Title
Surgery on piecewise linear manifolds and applications

Permalink
https://escholarship.org/uc/item/1wk8m0t8

Journal
Bulletin of the American Mathematical Society, 72(6)

ISSN
0002-9904

Authors
Browder, W
Hirsch, MW

Publication Date
1966-11-01

DOI
10.1090/S0002-9904-1966-11602-6

Peer reviewed
1. Introduction and statement of results. In this note we indicate a method of performing surgery on piecewise linear (PL) manifolds, and show how to prove piecewise linear analogs of theorems on the homotopy type and classification of smooth manifolds (Browder [1], Novikov [10], Wall [13]).

The basic principles are two: to use normal microbundles instead of normal vector bundles, and to put a differential structure σ on a neighborhood V of an embedded sphere $S \subset M$ that represents a homotopy class we wish to kill. Then smooth ambient surgery can be performed on V, and the resulting cobordism triangulated.

Let M_1, M_2 be closed PL n-manifolds embedded in S^{n+k} with normal microbundles v_1, v_2. A normal equivalence $b : (M_1, v_1) \rightarrow (M_2, v_2)$ is a microbundle equivalence $b : v_1 \rightarrow v_2$ covering a homotopy equivalence $M_1 \rightarrow M_2$.

Let $T(v_i)$ be the Thom complex of v_i (see [12]), and let $c_i \in \pi_{n+k}T(v_i)$ be the homotopy class of the collapsing map $S^{n+k} \rightarrow T(v_i)$. We call c_i a normal invariant for M_i. If $\partial M \neq 0$, a similar construction defines a normal invariant for M as an element in $\pi_{n+k}(T(v_M), T(v_M|\partial M))$.

Theorem 1. Let X be a 1-connected polyhedron satisfying Poincaré duality in a dimension $n \geq 5$. Let ξ be a PL k-microbundle over X, and let $\alpha \in \pi_{n+k}T(\xi)$ be such that $h(\alpha) = \Phi(g)$, where $h : \pi_{n+k}T(\xi) \rightarrow H_{n+k}(\xi)$ is the Hurewicz homomorphism, $\Phi : H_n(X) \rightarrow H_{n+k}(\xi)$ is the Thom isomorphism, and $g \in H_n(X)$ is a generator. Assume $k \geq n$. Then X has the homotopy type of a closed PL n-manifold $M \subset S^{n+k}$ such that

(a) If n is odd, or if $n = 4q$ and the signature of X is $\langle L_0(\xi), \cdots, \xi_q(\xi), g \rangle$, then M has a normal microbundle induced from ξ, and α is a normal invariant of M;

(b) If n is even, $M - \{\text{point}\}$ has a normal microbundle induced from ξ.

1 Work partially supported by the National Science Foundation (USA) and Department of Scientific and Industrial Research (UK) at the Cambridge Topology Symposium, 1964.

2 We are informed that some of our results have been obtained independently by R. Lashof and M. Rothenberg.
Theorem 1 is the PL analog of [1]; see also [10].

Theorem 2. Let M_1, M_2 be PL closed 1-connected n-manifolds $n \geq 5$. Then M_1 and M_2 are combinatorially equivalent if and only if there are normal microbundles ν_i ($i = 1, 2$) of embeddings $M_i \subset S^{n+k}$, with normal invariants $c_i \in \pi_{n+k}T(\nu_i)$, and a normal equivalence $b : (M_1, \nu_1) \rightarrow (M_2, \nu_2)$ such that $T(b)_* (c_1) = c_2$.

Theorem 2 is the PL analog of a theorem of Novikov [10].

Corollary. Let M be a PL closed 1-connected n-manifold, $n \geq 5$. Suppose the natural map $k_{PL}(M) \rightarrow k_{Top}(M)$ is injective and that $k_{PL}(\Sigma M) \rightarrow k_{Top}(\Sigma M)$ is surjective (see [8] and [9]). Then the PL structure on the underlying topological manifold M is unique up to isomorphism.

Proof. Let ν_1, ν_2 be normal microbundles of two PL structures M_1, M_2 on M. By the stable uniqueness of a topological normal microbundle of M [8], and the injectivity of $k_{PL}(M) \rightarrow k_{Top}(M)$, it follows that ν_1 and ν_2 are stably equivalent as PL microbundles. Let $c_i \in \pi_{n+k}T(\nu_i)$ be the normal invariant of M_i. Since M_1 and M_2 are the same topological manifold, it follows that (for sufficiently large k) there is a topological microbundle equivalence $b : \nu_1 \rightarrow \nu_2$ such that $T(b)_* (c_1) = c_2$. (The stable tubular neighborhood theorem [4], [7] is needed.) Using the surjectivity of $k_{PL}(\Sigma M) \rightarrow k_{Top}(\Sigma M)$ we can choose b to be a PL microbundle equivalence. The Corollary follows from Theorem 2.

Theorem 3. Let (X, A) be a polyhedral pair with both X and A 1-connected, satisfying Poincaré duality in a dimension $n \geq 6$. Let ξ be a PL k-microbundle over X with $k > n$, let $e \in H_n(X, A)$ be a generator, and suppose there exists $\beta \in \pi_{n+k}(T(\xi), T(\xi[A]))$ such that $h(\beta) = \Phi(e)$. Then (X, A) is homotopy equivalent to PL manifold with boundary $(M, \partial M)$ having a normal microbundle induced from ξ, and having β for a normal invariant. Moreover, M is unique up to PL homeomorphism.

This is the PL analog of a result of Wall [13].

2. **Proofs of theorems.** We indicate the modification in the proofs of the analogous smooth theorems that are required in the PL case. To prove Theorem 1, by using the transverse regularity theorem
of Williamson [12] we may assume that there is a PL closed n-manifold $N \subset S^{n+k}$ such that:

(i) if $\tilde{f}: S^{n+k} \rightarrow T(\xi)$ represents α, then $\tilde{f}^{-1}(X) = N$;

(ii) if $\tilde{f}|N = f$, then $f^*\xi = \nu$, the normal microbundle of N in S^{n+k};

(iii) $f: N \rightarrow X$ has degree 1.

(See [1].)

Main Lemma. Let $S \subset N$ be a PL embedded p-sphere, $p < n/2$, such that $f|S: S \rightarrow X$ is null homotopic. Then there exists a PL surgery killing the homotopy class of S. If N' is the resulting n-manifold the trace of the surgery (an elementary PL cobordism K between N and N') can be embedded in $S^{n+k} \times I$ with $K \cap (S^{n+k} \times 0) = N = N \times 0$ and $K \cap (S^{n+k} \times 1) = N'$. Moreover, K has a PL normal microbundle η in $S^{n+k} \times I$ with $\eta = g^*\xi$, where $g: K \rightarrow X$ extends $f|N \rightarrow X$.

Proof. Let $U \subset N$ be an open regular neighborhood of S. Then $f^*\xi|U = \nu|U$ is trivial because $f|U$ is null homotopic. Therefore there is a PL embedding $\phi: U \times R^k \rightarrow S^{n+k}$ such that $\phi(x, 0) = x$ and $\phi^{-1}N = U \times 0$. By the product theorem of [5], the smoothing of $U \times R^k$ induced by ϕ is concordant to a product smoothing. In fact, there is an open neighborhood V of S in N with $\overline{V} \subset U$, a smoothing σ of V, and a piecewise differentiable isotopy $\phi_t: U \times R^k \rightarrow S^{n+k}$ such that

(i) $\phi_0 = \phi$,

(ii) $\phi_t = \phi$ outside $V \times R^k$,

(iii) $\phi_t|V \times D^k$ is a smooth embedding $V \times D^k \rightarrow S^{n+k}$.

Observe now that $\phi_1(V \times 0)$ is a smooth submanifold of S^{n+k} and ϕ_t provides a trivialization of its normal vector bundle. Let $V' \subset V_e$ be a smooth closed neighborhood of S, and put $W_0 = \phi_1(V' \times 0)$. Let $W_1 \subset S^{n+k}$ be the smooth submanifold obtained from W_0 by a smooth surgery killing the homotopy class of $\phi(S \times 0)$. By Haefliger [2] the trace of the surgery is a cobordism L between W_0 and W_1 smoothly embedded in $S^{n+k} \times I$ such that $\partial L = W_0 \times 0 \cup (\partial W_0) \times I \cup W_1 \times 1$, and such that the embedding is the product embedding in a neighborhood of $\partial W_0 \times I$. Furthermore, the map $f': W_0 \times 0 \cup (\partial W_0) \times I \rightarrow X$, defined to be the composition

$$(W_0 \times 0) \cup (\partial W_0) \times I \rightarrow W_0 \xrightarrow{\phi_1^{-1}} N \rightarrow X$$

extends to $f'': L \rightarrow X$ such that $f''^*\xi$ is the normal bundle of L in $S^{n+k} \times I$.

The cobordism L and the product cobordism $(N - \text{int } V') \times I$ fit together to form a cobordism $K_1 \subset S^{n+k} \times I$ between $N \times 0$ and $((N - \text{int } V') \cup W_1) \times 1$. The composition

$$(N - \text{int } V') \times I \rightarrow N \xrightarrow{f} X$$

and $f'' : L \rightarrow X$ fit together to give a map $g : K_1 \rightarrow X$. The microbundle ν extends to a microbundle η over K_1 that coincides with ν over $N \times 0$, with $\nu \times I$ over $(N - \text{int } V') \times I$, and such that ϕ_1 is a trivialization of $\eta|_{W_1 \times 1}$. In fact, $\eta = g^* \xi$. The isotopy ϕ_t provides an embedding $G : E_\eta \rightarrow S^{n+k} \times I$ of the total space η which is the identity on E_ν. Consider G as a smooth triangulation of an open subset of $S^{n+k} \times I$.

Whitehead's triangulation theorems show that there is a neighborhood E_0 of the zero section of η and a homeomorphism H of $S^{n+k} \times I$ such that $HG|_{E_0}$ is PL, and $H|_{S^{n+k} \times 0}$ is the identity. Thus $K = HG(K_1)$ is the desired cobordism. This completes the proof of the Main Lemma.

The proof of Theorem 1 proceeds as in the smooth case if n is odd.

If n is even, we proceed until we have an N such that $f : N \rightarrow X$ is an isomorphism in homotopy below the middle dimension. Following the procedure of the proof of the main lemma, we find just as in the smooth case that the obstruction c to surgery is a signature or Kervaire-Arf invariant of the intersection quadratic form on the kernel K_r of f^* in $H_r(N)$, $2r = n$. If the signature of X is as in (a) of Theorem 1, then $c = 0$; otherwise $c \equiv 0 \mod 8$. (To see this, recall that a non-singular quadratic form taking only even values has signature divisible by 8. It suffices to prove $x \# x = 0$ for $x \in \ker(f^*|_{H_*(N; Z_2)}).$ If $P : H^*(N; Z_2) \rightarrow H_*(N; Z_2)$ is Poincaré duality, then $x \# y = \langle P^{-1}x \cup P^{-1}y, N \rangle$ for $x, y \in H_*(N; Z_2).$ Let $P^{-1}x = z$. Then $x \# x = \langle Sqz, N \rangle = \langle z \cup U_N, N \rangle$ where $U_N \subset H^*(N)$ is the total Wu class. Since $Sq^{-1}U_N = W_N$ (the total Stiefel-Whitney class of N), if we define $U_X = Sq^{-1}W(\xi)^{-1}$ it follows that $U_N = f^* U_X$, and $x \# x = \langle Z \cup f^* U_X, N \rangle = x \# Pf^* U_X$. By [1], K_r is orthogonal to $Pf^*(H^*(X))$. Hence $x \# x = 0.$)

There exists an oriented PL closed $(r - 1)$-connected $2r$-manifold P with signature -8 if $r = 2q$, and with Kervaire-Arf invariant 1 if $r = 2q + 1$. Moreover $P - \{ \text{point} \}$ is parallelizable smoothable. It follows [3] that there is a PL embedding $P \subset S^{2r+2}$ having a trivial normal bundle on P_0 (the complement of a highest dimensional cell). Therefore the connected sum $N \# P$ embeds in S^{n+k} with a normal microbundle ν' on $(N \# P)_0$ which coincides with the normal microbundle ν of N on N_0, and which is trivial on the rest of $(N \# P)_0$.
Let \(N' = N \# P \) if \(r = 2g+1 \), and let \(N' \) be the connected sum of \(N \) with \(c/8 \) copies of \(P \) if \(r = 2g \). Define \(f': N' \to X \) by \(f'|_N_0 = f \), and \(f'|_N' - N_0 \) constant. Since \(N' - N_0 \) is trivial, \(f' \) is covered by a microbundle map \(\nu' \to \xi \). The obstruction to surgery on \(N' \) now vanishes. Hence by surgery we obtain a manifold \(M \subset S^{n+k} \) with a normal microbundle \(\nu \) on \(M_0 \) and a homotopy equivalence \(f: M \to X \) such that \(f|_{ M_0 } \) is covered by a microbundle map \(\nu \to \xi \).

Alternatively, in the middle dimension we could use the method of [14].

Theorem 2 is proved in a similar way, using the same trick to extend Novikov’s proof to the PL case. Since for \(n \geq 5 \) any PL homotopy sphere \(T \) is a combinatorial sphere (Smale [11]), the conclusion of the smooth case, that \(M_1 \# T = M_2 \) becomes \(M_1 = M_2 \) in the PL case.

For Theorem 3 we imitate the proof of Theorem 2 of Wall [13] with the following modification of the immersion argument of [13]. Given a PL map \(f: D^{k+1} \to M^{2k+1} \) (in the notation of [13]), assume that \(f \) has generic singularities. It follows that \(H_f(D^{k+1}) = 0 \) for \(i > 2 \). Since \(\Gamma_i = 0 \) for \(i \leq 2 \), it follows from [5] that a neighborhood \(V \) of \(f(D^{k+1}) \) in \(M^{2k+1} \) has a smoothing \(\sigma \). Then we approximate \(f \) by a smooth map into \(V_\sigma \) and proceed as in [13].

Bibliography

PRINCETON UNIVERSITY AND
UNIVERSITY OF CALIFORNIA, BERKELEY