Title
A COMPARISON OF K* PRODUCTION IN THE REACTIONS K+n -> K+n-p AND K+p -> K|n+p AT 2.3 BeV/c

Permalink
https://escholarship.org/uc/item/1w29m8bv

Authors
Goldhaber, S.
Brown, J.L.
Butterworth, I.
et al.

Publication Date
1965-09-10
A COMPARISON OF K^* PRODUCTION IN THE REACTIONS
$K^+ n \rightarrow K^+ \pi^- p$ AND $K^+ p \rightarrow K^0 \pi^+ p$ AT 2.3 BeV/c

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
A COMPARISON OF \(K^* \) PRODUCTION IN THE REACTIONS
\(K^+ n \rightarrow K^\mp \pi^- p \) AND \(K^+ p \rightarrow K^0 \pi^+ p \) AT 2.3 BeV/c

S. Goldhaber, J. L. Brown, I. Butterworth, G. Goldhaber,
A. A. Hirata, J. A. Kadyk, and G. H. Trilling

September 10, 1965
A Comparison of K^* Production in the Reactions

$K^+ n \rightarrow K^+ \pi^- p$ and $K^+ p \rightarrow K^0 \pi^+ p$ at 2.3 BeV/c

Department of Physics and Lawrence Radiation Laboratory
University of California, Berkeley, California

September 10, 1965

We report here on a study of peripheral K^* production in interactions of K^+ mesons with protons and neutrons:

$$K^+ n \rightarrow K^+ \pi^- p,$$ \hspace{1cm} (1)

$$K^+ p \rightarrow K^0 \pi^+ p.$$ \hspace{1cm} (2)

We have observed marked differences in the distribution of four-momentum transfer to the K^* and in the K^* decay angular distributions for the two reactions. The results are consistent with production of K^{*0} in Reaction (1) by the exchange of an isovector meson (π), whilst production of K^{*+} in Reaction (2) largely involves the exchange of an isoscalar meson (ω).

This work is based on an analysis of 100,000 photographs taken with the Brookhaven National Laboratory 20-inch bubble chamber filled with deuterium and exposed in a 2.3-BeV/c K^+ beam at the AGS. The properties of the reactions are deduced respectively from events of the type $K^+ d \rightarrow K^+ \pi^- p p$ and $K^+ d \rightarrow K^0 \pi^+ p n$. The slower nucleon is defined as the spectator and is required to have a momentum less than 300 MeV/c. With this limitation the momentum spectrum of the spectator agrees well with that expected from the Hulthén wave function, and its angular distribution in the laboratory system is isotropic. It is thus reasonable to consider our data in terms of the impulse approximation as implied in Reactions (1) and (2).
Our analysis is based on 1576 events of Reaction (1) and 602 events of Reaction (2). The cross sections for these reactions are respectively \((3.0 \pm 0.2) \text{ mb}\) and \((3.0 \pm 0.3) \text{ mb}\). In Fig. 1 we show the Dalitz plots of \(M_{N\pi}^2\) vs \(M_{K\pi}^2\) for Reactions (1) and (2). Strong \(K^*\) production is evident in each case. The cross sections for \(K^*\) production in the reactions \(K^+ n \rightarrow pK^{*0}\) \((K^{*0} \rightarrow K^+ \pi^-)\) and \(K^+ p \rightarrow pK^{*+}\) \((K^{*+} \rightarrow K^0 \pi^+)\) are \((1.4 \pm 0.2) \text{ mb}\) and \((1.3 \pm 0.2) \text{ mb}\) respectively. In Figs. 2a and 2d we show the distribution of the momentum transfer squared, \(\Delta K_{\pi}^2\), for events in the respective \(K^*\) bands \((0.86 \leq M_{K\pi} \leq 0.96 \text{ BeV})\). The data shown have not been corrected for background effects. The shapes are not noticeably changed, however, by such corrections. The distributions are markedly different, that for \(K^{*+}\) production being much broader than that for \(K^{*0}\). The distributions of the \(K\pi\) scattering angle, \(\cos \theta_{K\pi}\), in the \(K^*\) center of mass (Figs. 2b and 2e) and of the Treiman-Yang angle, \(\phi\) (Figs. 2c and 2f), are shown for events in the \(K^*\) band. The shaded region corresponds to events with \(\Delta K_{\pi}^2 \leq 0.4 \text{ (BeV)}^2\). Here again a marked difference between the two reactions is seen, particularly in the \(\cos \theta_{K\pi}\) distributions. That for \(K^{*0}\) production has a large \(\cos^2 \theta\) term indicative of a dominant \(\pi\)-exchange production process, while that for \(K^{*+}\) production is predominantly isotropic with a small \(\sin^2 \theta\) contribution suggesting that vector exchange is of importance here. We note that \(K^{*0}\) production in Reaction (1) requires the exchange of an isovector meson and could proceed via \(\pi\) or \(\rho\) exchange or both, whereas the \(K^{*+}\) production in Reaction (2) requires the exchange of a neutral meson and could proceed via the exchange of one or more of the mesons \(\pi, \rho, \omega, \text{ and } \phi\). Our experimental results, discussed above, indicate that different exchange particles dominate the two reactions and furthermore that \(\rho\) exchange is strongly suppressed in Reaction (1), where one
would have expected a contribution four times as large as in Reaction (2). This leads us to the conclusion that isoscalar exchange must play an important part in Reaction (2), and that ρ exchange appears to be suppressed in K^* production. If the Bronzan-Low quantum number is valid it provides an interpretation of the suppression of the ρ-meson exchange. Furthermore, this selection rule would suggest suppression of ϕ exchange as well, leaving the ω as the isoscalar exchange meson for Reaction (2).

A quantitative analysis of the decay distribution is complicated by the presence of isobar production in the two reactions. The difficulties are seen most clearly in Reaction (1). The isobars $N^{*0}_{3/2}(1238)$, $N^{*0}_{1/2}(1512)$, and $N^{*0}_{1/2}(1688)$ may be present in our data, but they are not clearly resolved in the overall $M^2(p\pi^-)$ distribution (Fig. 1a). If $M_{K^+\pi^-}$ is chosen to be in the K^* band, on the other hand (inner histogram of the $M^2_{p\pi^-}$ projection), the $N^{*0}_{3/2}(1238)$ appears strongly. In fact it is seen from the Dalitz plot that the $N^{*0}(1238)$ is produced predominantly in the K^* band, indicative of constructive interference between the reactions $K^+n \rightarrow K^0p$ and $K^+n \rightarrow K^+N^{*0}(1238)$. In the three-particle final state, $\cos \alpha_{K\pi}$ and $M_{p\pi^-}$ are correlated. The enhancement in the overlap region of the two resonance bands may thus be the cause of the forward excess in the decay angular distribution, $\cos \alpha_{K\pi}$, shown in Fig. 2b. Alternatively one can argue that the forward peaking of the $\cos \alpha_{K\pi}$ distribution is responsible for the apparent constructive interference. However, no such marked decay asymmetry for the K^{*0} is observed in the reaction leading to four particles in the final state $K^+p \rightarrow K^{*0}N^{*0}$. 6

The theoretical curves shown in Fig. 2 have been calculated by Jackson et al. 7 taking into account effects due to absorption. These curves are normalized to our data for $\Delta^2_{K\pi} < 0.4$ BeV2. 8 For K^{*0} production
only the pion-exchange process is included in the calculation. The curves shown for the K^{*+} events include a π-exchange term and a large vector-exchange term which may involve vector and tensor coupling constants at the nucleon vertex. From charge independence, pion exchange must also be present in $K^{*\pm}$ production. The Clebsch-Gordan coefficients, however, reduce its contribution compared with Reaction (1) by a factor of four. The relative strengths of the two vector-exchange couplings are not known \textit{a priori}. Jackson et al. obtained a good fit to K^{*+} production at 3 BeV/c, with two different sets of values for the vector and tensor coupling constants. The two curves shown in Fig. 2d and 2e correspond to the solutions for the two sets of values. In this experiment solution I appears to be a reasonable fit to the data; solution II is less acceptable. The broad features of our experimental distributions agree well with the theoretical curves.

Finally, we have also evaluated the components of the spin-density matrix for the two reactions for which we have forced symmetrical solutions to the decay distributions. The values are shown in Table I.

As may be noted from Table I, the real part of ρ_{10} for Reaction (1) is quite large, which is indicative of the presence of processes other than the simple meson-exchange diagrams. Because of the observed asymmetries in the $\cos \alpha$ distribution the description of the processes in terms of the density-matrix formalism is not complete. We have therefore further examined the correlations between $\cos \alpha$ and ϕ.

In Fig. 3 we show these correlations for Reaction (1), which is dominated by pion exchange. These correlations, which are to some extent reflected by the value of $\text{Re} \rho_{10}$, indicate that more complicated processes, in addition to the dominant simple particle exchange, are present in these peripheral collisions.
We are grateful to R. Shutt and his co-workers at the Brookhaven National Laboratory for making available the 20-inch bubble chamber, to the AGS crew, to the 20-inch bubble chamber crew, and particularly to H. Brown for help with the exposure at the AGS. We would like to thank all the many people at Berkeley who helped with scanning, measuring, and computing. Finally we would like to acknowledge the help of Thomas A. O'Halloran and Benjamin C. Shen, who participated in the early stages of this work.
FOOTNOTES AND REFERENCES

†This work was done under the auspices of the U. S. Atomic Energy Commission.

2. Corrections have been made for neutral K⁰ decays, and normalization is to 344 τ decays observed in the sample of film used to deduce cross sections (about 60% of the total). There is some uncertainty as to what proportion of the 8% of events with spectators faster than 300 MeV/c should be included in deducing nucleon cross sections. They have been left out completely from the numbers quoted.

3. In Reaction (2) there is a slight correction to be considered at small momentum transfers because of the possibility of the recoil proton's recombining with the spectator neutron to form a deuteron. These events have been discussed elsewhere. They make a negligibly small change in the distributions discussed here.

4. The curves are uncorrected for background. Background corrections make little difference; for Δ⁰ K⁻ < 0.4 BeV² any effects of background correction are statistically insignificant.

8. The K^* production cross sections integrated over the $\Delta^2_{K\pi}$ range 0 - 0.4 BeV2 have also been calculated on the absorption model (J. D. Jackson, University of Illinois, private communication). The values obtained are 1.34 mb for the reaction $K^+ n \rightarrow K^{*0} p$ ($K^{*0} \rightarrow K^+ \pi^-$); for the reaction $K^+ p \rightarrow K^{*+} p$, ($K^{*+} \rightarrow K^0 \pi^+$) they are 0.45 mb and 0.55 mb for solutions I and II respectively. Our experimental values for this range of momentum transfer are 0.9 ± 0.2 for K^{*0} production and 0.7 ± 0.2 for K^{*+} production.

Table I. Spin-density matrix element for K^* production in Reactions (1) and (2).\(^a\)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>$\Delta^2_{K\pi}$</th>
<th>ρ_{00}</th>
<th>ρ_{11}</th>
<th>$\text{Re } \rho_{10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^+ n \rightarrow K^* p$</td>
<td>$\Delta^2_{K\pi} \leq 0.1 \text{ BeV}^2$</td>
<td>$0.55^{+0.08}_{-0.10}$</td>
<td>$-0.02^{+0.08}_{-0.06}$</td>
<td>$-0.13^{+0.05}_{-0.06}$</td>
</tr>
<tr>
<td></td>
<td>$0.1 < \Delta^2_{K\pi} \leq 0.3 \text{ BeV}^2$</td>
<td>$0.75^{+0.05}_{-0.10}$</td>
<td>$-0.02^{+0.08}_{-0.06}$</td>
<td>$-0.28^{+0.04}_{-0.06}$</td>
</tr>
<tr>
<td></td>
<td>$0.3 < \Delta^2_{K\pi} \leq 1.0 \text{ BeV}$</td>
<td>$0.46^{+0.09}_{-0.12}$</td>
<td>$0.0^{+0.1}_{-0.07}$</td>
<td>$-0.18^{+0.05}_{-0.07}$</td>
</tr>
<tr>
<td>$K^+ p \rightarrow K^{*+} p$</td>
<td>$\Delta^2_{K\pi} \leq 0.3 \text{ BeV}^2$</td>
<td>$0.31^{+0.08}_{-0.11}$</td>
<td>$0.04^{+0.11}_{-0.08}$</td>
<td>$-0.06^{+0.06}_{-0.08}$</td>
</tr>
<tr>
<td></td>
<td>$0.3 < \Delta^2_{K\pi} \leq 1.0 \text{ BeV}^2$</td>
<td>$0.01^{+0.10}_{-0.12}$</td>
<td>$0.17^{+0.12}_{-0.07}$</td>
<td>$-0.09^{+0.06}_{-0.07}$</td>
</tr>
</tbody>
</table>

\(^a\) The figures given are corrected for background by subtracting the angular distributions for events in the adjacent strips from those for the K^* strip. The corrected values are shifted from the uncorrected ones by an amount no greater than the quoted errors.
Figure Legends

Fig. 1. (a) Dalitz plot for the reaction $K^+ n \rightarrow K^+ \pi^- p$
(b) Dalitz plot for the reaction $K^+ p \rightarrow K^0 \pi^+ p$

The shaded histograms show $M_{p\pi}$ for those events where $M_{K\pi}$ lies in the K^* region, $0.86 \leq M_{K\pi} \leq 0.96$ BeV.

Fig. 2. Comparison of the reactions $K^+ n \rightarrow K^{*0} p, (K^{*0} \rightarrow K^+ \pi^-)$ and $K^+ p \rightarrow K^{*+} p, (K^{*+} \rightarrow K^0 \pi^+)$, (a) and (d): Four momentum transfer to the K^*, plotted up to 1.0 BeV2, (b) and (e): $K\pi$ scattering angle, $\alpha_{K\pi}$ in $K\pi$ c.m., (c) and (f): Treiman Yang angle $\phi_{K\pi}$. Shaded histograms show angular distributions for events with $\Delta^2K\pi \leq 0.4$ BeV2. The curves show the results of absorption model calculations by Jackson et al.7 normalized to the data for $\Delta^2K\pi \leq 0.4$ BeV2.

Fig. 3. Correlations between $\cos\alpha_{K\pi}$ and $\phi_{K\pi}$ for the reaction $K^+ n \rightarrow K^{*0} p, (K^{*0} \rightarrow K^+ \pi^-)$. Shown are the scatter plot of $\cos\alpha_{K\pi}$ vs $\phi_{K\pi}$, the distribution of $\cos\alpha_{K\pi}$ for different regions of $\phi_{K\pi}$, the distribution of $\phi_{K\pi}$ for different region of $\cos\alpha_{K\pi}$, as indicated.
Fig. 1a
Fig. 1b
Fig. 2
Fig. 3.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.