Operational Characteristics of a Metal Vapor Vacuum Arc Ion Source

H. Shiraishi and I.G. Brown

June 1989

For Reference
Not to be taken from this room

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
OPERATIONAL CHARACTERISTICS OF A METAL VAPOR VACUUM ARC ION SOURCE

Hiroshi Shiraishi
Nippon Steel Corporation
46-59 Nakabaru, Tobata-ku
Kitakyusyu-city, 804
Japan

and

Ian G. Brown
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720
USA

This work was supported by the U.S. Army Research Office under Contract No. ARO 116-89, the Office of Naval Research under Contract No. N00014-88-F-0093, and the Department of Energy under Contract No. DE-AC03-76SF00098.
OPERATIONAL CHARACTERISTICS OF A METAL VAPOR VACUUM ARC ION SOURCE

Hiroshi Shiraishi
Nippon Steel Corporation
46-59 Nakabaru, Tobata-ku
Kitakyusyu-city, 804
Japan

and

Ian G. Brown
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720
USA

ABSTRACT

The MEVVA ion source can produce high current pulsed beams of metallic ions using a metal vapor vacuum arc discharge as the plasma medium from which the ions are extracted. In this study, the operational characteristics of the MEVVA IV ion source are summarized. Results are presented of measurements of the ion beam current as a function of arc current over a range of extraction voltage. Ti, Ta and Pb were examined as the cathode materials. The arc current ranged from 50A to 250A and the extraction voltage from 10kV to 80kV. The ion beam current was measured at two different distances from the ion source using Faraday cups, so as to investigate the beam divergence. Additionally, the cathode erosion rates were measured. Optimum operating conditions of the MEVVA ion source were determined.
I. INTRODUCTION

Several different embodiments of the MEVVA ion source have been designed and described [1-4]. Here we outline some studies we have carried out of the operational performance of the MEVVA IV ion source. The metal ion beam current has been measured as a function of arc current, extractor voltage, metal species, extractor grid spacing, and position of the beam current measuring Faraday cup. The results characterize the beam performance that can be obtained.

II. EXPERIMENTAL SETUP

For the experiments reported on here, cathodes of Ti, Ta, and Pb were used. The beam formation electrodes ("extractor grids") were a quite conventional set of multi-aperture, accel-decel grids in the form of a circular array of 31 holes, each of diameter 0.3 cm, with array diameter approximately 2 cm. The extractor gap was set at either 0.89 cm or 0.38 cm.

The extraction voltage was varied from 5 to 80 kV. A voltage of -3 kV was applied to the suppressor grid to impede electron backstreaming. The arc current was of magnitude 50 to 250 Amperes, and was supplied from an LC pulse line of impedance 1.5 \(\Omega \) and pulse length 250 \(\mu s \). For these experiments the pulse repetition rate was several pulses per second, although the source has been operated at up to 100 pps.

The source was located on a vacuum chamber with a base pressure of about \(5 \times 10^{-7} \) Torr. Magnetically suppressed Faraday cups were positioned within the vessel to monitor the ion beam current. The first Faraday cup, FC1, had a rectangular entrance aperture of dimensions 7.3 cm x 15 cm, and was positioned at an axial distance of 20 cm from the ion source extractor to the collector plate of the Faraday cup; this geometry is such that FC1 monitors essentially the entire beam produced (ie, all the beam is collected). A second Faraday cup, FC2, was positioned at an axial distance of 59 cm from the source and could be used to monitor the beam current when FC1 was retracted. FC2 had a circular entrance aperture of diameter 5 cm; this geometry is such that FC2 monitors only the beam current within a half-angle of approximately 2.5°. A schematic of the experimental configuration is shown in Figure 1.

III. RESULTS

We measured the beam current, \(I_{\text{beam}} \), using the two Faraday cups FC1 and FC2, as a function of extractor voltage \(V_{\text{ext}} \) and arc current \(I_{\text{arc}} \), for the three different cathode materials Ti, Ta and Pb, and for two different extractor grid spacing, \(g = 0.89 \) cm (g1) and 0.38 cm (g2).

The beam current measured at the first Faraday cup FC1 as a function of extractor voltage is shown in Figure 2, for Ti, Ta and Pb cathodes with an arc current of 200 A and for an extractor gap of 0.89 cm. Note that the size and location of FC1 is such that essentially all of the beam current is measured, independent of beam divergence. It can be seen that the beam current increases with extractor voltage and decreases with ion mass.

The beam current can be plotted as a function of arc current, with the extractor voltage varied as a parameter, and this kind of presentation is shown in Figure 3 for Ti. An
optimum extraction condition can clearly be seen, as is indicated by the dashed line; there is an arc current (i.e., plasma density) for which the beam current is a maximum for a given extraction voltage.

The half angle subtended by the 5 cm diameter Faraday cup FC2 at its distance of 59 cm from the ion source is 2.5°, implying a moderately 'tight' ion beam, and the beam current at FC2 is only a fraction of the total beam current. Thus the current measured at FC2 is a function of the beam divergence also, whereas that measured by FC1 is not. The ratio of the beam current collected by FC2 to that collected by FC1 is shown in Figure 4 for the case of a titanium ion beam. There is a clear effect of arc current and extraction voltage, and a modest arc current of about 100 A provides the right conditions for optimum extraction optics.

The extractor gap width was decreased to g = 0.38 cm, and the results of a limited data set are shown in Figure 5 for the case of a titanium cathode and using FC1. The beam current is greater than that obtained for the larger extractor spacing, and an optimum arc current, for which the beam current is maximum for a given extractor voltage, is evident.

The variation of beam current with extractor voltage is shown in Figure 6. These data correspond to optimal extraction conditions as indicated by the maxima in the Ibeam vs. Vextr curves. The Child-Langmuir equation for the current I under space charge limited conditions is [5,6]

\[I = \frac{4}{9} e_0 S \left(\frac{2q_i}{M_i} \right)^{1/2} \frac{V^{3/2}}{d^2} \]

where \(S \) is the extractor (open) area, \(q_i = eQ \) is the ion charge, \(M_i \) the ion mass, \(V \) the applied extraction voltage, and \(d \) the extractor gap width. For the present case we note that it has been experimentally demonstrated that the charge state distribution remains constant throughout the beam pulse (after an early-time transient behavior), and that there is only a quite weak dependence of the charge state distribution on the arc current [10]; thus the factor \(q_i \) in the equation above can be taken as a constant. The straight lines drawn in Figure 6 have a \(V^{3/2} \) variation, and the excellent fit of the data to this slope is evident.

Finally, we also measured the rate of erosion of cathode material for a number of different metals. For these measurements the arc current was 100 A. The cathode mass was measured using an accurate beam balance before and after operating the source for a known number of discharges, typically several thousand. The measured erosion rates were compared with the rates predicted by a simple estimate based on the known ion generation rates [7-9]. The agreement was good for the more refractory metals, while for the low boiling point metals there is evidence for an additional mass loss, as for example might be associated with an intense macroparticle and neutral vapor generation.

Further experimental results of the kind presented here and quantitative analyses of those results are in preparation and will be presented in a future publication.
IV. CONCLUSION

The beam current produced by the MEVVA IV ion source has been measured over a range of operating conditions as a function of the primary source parameters including extraction voltage, arc current, extraction gap, and metal ion species. The metal ion beam current varied up to a maximum of 700 mA over the range of parameters investigated here. Source performance can be optimized, in terms of maximum beam current produced and minimum beam divergence, by judicious choice of operational parameters, and can conveniently be adjusted by control of the arc current magnitude.

ACKNOWLEDGEMENTS

We are indebted to Bob MacGill and Jim Galvin for their invaluable contributions to the design, fabrication and maintenance of the mechanical and electrical experimental facilities. This work was supported by the U.S. Army Research Office under Contract No. ARO 116-89, the Office of Naval Research under Contract No. N00014-88-F-0093, and the Department of Energy under Contract No. DE-AC03-76SF00098.

REFERENCES

FIGURE CAPTIONS

Fig. 1 Schematic of the experimental configuration.

Fig. 2 Ion beam current as a function of extraction voltage, for Ti, Ta and Pb cathodes. Arc current = 200A; measured with FC1 and for an extraction gap $g = 0.89$ cm.

Fig. 3 Ion beam current as a function of arc current for a range of extraction voltage. Titanium cathode; measured with FC1 and for an extraction gap $g = 0.89$ cm.

Fig. 4 Ratio of the ion beam current measured by FC2 to that measured by FC1 as a function of arc current, for a range of extraction voltage. Titanium cathode; extraction gap $g = 0.89$ cm.

Fig. 5 Ion beam current as a function of arc current, for the smaller extraction gap spacing, $g = 0.38$ cm. Titanium cathode; measured with FC1.

Fig. 6 Measured beam current vs. extraction voltage, showing the $V^{3/2}$ variation.
$I_{arc} = 200 \text{ A, FC1, g1}$

Extraction Voltage (kV)

Figure 2
Figure 3
Figure 4

Fraction $\frac{FC2}{FC1}$ (%) vs. Arc Current (A)

- T_1, g_1
- V_{extr}
- 80 kV
- 70 kV
- 60 kV
- 50 kV

XBL 895-7144
Figure 5

Ion Beam Current (mA)

Arc Current (A)

Ti, FC1, g2

V_{extr}
40 kV

30 kV

20 kV

10 kV

0 50 100 150 200 250
LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT
1 CYCLOTRON ROAD
BERKELEY, CALIFORNIA 94720