Title
A Vegetation Mapping Strategy for Conifer Forests by Combining Airborne LiDAR Data and Aerial Imagery

Permalink
https://escholarship.org/uc/item/1w20v0t6

Journal
Canadian Journal of Remote Sensing, 42(1)

ISSN
0703-8992

Authors
Su, Y
Guo, Q
Fry, DL
et al.

Publication Date
2016-01-02

DOI
10.1080/07038992.2016.1131114

Peer reviewed
A Vegetation Mapping Strategy for Conifer Forests by Combining Airborne LiDAR Data and Aerial Imagery

Yanjun Su1, Qinghua Guo1*, Danny L. Fry2, Brandon M. Collins3,4, Maggi Kelly2, Jacob P. Flanagan1, and John J. Battles2

1Sierra Nevada Research Institute, School of Engineering, University of California at Merced, 5200 North Lake Road, Merced, California 95343, USA
2Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California 94720, USA
3USDA Forest Service, Pacific Southwest Research Station, Davis, California 95418, USA
4Center for Fire Research and Outreach, University of California at Berkeley, Berkeley, California 94720, USA

Abstract. Accurate vegetation mapping is critical for natural resources management, ecological analysis, and hydrological modeling, among other tasks. Remotely sensed multispectral and hyperspectral imageries have proved to be valuable inputs to the vegetation mapping process, but they can provide only limited vegetation structure characteristics, which are critical for differentiating vegetation communities in compositionally homogeneous forests. Light detection and ranging (LiDAR) can accurately measure the forest vertical and horizontal structures and provide a great opportunity for solving this problem. This study introduces a strategy using both multispectral aerial imagery and LiDAR data to map vegetation composition and structure over large spatial scales. Our approach included the use of a Bayesian information criterion algorithm to determine the optimized number of vegetation groups within mixed conifer forests in two study areas in the Sierra Nevada, California, and an unsupervised classification technique and post hoc analysis to map these vegetation groups across both study areas. The results show that the proposed strategy can recognize four and seven vegetation groups at the two study areas, respectively. Each vegetation group has its unique vegetation structure characteristics or vegetation species composition. The overall accuracy and kappa coefficient of the vegetation mapping results are over 78% and 0.64 for both study sites.

INTRODUCTION

Vegetation mapping is the process of characterizing vegetation units across a landscape from measured environmental parameters (Franklin 1995; Pedrotti 2012). Typically, these units convey information about the dominant plant species present and the morphological structure of the vegetation (e.g., a mesic hardwood or a high-elevation meadow). Accurate and up-to-date vegetation maps are critical for managers and scientists because they serve a range of functions in natural resource management (e.g., forest inventory, timber harvest, wildfire risk control, wildlife protection), ecological and hydrological modeling, and climate change studies (Chuvieco and Congalton 1988; Tal-
important role that forest structure has on wildfire behavior and
and Skinner (2005) and Peterson et al. (2005) all pointed to the
est structure information was critical for mapping the habitat
(2006) and García-Feced et al. (2011) demonstrated that for-
stinct structure parameters can impact biodiversity and should
also plays a very important role in many ecological studies.
For example, Lindenmayer et al. (2000) advocated that forest-
tial structure characteristics in forests has rarely been con-
with multispectral sensors with broad wavelength intervals.
Data from hundreds of continuous spectral channels compared
can produce more finely classified vegetation mapping results
(Hirano et al. 2003; Li et al. 2005). The use of hyperspectral data
produce more finely classified vegetation mapping results than
multispectral data can (Xu and Gong 2007; Adam et al.
2010), because hyperspectral sensors are designed to collect
data from hundreds of continuous spectral channels compared
with multispectral sensors with broad wavelength intervals.
All of these studies that use both multispectral and hyper-
spectral imagery usually focus only on mapping either the land
cover type or the vegetation composition. Examining the de-
tailed structure characteristics in forests has rarely been con-
sidered because of the limited penetration capability of mul-
tispectral and hyperspectral data. However, this information
also plays a very important role in many ecological studies.
For example, Lindenmayer et al. (2000) advocated that forest-
structure-based parameters can impact biodiversity and should
be taken into account in forest management. Zielinski et al.
(2006) and García-Feced et al. (2011) demonstrated that for-
est structure information was critical for mapping the habitat
of Pacific fisher (Pekania pennanti) and California spotted owl
(Strix occidentalis occidentalis). Graham et al. (2004), Agee
and Skinner (2005) and Peterson et al. (2005) all pointed to the
important role that forest structure has on wildfire behavior and
argued that modifying forest structure through forest treatment
might be necessary to reduce fire risk in many dry conifer forest
types. Developing methods to integrate structure information
into the process of vegetation mapping is an important area of
research.

Light detection and ranging (LiDAR), an active remote sens-
ing technique, can accurately measure the three-dimensional
distribution of surface objects (Lefsky et al. 2002). The focused
and narrow laser beam used by LiDAR sensors has a strong
penetration capability in forest areas (Lim et al. 2003; Jensen
2009; Su and Guo 2014). It has been well documented that
LiDAR data can be used to derive highly reliable forest struc-
ture parameters such as tree height (Nilsson 1996; Andersen
et al. 2006; Su et al. 2015), canopy cover (Lim et al. 2003; Ko-
rhonen et al. 2011), leaf area index (Riaño et al. 2004; Jensen
et al. 2008), stand volume (Nilsson 1996; Naesset 1997), and
tree diameter (Popescu 2007; Huang et al. 2011). The capacity
to resolve forest structure parameters provides a great oppor-
tunity for developing vegetation-mapping strategies (Kramer et al.
2014). Donoghue et al. (2007) and Heinzel and Koch (2011) ex-
plored the possibility of identifying tree species mixtures from
parameters derived from LiDAR data. Örka et al. (2009) and
Kim et al. (2009) used LiDAR intensity data to differentiate
broadleaf and needleleaf trees. Reitberger et al. (2008) used
full-waveform LiDAR data to classify deciduous and conifer-
tree species, including Norway spruce (Picea abies L. Karst),
Scots pine (Pinus sylvestris L.), and deciduous trees, by analyz-
ing individual crown shape and rich tree structure parameters
derived from LiDAR data. However, due to the lack of forest
canopy spectral information, the accuracy of tree species clas-
sification from LiDAR data is limited in complex vegetation
conditions.

The integration of LiDAR data and multispectral/hyperspectral imagery has been used to address the
limitation of using only LiDAR data in vegetation mapping. For example, Cho et al. (2012), Colgan et al. (2012) and
Naidoo et al. (2012) mapped tree species compositions in
African savannas through the combination of LiDAR data and
hyperspectral data using maximum likelihood, Random Forest,
and Support Vector Machine classifiers, respectively; Dalponte
et al. (2012) and Hill and Thomson (2005) classified tree
species compositions of broadleaf and coniferous mixed forests
through the fusion of spectral and LiDAR data; Holmgren et al.
(2008) and Koukoulas and Blackburn (2005) used a maximum
likelihood classifier to identify individual tree species from
LiDAR-derived structure parameters and multispectral informa-
tion in deciduous and coniferous forests, respectively. It has
been reported that the integration of LiDAR data and optical
imagery can increase the vegetation composition classification
accuracy by 16%–20% in rangelands, compared to using only
LiDAR data or optical imagery (Bork and Su 2007). However,
most of these studies on mapping vegetation units are still
focusing mainly on classifying vegetated from nonvegetated
areas or detecting differences in species composition. Forest
structure characteristics, which can be estimated by statistical imputation methods that incorporate field measurements with LiDAR data and optical imagery (Falkowski et al. 2010; Hummel et al. 2011; Wallerman and Holmgren 2007), are rarely considered in classification systems.

The objective of this study is to develop and test a new strategy to map vegetation communities in two mixed conifer forests by considering both the dominant tree species composition and vegetation structure characteristics. Multispectral aerial imagery and airborne LiDAR data were integrated, along with a robust network of systematically established field plots in the vegetation mapping process. An unsupervised classification scheme using an automatic cluster determination algorithm based on Bayesian information criterion (BIC) and k-means classification was applied to the fused data to map the vegetation, and a post hoc analysis based on field measurements was used to interpret the ecological properties for each vegetation unit.

MATERIALS AND METHODS

Study Areas

Our two forest study sites are located in the Sierra Nevada mountain range, California, USA (Figure 1). The northern site, Last Chance, covers an area of 92.1 km², and the southern site, Sugar Pine, covers an area of 72.8 km². The elevation ranges from 280 m to 2190 m for the Last Chance site and from 500 m to 2650 m for the Sugar Pine site, and the average elevation for both study sites is over 1500 m. Trees common to the Sierran mixed conifer and true fir forests dominate the vegetation cover at both sites. The major species present include: ponderosa pine (Pinus ponderosa), incense-cedar (Calocedrus decurrens), sugar pine (Pinus lambertiana), white fir (Abies concolor), California red fir (Abies magnifica), and Douglas-fir (Pseudotsuga menziesii). Within the mixed conifer stands, the major hardwoods are black oak (Quercus kelloggii) and canyon live oak (Quercus chrysolepis). Forest cover is relatively homogeneous at both the study sites, but the Last Chance site has more heterogeneity than the Sugar Pine site.

Field Measurements

Plot measurements (12.62 m in radius and 500 m² in area) were taken in the summer of 2007 and 2008 (Figure 1). The same plot selection procedure was applied to determine the location of 372 and 268 evenly distributed plots at the Last Chance site and Sugar Pine site, respectively. A random point was first chosen to be used as the center of the first plot in each study site. Then, this plot center was taken as a seed point to build...
a grid on a 500 m spacing in the four cardinal directions, and the following plot centers were placed on the intersections of the grid. Within watersheds for specific research purposes (e.g., studying hydrological responses to forest fuel treatments), the sampling was intensified to a 250 m by 250 m grid. The position of each plot center in the field was located using a Trimble™ GeoXH GPS. If there were any landing or road surfaces within the plot footprint, the plot center was randomly moved by 25 m in one of the four cardinal directions.

Within each plot, field measurements on individual live trees included: tree species, tree height, diameter at breast height (DBH, breast height = 1.37 m) and height to live crown base. Trees were defined as individuals at least 5 cm in DBH. Moreover, the plot-level canopy cover was measured using a sight tube with 25 sampling points. The plot-level Lorey’s height and total basal area were calculated from field measurements and used in the vegetation mapping process in this study, and these can be calculated from the following equations.

\[
\text{LH}_i = \frac{\sum_{i=1}^{n_i} BA_i \times H_i}{\sum_{i=1}^{n_i} BA_i},
\]

\[
\text{TBA}_i = \sum_{i=1}^{n_i} BA_i,
\]

where LH_i and TBA_i represent the Lorey’s height and total basal area of the i-th plot, and BA_i and H_i are the basal area and tree height of the i-th tree in the i-th plot.

LiDAR Data

Small footprint airborne LiDAR data covering the Sugar Pine site and Last Chance site were acquired in September 2007 and September 2008 using an Optech GEMINI airborne laser terrain mapper (ALTM) from the National Center of Airborne Laser Mapping at the University of Houston. It was mounted on a twin-engine Cessna Skymaster and was flown at 600 m–700 m above the ground. The ALTM sensor was operated at 100 kHz with a scanning frequency of 40 Hz–60 Hz and a total scan angle of 24°–28°. The average swath width of a single pass was around 510 m, and the overlap between two adjoining swaths was 65% of the swath width. The point density was 6–10 points/m², and positioning accuracy was about 10 cm horizontally and 10 cm–15 cm vertically.

Overall, there are 13 layers derived from the raw LiDAR point cloud for both study sites, including the canopy height model (CHM), canopy cover, and 11 canopy quantile metrics. The CHM was calculated by the difference between the LiDAR-derived digital elevation model (DEM) and digital surface model (DSM), which were interpolated from the LiDAR ground returns and LiDAR first returns, respectively. The interpolation algorithm used in this study was ordinary kriging, which has been proved to be more accurate than other schemes (e.g., inverse distance weighted or spline) for interpolating DEM and DSM from LiDAR-derived elevation points (Lloyd and Atkinson 2002; Clark et al. 2004; Guo et al. 2010).

The canopy cover was calculated by a CHM-based method, a reliable and consistent approach for estimating canopy cover from LiDAR data (Lucas et al. 2006). First, a fine resolution CHM (\(1 \times 1 \text{ m}^2\)) was calculated from the LiDAR point cloud using the aforementioned algorithm, and the pixels above a selected height threshold were coded as 1 or 0 otherwise. The height threshold was set as 2 m in this study to match field-based canopy cover measurements. Then, this coded CHM was used to overlap with a 20 × 20-m² grid, and the canopy cover was calculated as the percentage of the number of coded CHM pixels with a value of 1 to the total number of coded CHM pixels within each 20 × 20-m² grid. The final canopy cover layer was produced in 20-m resolution to roughly match the scale of field plots.

Canopy quantile metrics, representing the height below X% of the LiDAR point cloud, are one of most frequently used LiDAR products for estimating the forest parameters that cannot be obtained directly from a LiDAR point cloud, e.g., DBH and biomass (Lim and Treitz 2004; Thomas et al. 2006). In this study, 11 quantile metrics, including 0%, 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 99%, and 100%, were calculated in 20-m resolution directly from the LiDAR point cloud.

Aerial Imagery

The 2005 National Agriculture Imagery Program (NAIP) color-infrared (CIR) aerial imagery in \(1 \times 1 \text{ m}^2\) resolution (composed of green band, red band, and near-infrared (NIR) band) are used in the vegetation mapping procedure of this study. The NAIP program is run by the Farm Service of the US Department of Agriculture (USDA) for the purpose of making high-resolution digital orthographies available to maintain common land units. All NAIP images were taken under permitted weather conditions, and followed the specification of no more than 10%-cloud cover per quarter quad tile. The Aerial Photogrophy Field Office has adjusted and balanced the dynamic range of each image tile to the full range of digital number (DN) value (0–255), and orthorectified each image file using the National Elevation Dataset before releasing the data (Hart and Veblen 2015). To ensure the NAIP imagery coregistered with LiDAR data, we georeferenced the NAIP imagery using over 20 correspondence points for each study site selected from NAIP imagery and LiDAR-derived products (i.e., DEMs and CHMs).

In addition to the three spectral bands, seven texture layers (including mean, variance, homogeneity, contrast, dissimilarity, entropy, and second moment) were extracted from each spectral band using the gray-level co-occurrence matrix (GLCM) filtering method. GLCM is defined over an image to be the distribution of co-occurring values at a given offset (\(\Delta x, \Delta y\)) (Haralick et al. 1973; Anys et al. 1994; Soh and Tsatsoulis 1999), which
FIG. 2. Procedure for the vegetation-mapping strategy used in this study.

Vegetation Mapping Strategy

There are, overall, 24 aerial imagery derived features (including the spectral bands and derived texture layers) and 13 LiDAR-derived features initially available for this analysis. This large number of potential input layers for vegetation mapping could negatively influence the results, given the likelihood of redundant information captured by the layers. Many algorithms have been developed to reduce the dimensionality of an input dataset, e.g., principal component analysis (PCA), linear discriminant analysis, correspondence analysis, and detrended correspondence analysis. As one of the most commonly used techniques, the PCA algorithm has been proven to be effective at removing redundant information in remotely sensed data (Mutlu et al. 2008; Pohl and Van Genderen 1998). Therefore, in this study, the standardized PCA method was first applied separately to the aerial-imagery-derived and LiDAR-derived features (Figure 2). The first three PCA components from aerial-imagery-derived features and the first three components from LiDAR-derived features were combined as the input for the vegetation mapping strategy. An unsupervised classification strategy and post hoc analysis integrated with field measurements was then applied on the six PCA components to define vegetation groups and delineate the boundaries of different groups (Figure 2). The detailed descriptions for the unsupervised classification strategy and post hoc analysis are provided following.

Unsupervised Classification Strategy

The specific number and character of vegetation groups within a particular forest are usually unknown prior to the vegetation-mapping process. Thus, one of the main challenges for vegetation mapping is to identify distinct vegetation groups and delineate boundaries among groups. In this study, an automatic cluster-number determination algorithm based on BIC, developed by Chiu et al. (2001), was combined with k-means unsupervised classification to initially map the vegetation. BIC is a robust measure for model selection among a finite set of
First, the initial value of the cluster number was estimated. Let \(k \) be the number of clusters, \(l_k \) be the classification likelihood function, \(r_k \) be the number of independent parameters, and \(n \) be the number of observations.

To obtain the optimized cluster number, a large maximum cluster number was first defined. In this study we used the hierarchical cluster analysis of species composition (linkage method = Ward’s; distance measure = Euclidean) following the method described in McCune et al. (2002) to determine the maximum number of vegetation groups in both study sites. BIC values for all possible cluster numbers (from one to the defined maximum number of vegetation groups in both study sites) were then calculated. With these BIC values, the optimized number of clusters was determined in two steps. First, the initial value of the cluster number was estimated. Let \(\text{d} \text{BIC}(k) \) be the change of BIC values from two adjacent cluster numbers \(\text{d} \text{BIC}(k) = \text{BIC}_k - \text{BIC}_{k-1} \), and \(r \text{BIC}(k) \) be the ratio of BIC from \(k \) clusters and BIC from only one cluster \(r \text{BIC}(k) = \text{BIC}_k/\text{BIC}_1 \). If the \(\text{d} \text{BIC}(2) \) was larger than 0, the initial cluster number was set as one; otherwise, the initial cluster number was set equal to the number of clusters where \(r \text{BIC}(k) \) was smaller than 0.04 for the first time. Second, if the initial cluster number was one, the final cluster number was set as one; otherwise, the ratio change in log-likelihood distance was further used to optimize the cluster number. Let \(R(k) \) be the ratio of log-likelihood distances \((d_k) \) from two adjacent cluster numbers \(R(k) = d_k/d_{k-1} \). The ratio of change in log-likelihood was computed as \(R(k_1)/R(k_2) \), where \(k_1 \) and \(k_2 \) were the cluster numbers of the two largest \(R(k) \) smaller than the obtained initial cluster number. If the ratio of change was larger than 1.15, the final cluster number was set equal to \(k_1 \); otherwise, it was set equal to the maximum value between \(k_1 \) and \(k_2 \). It should be noted that all the thresholds used in the BIC algorithm were determined by statistical experiments by Chiu et al. (2001).

With the optimized cluster number, we used a k-means clustering algorithm to delineate the boundary of different vegetation types. K-means divides observations into a predefined number of clusters, and each observation belongs to the cluster with the nearest mean (Hartigan 1975), which can be mathematically described as:

\[
\arg \min_{i=1}^{k_{BIC}} \sum_{x_j \in S_i} \left\| x_j - u_i \right\|^2,
\]

where \(k_{BIC} \) is the predefined number of clusters, \(x_j \) is the \(j \)th observation vector, \(S_i \) is the \(i \)th set of observation vectors, and \(u_i \) is the mean point of the \(i \)th set. In this study, the maximum iterations for k-means unsupervised classification was set to 10, and the change threshold of the mean points was set to 5%.

Post hoc Analysis

Field measurements were used to describe the dominant tree species composition and forest structure characteristics. The unsupervised vegetation group for each plot was extracted by overlapping the plot location with an unsupervised classification result. Then, for all plots belonging to the same unsupervised classification group, we analyzed their dominant tree species and forest structure characteristics measured from the field. The dominant tree species were defined by the proportions of different tree species weighted by basal area, and the forest structure characteristics were defined by the plot-level basal area, Lorey’s height, and canopy cover. Finally, these plot-derived dominant tree species information and forest structure characteristics were used to determine the property of each unsupervised classification group. It should be noted that approximately two-thirds of the plots (273 in Last Chance and 177 in Sugar Pine) were randomly selected and used to define vegetation group properties. The other plots were reserved to validate the vegetation mapping result.

Accuracy Assessment

PCA ordination analysis, one type of multivariate analysis that can depict species relationships in low-dimensional space (Gauch 1982), was used to evaluate the capability of the proposed vegetation mapping strategy on differentiating tree species. It has been widely used as a complement to other data-clustering techniques that help identify repeatable vegetation patterns and discontinuities in species composition (Lepš and Šmilauer 2003). In this study, relative species abundance for ordination analysis was represented by basal area (i.e., the ratio of basal area for each tree species to the total basal area of all trees at a plot). Moreover, the permutation test, a type of robust nonparametric statistical significance test (Nichols and Holmes 2002), was used to evaluate the capability of the proposed vegetation-mapping strategy on recognizing different structure characteristics, because the field-measured forest structure parameters are not normally distributed based on the Shapiro–Wilk test \(\alpha = 0.05 \) (Table 1).

In addition, the total accuracy (TA) and kappa coefficient (\(\kappa \)) were also calculated for the purpose of evaluating vegetation-mapping results, which can be denoted as:

\[
\begin{align*}
\text{TA} &= \frac{a}{N} \\
\kappa &= \frac{\Pr(a) - \Pr(e)}{1 - \Pr(e)},
\end{align*}
\]

where \(a \) is the number of plots whose vegetation group agree with the vegetation-mapping result, \(N \) is the total number of plots used for accuracy assessment; \(\Pr(a) \) is the relative observed agreement, and \(\Pr(e) \) is the hypothetical probability of chance agreement. The 95% confidence interval for the TA was calculated using the method provided by Foody (2009). About one-third of the plot measurements at each study site were used.
TABLE 1
Tests of normality for the forest structure parameters using Shapiro–Wilk test

<table>
<thead>
<tr>
<th></th>
<th>Last Chance Site</th>
<th>Sugar Pine Site</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td>Lorey’s Height</td>
<td>0.630</td>
<td>370</td>
</tr>
<tr>
<td>Basal Area</td>
<td>0.489</td>
<td>370</td>
</tr>
<tr>
<td>Canopy Cover</td>
<td>0.988</td>
<td>370</td>
</tr>
</tbody>
</table>

to calculate TA and κ. The vegetation group assignments for these test plots were determined by the minimum Mahalanobis distance between these plots and the center of each vegetation group. The parameters used for calculating the Mahalanobis distance include the three forest structure parameters and the coordinates on the primary and secondary axes from the ordination analysis. The center for each vegetation group was calculated by the means of plots used to name vegetation groups. To minimize the influence of the different scales of parameters, all parameters were normalized before calculating the Mahalanobis distance.

RESULTS

Optimized Cluster Number Determination

In this study, the hierarchical cluster analysis result showed that there was never any support for more than eight vegetation classes at either study site. Thus, as a conservative starting point, we approximately doubled the estimate from preliminary results (i.e., 15 vegetation classes) and set it as the upper limit of the BIC cluster number determination algorithm. As shown in Table 2, all dBIC values for the Last Chance site were smaller than zero, and the cluster number was 14 when the rBIC was smaller than 0.04 for the first time. The initial cluster number was set as 14 for the Last Chance site. When the cluster number was smaller than 14, the two largest $R(k)$ values were from results having two clusters and seven clusters. Due to the fact that the ratio between these two $R(k)$ was smaller than 1.15, the final optimized cluster number for the Last Chance site was set to seven. Similarly, the final optimized cluster number for the Sugar Pine site was set to four. It should be noted that the initial cluster number for the Sugar Pine site was set to 15 (i.e., the predefined maximum cluster number) because all the rBIC values were larger than 0.04.

TABLE 2
The optimized cluster number determination results using Bayesian information criterion (BIC) algorithm for the Last Chance and Sugar Pine study sites

<table>
<thead>
<tr>
<th>k</th>
<th>BIC</th>
<th>dBICa</th>
<th>rBICb</th>
<th>R(k)c</th>
<th>k</th>
<th>BIC</th>
<th>dBICa</th>
<th>rBICb</th>
<th>R(k)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1390210.558</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1478604.199</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1132790.048</td>
<td>−257420.510</td>
<td>1.000</td>
<td>1.942</td>
<td>2</td>
<td>1216658.927</td>
<td>−261945.272</td>
<td>1.000</td>
<td>2.154</td>
</tr>
<tr>
<td>3</td>
<td>1000327.759</td>
<td>−132462.829</td>
<td>.515</td>
<td>1.386</td>
<td>3</td>
<td>1095132.435</td>
<td>−121526.492</td>
<td>.464</td>
<td>1.177</td>
</tr>
<tr>
<td>4</td>
<td>904805.634</td>
<td>−95522.126</td>
<td>.371</td>
<td>1.236</td>
<td>4</td>
<td>991913.123</td>
<td>−103219.312</td>
<td>.394</td>
<td>1.920</td>
</tr>
<tr>
<td>5</td>
<td>827541.566</td>
<td>−77264.068</td>
<td>.300</td>
<td>1.139</td>
<td>5</td>
<td>938229.015</td>
<td>−53684.108</td>
<td>.205</td>
<td>1.055</td>
</tr>
<tr>
<td>6</td>
<td>759733.224</td>
<td>−67808.342</td>
<td>.263</td>
<td>1.502</td>
<td>6</td>
<td>887345.487</td>
<td>−50883.528</td>
<td>.194</td>
<td>1.140</td>
</tr>
<tr>
<td>7</td>
<td>714639.554</td>
<td>−45093.670</td>
<td>.175</td>
<td>1.774</td>
<td>7</td>
<td>842710.399</td>
<td>−44635.088</td>
<td>.170</td>
<td>1.237</td>
</tr>
<tr>
<td>8</td>
<td>689292.817</td>
<td>−25346.737</td>
<td>.098</td>
<td>1.139</td>
<td>8</td>
<td>806647.821</td>
<td>−36062.578</td>
<td>.138</td>
<td>1.461</td>
</tr>
<tr>
<td>9</td>
<td>667049.072</td>
<td>−22243.744</td>
<td>.086</td>
<td>1.119</td>
<td>9</td>
<td>782010.413</td>
<td>−24637.409</td>
<td>.094</td>
<td>1.047</td>
</tr>
<tr>
<td>10</td>
<td>647181.368</td>
<td>−19867.704</td>
<td>.077</td>
<td>1.318</td>
<td>10</td>
<td>758479.133</td>
<td>−23531.280</td>
<td>.090</td>
<td>1.029</td>
</tr>
<tr>
<td>11</td>
<td>632149.235</td>
<td>−15032.134</td>
<td>.058</td>
<td>1.165</td>
<td>11</td>
<td>735610.756</td>
<td>−22868.377</td>
<td>.087</td>
<td>1.009</td>
</tr>
<tr>
<td>12</td>
<td>619263.081</td>
<td>−12886.154</td>
<td>.050</td>
<td>1.098</td>
<td>12</td>
<td>712946.401</td>
<td>−22664.355</td>
<td>.087</td>
<td>1.008</td>
</tr>
<tr>
<td>13</td>
<td>607542.700</td>
<td>−11720.381</td>
<td>.046</td>
<td>1.407</td>
<td>13</td>
<td>690455.682</td>
<td>−22490.719</td>
<td>.086</td>
<td>1.321</td>
</tr>
<tr>
<td>14</td>
<td>599259.290</td>
<td>−8283.410</td>
<td>.032</td>
<td>1.162</td>
<td>14</td>
<td>673467.151</td>
<td>−16988.531</td>
<td>.065</td>
<td>1.058</td>
</tr>
<tr>
<td>15</td>
<td>592152.613</td>
<td>−7106.676</td>
<td>.028</td>
<td>1.014</td>
<td>15</td>
<td>657416.013</td>
<td>−16051.138</td>
<td>.061</td>
<td>1.005</td>
</tr>
</tbody>
</table>

aThe changes (dBIC) are from the previous number of clusters in the table.
bThe ratios of changes (rBIC) are relative to the change for the two-cluster solution.
cThe ratios of distance measures ($R(k)$) are based on the current number of clusters against the previous number of clusters.
The vegetation mapping results for the Last Chance and Sugar Pine sites are shown in Figure 3. Both sites are dominated by Sierran mixed conifer trees. Specifically, 56% of the Last Chance site was classified as the mature mixed conifer forest, 19% as young mixed conifer forest, and 12.6% as mixed conifer woodland. The young mixed conifer forest was mainly scattered within the mature mixed conifer forest (Figure 3(a)). Pine- and open true fir-dominated forest types were less abundant, covering 7.3% and 3.7% of the study area, respectively (Table 3). These forest types were found mainly at the north end of the study site, and their coverage increased with elevation (Figure 1 and Figure 3(a)). The proportion of the low- and high-shrub types were very small, both around 0.6%. At Sugar Pine, the mature mixed conifer forest again was the most common type, occupying 57.1% of the landscape (Figure 3(b)). Closed-canopy mixed conifer forest was the next most common type, at 25.9% of area, with the greatest concentration in the middle of the study site. The pine-cedar woodland and open pine-oak woodland were distributed at the southeast and northwest of the study site, occupying 13.8% and 3.2%, respectively.

The forest vertical structure information and dominant tree species composition for each vegetation group are shown in Table 3. Naming conventions for the unsupervised groups were based on the dominant tree species (Table 3). If the tree species composition for two vegetation groups is similar, the name recognizes the differences in the forest structures. For example, at the Last Chance site, composition of the dominant tree species for young mixed conifer forest and mature mixed conifer forest are similar, but the mature mixed conifer forest has larger, taller trees and greater canopy cover (Table 3). Note there is no tree information for groups identified as low shrub and high shrub, because no trees were measured with a DBH of 5 cm or greater in these groups.

The capability of the proposed vegetation-mapping strategy to differentiate among dominant species was evaluated by ordination analysis. In Figure 4, the first two axes for both study sites represent over 50% information of all data. The tree species composition among vegetation groups differ greatly with each other at the Last Chance site (Figure 4 (a)). Although the tree species composition of young mixed conifer forest and mature mixed conifer forest are similar (Table 3), the proportion of white fir for the mature mixed conifer forest is larger than that of the young mixed conifer forest, and that for ponderosa pine is smaller (Table 3). At the Sugar Pine site, the proportion of black oak trees for open pine-oak woodland is higher than the other three vegetation groups, which makes it unique among all four vegetation groups (Figure 4 (b)). The tree species compositions for the other three vegetation groups are similar, especially the mature mixed conifer forest and closed-canopy mixed conifer forest. The proportion of white fir and California red fir for the pine-cedar woodland is relatively smaller, compared to the
TABLE 3
Forest structure parameters and dominant tree species for each vegetation group obtained from the k-means unsupervised classification procedure; the dominant tree species are evaluated by the relative basal area of each tree species (Note that certain tree species with too-small relative basal areas for all groups (<1%) were not included in the table)

<table>
<thead>
<tr>
<th>Group ID</th>
<th>Vegetation Type</th>
<th>Basal Area (m²/ha)</th>
<th>Lorey’s Height (m)</th>
<th>Canopy Cover (%)</th>
<th>Dominant Tree Species</th>
<th>Relative Basal Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Low Shrub</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Manzanita (Arctostaphylos spp.)</td>
<td>N/A</td>
</tr>
<tr>
<td>G2</td>
<td>High Shrub</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Manzanita (Arctostaphylos spp.)</td>
<td>N/A</td>
</tr>
<tr>
<td>G3</td>
<td>Open True Fir</td>
<td>4.0</td>
<td>10.1</td>
<td>9.2</td>
<td>69</td>
<td>19</td>
</tr>
<tr>
<td>G4</td>
<td>Pine Woodland</td>
<td>11.2</td>
<td>13.2</td>
<td>21.8</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>G5</td>
<td>Mixed Conifer Woodland</td>
<td>20.3</td>
<td>15.6</td>
<td>36.4</td>
<td>44</td>
<td>2</td>
</tr>
<tr>
<td>G6</td>
<td>Young Mixed Conifer Forest</td>
<td>24.7</td>
<td>18.5</td>
<td>46.1</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>G7</td>
<td>Mature Mixed Conifer Forest</td>
<td>48.3</td>
<td>26.3</td>
<td>61.5</td>
<td>34</td>
<td>4</td>
</tr>
</tbody>
</table>

Last Chance Site

<table>
<thead>
<tr>
<th>Group ID</th>
<th>Vegetation Type</th>
<th>Basal Area (m²/ha)</th>
<th>Lorey’s Height (m)</th>
<th>Canopy Cover (%)</th>
<th>Dominant Tree Species</th>
<th>Relative Basal Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Open Pine-Oak Woodland</td>
<td>11.4</td>
<td>12.2</td>
<td>14.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G2</td>
<td>Pine-Cedar Woodland</td>
<td>19.8</td>
<td>17.6</td>
<td>38.1</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>G3</td>
<td>Mature Mixed Conifer Forest</td>
<td>47.3</td>
<td>25.3</td>
<td>66.8</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>G4</td>
<td>Closed-canopy Mixed Conifer</td>
<td>68.0</td>
<td>32.4</td>
<td>74.6</td>
<td>40</td>
<td>1</td>
</tr>
</tbody>
</table>

Sugar Pine Site

<table>
<thead>
<tr>
<th>Group ID</th>
<th>Vegetation Type</th>
<th>Basal Area (m²/ha)</th>
<th>Lorey’s Height (m)</th>
<th>Canopy Cover (%)</th>
<th>Dominant Tree Species</th>
<th>Relative Basal Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Open Pine-Oak Woodland</td>
<td>11.4</td>
<td>12.2</td>
<td>14.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G2</td>
<td>Pine-Cedar Woodland</td>
<td>19.8</td>
<td>17.6</td>
<td>38.1</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>G3</td>
<td>Mature Mixed Conifer Forest</td>
<td>47.3</td>
<td>25.3</td>
<td>66.8</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>G4</td>
<td>Closed-canopy Mixed Conifer</td>
<td>68.0</td>
<td>32.4</td>
<td>74.6</td>
<td>40</td>
<td>1</td>
</tr>
</tbody>
</table>

aN/A means the value is not available for corresponding blank.
bSpecies code: ABCO, white fir (Abies concolor); ABMA, California red fir (Abies magnifica); CADE, incense-cedar (Calocedrus decurrens); PILA, sugar pine (Pinus lambertiana); PIPO, western white pine (Pinus monticola); PIPO, ponderosa pine (Pinus ponderosa); PSME, Douglas-fir (Pseudotsuga menziesii); QUKE, black oak (Quercus kelloggii); LO, canyon live oak (Quercus chrysolepis).

mature mixed conifer forest and closed-canopy mixed conifer forest.

The capability of the proposed vegetation-mapping strategy to differentiate the forest vertical structure characteristics was examined by permutation testing under the null hypothesis that the means of vegetation vertical structure parameters among vegetation groups have no difference. Because there were no forest structure parameters for the plots within the low-shrub and high-shrub groups at Last Chance, these two groups were excluded from the permutation test. At the Last Chance site, this null hypothesis is rejected for differences in parameters among all vegetation groups (α < 0.05), except the difference in Lorey’s height between open true fir and pine woodland and that between pine woodland and mixed conifer woodland (Table 4). For differences in Lorey’s height between these two group combinations, the null hypothesis can still be rejected at the significant level of α = 0.10. At the Sugar Pine site, the variation in vegetation structure parameters among groups is not as pronounced as at the Last Chance site. The vegetation parameters for the closed-canopy mixed conifer forest are the most distinct. The p-values for the differences in all three parameters among the closed-canopy mixed conifer forest and the other three vegetation groups are all smaller than 0.05 except for the difference in canopy cover with mature mixed conifer forest.

The basal area and Lorey’s height of the mature mixed conifer forest are significantly different from all other groups (α < 0.05). However, its canopy cover has no significant difference from all other vegetation groups. The differences in all three parameters between open pine-oak woodland and pine-cedar woodland are not significant.

The accuracy of the vegetation-mapping results was evaluated by the independent plot measurements (Table 5). As can been seen, the overall accuracies of the vegetation-mapping results are around 80% with a 95% confidence interval of ~ 8% for both study sites, and kappa coefficients are higher than 0.65. At the Last Chance site, the commission errors and omission errors for most vegetation groups are lower than 20%, except the commission errors for the mixed conifer woodland and young mixed conifer forest and the omission error for the mixed conifer woodland. At the Sugar Pine site, all commission and omission errors are lower than 30%, except the omission error for the pine-cedar woodland. The omission rate of the pine-cedar woodland is as high as 41%, and six out of seven omitted pine-cedar woodland plots were misclassified as mature mixed conifer forest.

DISCUSSION
Remote sensing technology has been shown to be extremely helpful for mapping and monitoring vegetation over large spatial...
FIG. 4. Ordination analysis results for the Last Chance and Sugar Pine sites. The “+” symbol in each color represents the centroid of the vegetation group represented by the corresponding color in each figure. Species code: ABCO, white fir (Abies concolor); ABMA, California red fir (Abies magnifica); ALRH, white alder (Alnus rhombifolia); CADE, incense-cedar (Calocedrus decurrens); CONU, mountain dogwood; LO, canyon live oak (Quercus chrysolepis); PILA, sugar pine (Pinus lambertiana); PIMO, western white pine (Pinus monticola); PIPO, ponderosa pine (Pinus ponderosa); PSME, Douglas-fir (Pseudotsuga menziesii); QUKE, black oak (Quercus kelloggii); SALIX, peachleaf willow (Salix amygdaloides); SEGI, giant sequoia (Sequoiadendron giganteum).

scales (Xie et al. 2008). However, choosing a classification system that comprehensively captures vegetation community composition and structure is still a major challenge for vegetation mapping from remotely sensed data (Rapp et al. 2005). Traditionally, the number of vegetation units and/or the properties of vegetation units within a forest have been predefined by the prior knowledge of experts from previous experience or field sampling data (Bork and Su 2007; Carpenter et al. 1999; Naidoo et al. 2012). However, this could lead to biased or inconsistent classification systems across regions and might not result in optimal breaks among different vegetation communities. Heinzel and Koch (2011) found that the accuracy of vegetation mapping can increase from 57% to 91% with corresponding decreases in the number of vegetation classes from six to two. It is critical to determine the optimal number of groups that balances the value of recognizing differences in vegetation structure and composition with the reliability of identifying these differences.

By combining the LiDAR data and high-resolution aerial image, this study used a novel automatic cluster number determination algorithm and k-means unsupervised classification to define an optimized classification system. The classification of each vegetation group was determined by fully considering both the vegetation structure characteristics and dominant tree species composition. The results at both study sites show that the proposed vegetation mapping strategy can differentiate vegetation groups by vegetation structure parameters or dominant species composition or both (Figure 3). At the Last Chance site, the small differences in the relative abundance of the common tree species were captured along with steep gradients in structure (Figure 4a, Table 3, and Table 4). Although the tree species composition for the young mixed conifer forest and mature mixed conifer forest were very similar, trees in mature mixed conifer forest were considerably larger than in young mixed conifer forest (Table 3). Similarly, for the low-shrub and high-shrub groups, which were both dominated by manzanita (Arctostaphylos spp.), the latter was about 30 cm higher on average than the former, based on the LiDAR-derived CHM. At Sugar Pine, the unsupervised classification clearly detected the pine-oak vegetation type from the matrix of mixed conifer forests (Figure 4b) as well as the structural gradient present (Table 3, Table 4).

Forest structure information, which has been difficult to incorporate in previous vegetation-mapping strategies, is an important factor that has influence on various ecological applications (Peterson et al. 2005; Zielinski et al. 2006) and should be used in the procedure of developing vegetation maps for forest management (Lindenmayer et al. 2000). This is particularly true in more compositionally homogeneous forests. In these forests, traditional vegetation-mapping methods, which rely on passive remote sensing data, might miss the underlying structural differences within the forest. By including LiDAR data, the proposed vegetation-mapping strategy can detect differences in vegetation vertical structure characteristics that, in turn, inform the assessment of wildlife habitat suitability, wildfire hazard, and water
TABLE 4
The p-values of permutation test for the differences in forest structure parameters among different vegetation groups in the Last Chance and Sugar Pine study sites

<table>
<thead>
<tr>
<th>Basal Area</th>
<th>Lorey’s Height</th>
<th>Canopy Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G3a G4a G5a G6a G7a</td>
<td>G3a G4a G5a G6a G7a</td>
</tr>
<tr>
<td>Last Chance Site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3a</td>
<td>1.000</td>
<td>0.004</td>
</tr>
<tr>
<td>G4a</td>
<td>0.004</td>
<td>1.000</td>
</tr>
<tr>
<td>G5a</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>G6a</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>G7a</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Sugar Pine Site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1a</td>
<td>1.000</td>
<td>0.920</td>
</tr>
<tr>
<td>G2a</td>
<td>0.920</td>
<td>1.000</td>
</tr>
<tr>
<td>G3a</td>
<td>0.109</td>
<td>0.000</td>
</tr>
<tr>
<td>G4a</td>
<td>0.013</td>
<td>0.000</td>
</tr>
</tbody>
</table>

aG3 to G7 and G1 to G4 for the Last Chance site and Sugar Pine site represent the corresponding vegetation group listed in Table 3.
bN/A means value is not available for corresponding blank.

yield. For example, the Sugar Pine site is dominated by three vegetation types, pine-cedar woodland, mature mixed conifer forest, and closed-canopy mixed canopy forest (Figure 3(b)), which have similar tree species composition (Table 3). Without considering forest vertical structure characteristics from LiDAR data, these three vegetation groups might be classified only as one larger group.

The field measurements of species composition and plot-level forest structure support the results obtained by the unsupervised classification strategy. The proposed vegetation-mapping strategy can produce sufficiently high overall accuracies (nearly 80% in both cases) and kappa coefficients (over 0.64 at both sites) for most applications in which the vegetation map provides the essential classification and scaling information.

TABLE 5
The confusion matrices and accuracy assessments for the vegetation mapping results of Last Chance site and Sugar Pine site

<table>
<thead>
<tr>
<th>Last Chance Site</th>
<th>Reference</th>
<th>Commission</th>
<th>Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted</td>
<td>G1a G2a G3a G4a G5a G6a G7a</td>
<td>Error (%)</td>
<td>Coefficient</td>
</tr>
<tr>
<td>G1a</td>
<td>1 0 0 0 0 0 0</td>
<td>0.0</td>
<td>0.70</td>
</tr>
<tr>
<td>G2a</td>
<td>0 1 0 0 0 0 0</td>
<td>0.0</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>G3a</td>
<td>0 0 4 0 0 0 0</td>
<td>0.0</td>
<td>0 6 42 5</td>
</tr>
<tr>
<td>G4a</td>
<td>0 0 0 11 2 0 0</td>
<td>15.4</td>
<td>0 1 6 18</td>
</tr>
<tr>
<td>G5a</td>
<td>0 0 0 2 5 0 3</td>
<td>50</td>
<td>N/A N/A N/A N/A N/A</td>
</tr>
<tr>
<td>G6a</td>
<td>0 0 0 0 3 12 6</td>
<td>42.9</td>
<td>N/A N/A N/A N/A N/A</td>
</tr>
<tr>
<td>G7a</td>
<td>0 0 0 0 1 3 46</td>
<td>8.0</td>
<td>N/A N/A N/A N/A N/A</td>
</tr>
<tr>
<td>Omission</td>
<td>0.0 0.0 0.0 15.4 54.5 20.0 16.3</td>
<td>N/A</td>
<td>0.4 41.2 14.3 21.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sugar Pine Site</th>
<th>Reference</th>
<th>Commission</th>
<th>Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted</td>
<td>G1a G2a G3a G4a</td>
<td>Error (%)</td>
<td>Coefficient</td>
</tr>
<tr>
<td>G1a</td>
<td>1 0 0 0</td>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td>G2a</td>
<td>0 1 0 0</td>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td>G3a</td>
<td>0 0 4 0</td>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td>G4a</td>
<td>0 0 0 11</td>
<td>2 0</td>
<td>0</td>
</tr>
<tr>
<td>G5a</td>
<td>0 0 0 2</td>
<td>5 0</td>
<td>3</td>
</tr>
<tr>
<td>G6a</td>
<td>0 0 0 0</td>
<td>3 12</td>
<td>6</td>
</tr>
<tr>
<td>G7a</td>
<td>0 0 0 0</td>
<td>1 3</td>
<td>46</td>
</tr>
<tr>
<td>Omission</td>
<td>0.0 0.0 0.0</td>
<td>15.4 54.5</td>
<td>20.0 16.3</td>
</tr>
</tbody>
</table>

aG1 to G7 and G1 to G4 for the Last Chance site and Sugar Pine site represent the corresponding vegetation group listed in Table 3.
bN/A means value is not available for corresponding blank.
Moreover, the overall accuracy and kappa coefficient obtained from the proposed vegetation-mapping strategy are comparable to most previous supervised vegetation-mapping strategies integrating LiDAR data and multispectral imagery (Bork and Su 2007; Dalponte et al. 2012; Cho et al. 2012).

Although the commission and omission errors for certain vegetation groups were high, they might be caused by misregistration between plot measurements and remotely sensed data (LiDAR data and aerial imagery). The plot locations were measured using a GPS in the field. Although it can produce centimeter-level positioning accuracy in most cases, the blocking effect of forest canopy can reduce the GPS positioning accuracy significantly (Sigrist et al. 1999). The possible positioning error may lead to poor coregistration with remotely sensed data. Particularly, this misregistration could have a pronounced effect on the commission and omission errors of vegetation groups that do not cluster together. For example, the young mixed conifer forest in the Last Chance site had both a relatively high commission error and omission error. Instead of aggregating together, young mixed conifer forest was mainly scattered within mature mixed conifer forest (Figure 3(a)). A commission error of 66.7% for young mixed conifer forest was due to the misclassification as mature mixed conifer forest.

The quality of NAIP aerial imagery could be another factor that influences the vegetation-mapping accuracy. As known, there is nonlinear color balancing effect existing in the NAIP imagery due to the dynamic range of different image tiles and different data-acquiring time (Hart and Veblen 2015). Moreover, the absolute horizontal accuracy for the NAIP imagery is around 6 m at a 95% confidence level (USDA Farm Service Agency 2015). Although this study has tried to reduce the influence of misregistration between NAIP imagery and LiDAR products by matching correspondence points, it still cannot be totally eliminated. Further study is still needed to address how the nonlinear color balancing effect and horizontal accuracy influence the vegetation-mapping accuracy. Moreover, it has been frequently reported that hyperspectral data outperformed multispectral data in recognizing plant species (Adam et al. 2010; Xu and Gong 2007), and there have been studies showing that the integration of hyperspectral data and LiDAR data can produce more accurate vegetation maps than the integration of multispectral data and LiDAR data (Dalponte et al. 2012).

CONCLUSIONS
This study proposed a vegetation-mapping strategy through the combination of multispectral aerial imagery and LiDAR data. Both the vegetation structure and composition information were taken into consideration of the determination of classification system. The BIC algorithm was used to automatically optimize the number of vegetation units within two mixed conifer forests, and the property of each vegetation group was identified by post hoc analysis based on field measurements. The results show that the proposed vegetation-mapping strategy is a robust method to map vegetation in mixed conifer forests with a sufficient high accuracy. The overall accuracy and kappa coefficient are over 78% and 0.64 for both study sites. Each identified vegetation group can be differentiated from others by vegetation structure parameters or dominant species composition or both. The obtained vegetation maps have the potential to considerably improve the identification of critical habitat for species of concern (e.g., Pacific fisher and California spotted owl), as well as identifying wildfire risk through characterizing ladder fuels (Kramer et al. 2014).

FUNDING
This is SNAMP Publication Number #41. The Sierra Nevada Adaptive Management Project is funded by USDA Forest Service Region 5, USDA Forest Service Pacific Southwest Research Station, US Fish and Wildlife Service, California Department of Water Resources, California Department of Fish and Game, California Department of Forestry and Fire Protection, and the Sierra Nevada Conservancy.

REFERENCES

