₆H₁₄</td>
<td>3.53</td>
<td>11.51</td>
</tr>
<tr>
<td>n-Hexadecane</td>
<td>C₁₆H₃₄</td>
<td>3.47</td>
<td>11.32</td>
</tr>
<tr>
<td>Cetyl Palmitate</td>
<td>C₃₂H₆₄O₂</td>
<td>3.13</td>
<td>10.50</td>
</tr>
<tr>
<td>Benzene</td>
<td>C₆H₆</td>
<td>3.08</td>
<td>10.03</td>
</tr>
<tr>
<td>Anthracene</td>
<td>C₁₄H₁₀</td>
<td>2.97</td>
<td>9.55</td>
</tr>
<tr>
<td>Aniline</td>
<td>C₆H₇N</td>
<td>2.67</td>
<td>8.73</td>
</tr>
<tr>
<td>Acetone</td>
<td>C₃H₆O</td>
<td>2.21</td>
<td>7.36</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>C₂H₃N</td>
<td>2.15</td>
<td>7.38</td>
</tr>
<tr>
<td>Ethylenediamine</td>
<td>C₂H₈N₂</td>
<td>2.13</td>
<td>7.54</td>
</tr>
<tr>
<td>Ethanol</td>
<td>C₂H₆O</td>
<td>2.09</td>
<td>7.10</td>
</tr>
<tr>
<td>Dimethyl ether</td>
<td>C₂H₄O</td>
<td>2.09</td>
<td>7.56</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>C₂H₄O</td>
<td>1.82</td>
<td>6.34</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>C₄H₈O₂</td>
<td>1.82</td>
<td>6.10</td>
</tr>
<tr>
<td>Sucrose</td>
<td>C₁₂H₂₂O₁₁</td>
<td>1.12</td>
<td>3.95</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>C₂H₄O₂</td>
<td>1.07</td>
<td>3.49</td>
</tr>
<tr>
<td>Formic acid</td>
<td>CH₂O₂</td>
<td>.35</td>
<td>1.37</td>
</tr>
<tr>
<td>Oxalic acid</td>
<td>C₂H₂O₄</td>
<td>.18</td>
<td>.67</td>
</tr>
</tbody>
</table>
Table 2
Constituents of Chlorella Calculated
From R-Value2

<table>
<thead>
<tr>
<th>R-Value</th>
<th>Protein</th>
<th>Carbohydrate</th>
<th>Lipid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.52</td>
<td>58.0</td>
<td>37.5</td>
<td>4.5</td>
</tr>
<tr>
<td>1.68</td>
<td>50.0</td>
<td>32.2</td>
<td>17.7</td>
</tr>
<tr>
<td>2.00</td>
<td>28.3</td>
<td>26.2</td>
<td>45.5</td>
</tr>
<tr>
<td>2.24</td>
<td>15.7</td>
<td>19.0</td>
<td>65.3</td>
</tr>
<tr>
<td>2.52</td>
<td>8.7</td>
<td>5.7</td>
<td>85.6</td>
</tr>
</tbody>
</table>
Figure Caption

Figure 1 -- Specific heats of combustion of organic compounds
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.