Lawrence Berkeley National Laboratory
Recent Work

Title
Genomic and physiological characterization of Desulfovibrio vulgaris strains isolated from a metal contaminated lake

Permalink
https://escholarship.org/uc/item/1vn8f3zc

Authors
Stolyar, Sergey
Walker, Chris
Yen, Huei-Che
et al.

Publication Date
2004-12-14
Genomic and physiological characterization of *Desulfovibrio vulgaris* strains isolated from a metal contaminated lake.

Sergey Stolyar¹, Chris Walker¹, Huei-che Yen², Beto Zuniga¹, Nick Pinel¹, Heidi Gough¹, Zhili He², Qiang He², Jizhong Zhou², Terry C. Hazen³, Sharon E. Borglin³, Judy D. Wall⁴, David A. Stahl¹.

¹ University of Washington, Seattle WA 98195; ²Oak Ridge National Laboratory, TN; ³Lawrence Berkeley National Lab CA 94720; ⁴University of Missouri-Columbia, MO;

Keywords: sulphate reducing bacteria, *Desulfovibrio*, genome, microarray, bacteriophage

Abstract:

Nine *Desulfovibrio vulgaris*-like bacteria (DP1-9) were isolated from a heavy metal impacted field site (Lake DePue, Illinois) on a lactate medium. All had identical 16S rRNA and *dsrAB* genes that were virtually identical to the orthologous genes of *D. vulgaris* Hildenborough (*DvH*). Their growth rates at different temperatures on B3 medium supplemented with lactate and sulfate were comparable. Characterization of resistance to ZnCl₂, using the Omnilog™ System, revealed no difference among isolates and little or no difference to the closely related reference organism *D. vulgaris* Hildenborough. However, pulse field gel electrophoretic analysis of I-CeuI whole genome digests identified a large deletion in the genomes of all isolates. Complementary whole-genome microarray hybridization revealed that approximately 300 deleted genes were distributed in six regions of the chromosome, annotated as conserved/ hypothetical or phage related genes in *DvH*. These deletions were also confirmed by PCR analysis, using primers complementary to regions flanking the deletions. One of the “phage-deficient” *D. vulgaris* strains (DP4) has been demonstrated to serve as host for latent viruses of *D. vulgaris* Hildenborough. Two distinct phage morphotypes have so far been identified by EM.