Title
Multiple sclerosis genetics

Permalink
https://escholarship.org/uc/item/1wn6w7vw

Author
Cree, BAC

Publication Date
2014-02-11

DOI
10.1016/B978-0-444-52001-2.00009-1

Peer reviewed
INTRODUCTION

The pathogenesis of multiple sclerosis (MS) is complex and involves both an individual’s genetic makeup as well as environmental exposures. Evidence for the importance of genetics comes from epidemiologic studies of race, geography, familial aggregation, and more recently, from genome-wide association studies (GWAS). For example, it is notable that the lifetime risk of disease in individuals who have an affected family member increases roughly in proportion to the amount of genetic information shared between the affected relative and the individual (Ebers et al., 1995, 2004; Robertson et al., 1996; Sadovnick et al., 1996; Compston and Coles, 2002; Nielsen et al., 2005). Thus, in the northern hemisphere, persons in the general population have a risk of approximately 0.1%. Third-degree relatives, such as first cousins (12.5% genetic similarity), have a risk less than 1%; second-degree relatives, such as aunts and uncles (25% genetic similarity), have a risk of approximately 1–2%; first-degree relatives, such as siblings, parents, and children of an MS proband (50% genetic similarity), have a risk of approximately 2–5%; and monozygotic twins (100% genetic similarity) have a risk of about 25–30%. Because the concordance between identical twins is 25–30%, factors other than genetic similarity, such as environmental exposures or postgenomic modifications to immune function, must also contribute to MS susceptibility to explain the relatively low penetrance of the genetic risk. Despite the probably important role of environmental events in MS pathogenesis, genetic susceptibility is critical. It is the purpose of this chapter to review this evidence and to explore the genetic basis of this complex disease.

GEOGRAPHY AND ETHNICITY

The fact that both ethnicity and geography influence the prevalence of MS suggests that heritable factors contribute to MS pathogenesis (Davenport, 1922). Compared to other ethnic groups residing at the same latitudes, people of northern European ancestry are at higher risk for MS (Dean et al., 1976; Pugliatti et al., 2002; Alter et al., 2006; Smestad et al., 2008). This increased susceptibility might be due to genetic differences between ethnic groups. For example, some studies have shown that MS is approximately 50% less common in African Americans compared to whites (Kurtzke et al., 1977; Wallin et al., 2004). In addition, MS is still less common in both native Japanese and Japanese Americans (5 per 100 000) compared to northern European populations (100–150 per 100 000) (Detels et al., 1977). Similarly, in both the United States and Canada, MS has been reported to be relatively less common among Native Americans (Oger et al., 1975; Kurtzke et al., 1979; Hader, 1982; Svenson et al., 1994). These observed racial patterns of variation in MS prevalence lead to the hypothesis that certain genetic traits may be enriched in populations that are at higher risk for MS and that the same traits may be underrepresented in populations at lower risk for MS. Nevertheless, there are other factors (both ethnic and environmental) that differ between the races (e.g., lifestyle or diet) and could potentially confound the genetic interpretation of these racial variations.

FAMILIAL AGGREGATION

Although MS was initially thought to be a sporadic disease, the familial occurrence of MS was recognized by the late 19th century (Gowers, 1893; Eichorst, 1896). Systematic studies of familial aggregation in MS support a genetic contribution to the disease (Curtius, 1938; McAlpine, 1946; Pratt et al., 1951; Millar and Allison, 1954; Sadovnick et al., 1988; Robertson et al., 1996;
These studies found that approximately 15–20% of MS patients reported a family history of MS, a proportion that is significantly higher than that which would be expected based on the low population prevalence of MS.

Siblings, as well as other first-degree relatives of MS patients (probands), are at increased risk for MS. This can be demonstrated by calculating the ratio of the relative risk of disease in relatives of affected individuals compared to the relative risk of disease in the overall population. This ratio is referred to as λ_s (Risch, 1990). If there were no increased risk for relatives of MS patients then the λ_s ratio would be 1. If relatives of patients are at higher risk of disease then the ratio increases. For example, in cystic fibrosis (a highly penetrant autosomal-recessive trait) the value of λ_s ratio is 500. For MS, the λ_s ratio is approximately 15–40, indicating a moderately strong familial influence on MS risk (Compston, 1997). To place this value in the context of other heritable complex diseases, the λ_s ratio for MS is higher than that for schizophrenia, about the same as that for type 1 diabetes and less than that for autism (Merikangas and Risch, 2003). Nevertheless, it is important to recognize that a λ_s ratio greater than 1 does not necessarily indicate a genetic cause for the trait in question. Thus, similar environmental factors are also shared among family members that might explain such familial aggregation (Guo, 2002).

TWIN STUDIES

Some of the most compelling evidence indicating that MS susceptibility has a genetic component comes from twin studies. The percentage of concordance for monozygotic twins is approximately 25–30% whereas the concordance percentage for dizygotic twins is 3–5% (Ebers et al., 1986, 1995, 2004; Mumford et al., 1994; Willer et al., 2003; Hansen et al., 2005; Islam et al., 2006; Ristori et al., 2006). This concordance rate for fraternal twins is greater than that of other first-degree relatives of MS patients but is still far less than that of identical twins (Willer et al., 2003). Because twins share the same intrauterine environment and similar postnatal environments, the large difference in concordance between monozygotic and dizygotic twins must, at least in part, be due to genetic factors.

Moreover, conjugal pair studies also show that the risk of MS increases substantially if both parents have MS, again implying a strong heritable component to MS susceptibility (Table 9.1; Robertson et al., 1997; Ebers et al., 2000; Dyment et al., 2004a). Taken together, these familial and population-based studies indicate that some component of MS risk is heritable. However, the fact that the majority of MS patients have no family history suggests that either environmental factors outweigh genetic risks, or that genetic risk is due to the influence of multiple genetic traits that, by themselves, result in a low disease penetrance. Indeed, the concept that MS risk is inherited as a complex (multigene) trait instead of following simple single-gene Mendelian rules (either as a recessive trait such as cystic fibrosis or dominant trait such as Huntington disease) is central to our understanding of the genetic contributions to MS risk (Fig. 9.1).

HUMAN LEUKOCYTE ANTIGENS

The first studies to establish a link between MS heredity and specific genetic variations compared human leukocyte antigen (HLA) protein polymorphisms between MS cases and healthy controls. These early studies found that certain cell surface proteins (antigens), that are present on the membranes of peripheral blood mononuclear cells, were overrepresented in MS patients compared to unaffected controls. The first such antigens to be reported were HLA-A3 (Bertrams and Kuwert, 1972; Bertrams et al., 1972; Naito et al., 1972), followed by HLA-B7 and then HLA-DRw2 (Jersild et al., 1972, 1973; Winchester et al., 1975; Compston et al., 1976; Terasaki et al., 1976). As it turned out, these HLA associations were not independent of each other but rather reflected a common shared haplotype due to the fact that the chromosomal region coding for these proteins was in

<table>
<thead>
<tr>
<th>Relationship to patient</th>
<th>Recurrence risk (%)</th>
<th>Risk relative to population</th>
<th>Proportion of genetic sharing (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopted first-degree relative</td>
<td>0.2</td>
<td>Identity</td>
<td>0</td>
</tr>
<tr>
<td>Sibling with MS</td>
<td>3.0–5.0</td>
<td>15–25-fold increase</td>
<td>50</td>
</tr>
<tr>
<td>Dizygotic twin</td>
<td>3.0–5.0</td>
<td>15–25-fold increase</td>
<td>50</td>
</tr>
<tr>
<td>Monozygotic twin</td>
<td>34.0</td>
<td>170-fold increase/ 100</td>
<td></td>
</tr>
<tr>
<td>One parent with MS</td>
<td>3.0–5.0</td>
<td>15-25-fold increase</td>
<td>50</td>
</tr>
<tr>
<td>Two parents with MS</td>
<td>6.0–10.0</td>
<td>30-50-fold increase</td>
<td>50 with each parent</td>
</tr>
</tbody>
</table>

Assumes lifetime population prevalence of 0.2% (Ebers et al., 2000; Dyment et al., 2004a).
strong linkage disequilibrium. Linkage disequilibrium refers to the observation that alleles of certain neighboring genes tend to be inherited together as a set of traits. This may be the consequence of natural selection, although the basis for such selection (if it occurs) is unknown. It could also be due to the small number of individuals who migrated out of Africa (with limited genetic repertoires) and an insufficient number of generations to disassociate genetic loci by crossover events. For whatever reason, the antigens HLA-A3, HLA-B7, and HLA-DRw2 are closely coupled in populations of European descent. The elucidation as to which of these linked genes in the major histocompatibility complex (MHC) was responsible for MS susceptibility was initially not possible and required the development of modern molecular techniques.

Linkage analysis

In the 1980s, new DNA-based technology was developed for studying Mendelian patterns of inheritance, first with the use of restriction fragment length polymorphisms (RFLPs) and then followed by the analysis of microsatellite repeats (Botstein et al., 1980; Weber and May, 1989). RFLPs and microsatellite repeats are variations in DNA sequence that can be identified by molecular techniques. These DNA variations can be used to determine whether the DNA locus that harbors the variant has more than a chance association with an inherited trait of interest. These new molecular techniques allowed for dissection of linked genes at the HLA locus as well as screening the entire genome. By studying the linkage between an inherited trait and DNA markers in families with some members affected by a heritable disease it was possible to identify the chromosomal location of disease-causing genes (Fig. 9.2). Markers that are physically near the disease-causing gene are likely to be inherited together with the disease trait because recombination between genetic loci occurs less frequently between neighboring genes compared to genes at greater distances. Thus, the phenomenon of linkage disequilibrium that confounded efforts to discriminate between alleles

Fig. 9.1. Inheritance of single gene and polygenic (complex) disorders. (Modified from Peltonen and McKusick, 2001.)
of genes at HLA could be exploited to identify previously unknown disease-associated genes. These new techniques were first applied to Mendelian inherited diseases and culminated in the identification of many single-gene mutations, such as those for cystic fibrosis and Huntington’s disease. In MS, RFLPs were used to dissect the molecular contributions of the HLA locus to MS susceptibility. Thus, it became clear for the first time that alleles of \(HLA-DR2 \) were the major contributors to MS risk (Cohen et al., 1984).

MS as a complex trait

This linkage-based approach had the potential for application not only to single-gene disorders but also to complex multigenic traits. However, the hurdles for identifying the genetic basis for such traits is considerably higher because the increase in penetrance of disease resulting from each gene is expected to be far less than that for single disease-causing mutations. Penetrance refers to the likelihood that a particular genotype will manifest as a phenotype. For some Mendelian traits (e.g., the dominant trait of Huntington’s disease) the penetrance is very high, meaning that nearly all individuals who carry the disease-causing genotype will ultimately develop the disease. However, for complex traits, because the penetrance is low and because the disease-associated polymorphisms may be common in the population, the penetrance of each gene may be very low. This is clearly the case for the HLA locus: none of the HLA alleles associated with MS are, by themselves, disease-causing mutations. All these alleles are commonly found...
in healthy controls, despite being overrepresented among MS patients. Initially, the importance of this observation was not fully appreciated by investigators. Heritable MS risk was present in some families who lacked the MS-associated HLA alleles. This suggested that other loci elsewhere in the genome could be present that accounted for MS inheritance. It was hypothesized that these non-MHC loci might even contribute to MS risk even more than the HLA locus. If so, then a systematic study focused on the genomes of families affected by MS was anticipated to readily identify these other loci.

GENOMIC LINKAGE SCREENS

The first series of genome-wide screens using several hundred microsatellite DNA markers in approximately 100 affected sib pairs (pairs of non-twin siblings in which one was affected by MS and the other was not) was undertaken in the 1990s (Ebers et al., 1996; Haines et al., 1996; Sawcer et al., 1996). Assuming that other loci in the genome would have had similar effects on MS risk as that of, or even greater than, the MHC locus, these studies were expected to identify novel loci. However, despite this expectation, no statistically significant additional loci were found. Furthermore, one of these studies was unable to detect a signal even from the MHC (Ebers et al., 1996). Follow-up studies using multiply affected families also failed to detect any convincing new MS susceptibility loci (Kuokkanen et al., 1997; Coraddu et al., 2001; Akesson et al., 2002; Ban et al., 2002; Eraksoy et al., 2003). Adding more microsatellite markers to the initial genome screens also failed to produce new MS-associated genes (Hensiek et al., 2003; Dyment et al., 2004b; Kenealy et al., 2004). Pooling data for meta-analysis was similarly of no help in identifying loci other than the MHC (Dyment et al., 2001; GAMES, Transatlantic Multiple Sclerosis Genetics Cooperative, 2003). Consequently, it became clear that the identification of the other effects of genetic variations impacting MS susceptibility would require not only better markers but also a substantially increased number of families to reach necessary statistical power. The way forward required access to data from a larger number of affected families than was possible for any single group. Thus, the International Multiple Sclerosis Genetics Consortium (IMSGC) was founded in 2003 to overcome these barriers. This consortium brought together many, previously competing, investigators in a collaborative effort to decode MS heritability (Sawcer et al., 2004; http://www.neurodiscovery.harvard.edu/research/imsgc.html).

The first large-scale linkage study with sufficient statistical power to detect loci that had similar effects to that of the MHC across the genome came from populations in Australia, Scandinavia, the United Kingdom and the United States. Disappointingly, however, this study identified only the well-known association between the MHC and MS susceptibility (Fig. 9.3) (Sawcer et al., 2005). Moreover, other loci whose associations with MS had been suggested from smaller studies were not replicated. Nevertheless, this study was an important milestone for the field of MS genetics because, for the first time, a large number of markers and a substantial number of MS-affected families were brought together through an international collaborative effort. Furthermore, the markers used were sufficiently numerous and evenly spaced across the genome that there was confidence that the majority of the genome was adequately represented for linkage analysis. Perhaps most importantly, 730 families were studied, thus providing adequate power to detect genetic effects that increased the odds of MS risk by more than twofold. Only MHC was found to increase risk of MS by this degree, which indicated that the other loci, which influence MS risk, must have an effect lower than this. Thus study gave the first quantitative estimate for the possible impact of these other genes. Identification of such loci was effectively not possible using linkage analysis unless tens of thousands of families were analyzed (Risch and Merikangas, 1996). This inherent limitation of linkage methodology potentially could be overcome by a different genetic analysis: the GWAS.

GENOME-WIDE ASSOCIATION SCREEN

Further technological innovation led to identification of single nucleotide polymorphisms (SNPs) throughout the genome. SNPs are genetic variants that occur at a single basepair position within the genome (Fig. 9.4). The remarkable achievement of sequencing the human genome in conjunction with mapping hundreds of thousands of these SNP variants led to the realization that 99.9% of the human genome is invariant (International HapMap Consortium, 2003; International Human Genome Sequencing Consortium, 2004). Nevertheless, there are still many millions of genetic variations, some of which are quite common. By mapping traits that are linked to common SNP variants (i.e., SNPs that are present in at least 5% of the general population) and by coupling informative SNP variants with microchip-based miniaturization, it became possible to interrogate hundreds of thousands of SNP variants from thousands of individuals (Fig. 9.4). If heritable traits such as MS susceptibility are linked to common SNP variants, then genotyping these variants in both case and control populations would lead to the identification of those loci that were associated with the heritable trait. This hypothesis is referred to as the common disease–common variant hypothesis.
Unlike linkage analysis that required relatively large effect sizes for tracking heritable traits in families, the newer SNP-based technology was capable of detecting smaller individual genetic effects by increasing the numbers of affected individuals and unaffected controls.

Association testing, which compares the prevalence of any given SNP marker between two populations, has the capability of detecting very small genetic effects provided that the numbers of affected and unaffected individuals are sufficiently large. Moreover, the samples for...
association screens do not require DNA from family members. Although family structure can still be taken into account in GWAS statistics, doing so is not a prerequisite. This approach simply compares the prevalence of any given SNP marker in cases and controls, which is equivalent to a chi-square statistic. As long as the controls are from the same genetic background as the cases, then statistically significant differences in the prevalence of a particular SNP allele would presumably be due to a disease-related trait.

GWAS identifies the first genes outside the MHC

MS was one of the first diseases to be studied using this new GWAS technique. The IMSGC conducted the first GWAS in 2007 using 334,923 SNPs in 930 MS trio families (a trio family is a MS patient and both parents) with replication datasets consisting of another 609 family trios and an additional 2322 case subjects and 789 unrelated controls (Hafler et al., 2007). It was hoped that this massive, and costly, effort would finally determine the genetic architecture of MS, especially with regard to the non-MHC contributions. As anticipated, the MHC was definitively associated with MS susceptibility; however, beyond the MHC only two other loci were identified with a statistically significant level of confidence. These loci (the first non-MHC loci that were definitely associated with MS risk) encoded genes involved in immune regulation: the interleukin-2 receptor (IL2Rα) and the interleukin-7 receptor (IL7Rα). Associations with MS susceptibility for both loci were subsequently validated in other populations (Matesanz et al., 2001; Gregory et al., 2007; Lundmark et al., 2007a, b; Rubio et al., 2008; Weber et al., 2008).

This landmark achievement established, unquestionably, that genes outside the MHC contributed to MS susceptibility. However, variations at these two alleles, along with those of the MHC, could not account for all of MS heritability. Moreover, the alleles identified were, by definition, present in at least 5% of the population. However, the frequency of MS susceptibility-associated SNPs in both MS cases and controls was surprising. For example, the IL2Rα variant was present in 88% of patients and 85% of controls. Similarly, the MS-associated IL7Rα variant was present in 78% of patients and 75% of controls. The finding of these variants in the large majority of controls had two very important implications. First, these variants are the most common polymorphisms of each receptor. Thus, unlike either recessive or dominant mutations, the causal variant does not produce either a loss of function or a gain of an abnormal function. Rather, the protein associated with the polymorphism functions normally. Second, because there was only a very slight over-representation of these polymorphisms in MS cases, the effect that this polymorphism has on MS risk is miniscule. Indeed, the odds ratios for these alleles were <1.5. If the other non-HLA MS risk alleles were similarly linked to common SNP variants, then the sample size calculations indicated that variants associated with a 1.5-fold or higher odds of MS risk would require a minimum of 10,000 MS cases and a similar number of controls to be studied (Sawcer, 2008, 2010). Thus, despite the tremendous collaborative effort needed to conduct this study, it was significantly underpowered to identify the genetic variants that contribute to MS.

Although this GWAS identified only two non-HLA loci with a genome-wide level of statistical significance, there were other loci associated with MS susceptibility that just missed the statistical cutoff for definite association. GWAS performed by other groups, as well as meta-analyses that combined GWAS data from different studies, identified multiple other MS susceptibility loci (Burton et al., 2007; Comabella and Martin, 2007; Australia and New Zealand Multiple Sclerosis Genetics Consortium, 2009; Baranzini et al., 2009; De Jager et al., 2009; Jakkula et al., 2010; Nischwitz et al., 2010; Sanna et al., 2010; IMSGC, 2011).

In order to expand the statistical power needed for the next round of GWAS studies, the IMSGC expanded its membership, ultimately including 23 research groups from 15 countries. The IMSGC also partnered with the Wellcome Trust Case Control Consortium 2 (WTCCC2) to make use of the most up-to-date GWAS technology (Sawcer et al., 2011). In the end, 9772 MS cases and 17,376 control DNA samples passed stringent quality control assessments and 441,547 autosomal SNPs were genotyped. During analysis it became clear that the problem of population stratification might bias the analysis. Because this GWAS did not use a family-based approach, the comparison of cases to controls was predicated on the assumption that cases and controls shared a common genomic structure except at the MS susceptibility loci. However, if cases and controls were somewhat different from each other in their genomic structure, then the differences found between cases and controls could be due to either disease-causing loci or to spurious differences in genomic structure. When cases and controls from a single country, such as the United Kingdom, were compared there was no evidence of population stratification. However, because cases and controls were not perfectly matched by country of origin, the entire dataset showed evidence of genomic inflation. Thus, there was a systematic difference for genomic markers between these two groups that would bias the GWAS results. Therefore, several methods to control for genomic inflation were employed but ultimately a novel approach (variance component method) was able to adjust for this genomic inflation bias effectively.
The IMMSGC and WTCCC2’s MS GWAS identified 52 loci that were definitively associated with MS susceptibility (Table 9.2, Fig. 9.5). This study not only replicated the known MHC, IL2Rα, and IL7Rα associations but also found 20 loci that had been implicated in MS risk through other GWAS studies as well as meta-analyses. Furthermore, 29 novel loci were identified. All non-MHC loci had only a minor influence on MS susceptibility, with odds ratios ranging from 1.07 to 1.21. Perhaps the most important observation from this study was that the majority of SNPs identified were located near genes encoding immune functions. This observation strongly supported the hypothesis that MS is an autoimmune disease. Furthermore, many of the implicated genes share common pathways involved in immune regulation, providing important clues as to how normal immune function might become dysregulated in MS. Moreover, 23 of the identified loci are known to be involved in other autoimmune diseases, suggesting that common mechanisms are likely to underlie autoimmune diseases in general. However, the identification of these common loci did not lead immediately to an understanding as to why the central nervous system (CNS) is the primary target of autoimmune injury in MS. Nevertheless, several identified genes are expressed in the CNS, and some, such as GALC, were previously implicated in MS (Menge et al., 2005).

It is important to understand that, for the majority of the loci, multiple neighboring genes are linked to the MS-associated SNPs. Therefore, with the current level of resolution of this GWAS the exact genetic variant involved in MS susceptibility cannot be determined. Although it is possible that the MS-associated variants are the SNPs identified by the GWAS, it is also possible that the identified SNPs are in linkage disequilibrium with the true MS-associated allele. Additional SNPs or resequencing of these regions of interest will be necessary to refine the map of the causal variants. Perhaps even more puzzling was the finding that two SNP-identified loci do not have any neighboring genes. While it is possible that these SNPs are false-positive results, it is perhaps more likely that these regions contain transcriptional regulatory elements such as promoters or enhancers for distant genes or even are transcribed regulatory RNAs that are not translated into proteins. The recent ENCODE project’s remarkable discovery that 80% of the human

Table 9.2

Multiple sclerosis risk-associated non-major histocompatibility complex common genetic variants

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>SNP</th>
<th>Gene of interest</th>
<th>Immune disease</th>
<th>Known immune function</th>
<th>Neighboring genes</th>
<th>Odds ratio*</th>
<th>Population frequency of risk allele (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>rs4648356</td>
<td>MMEL1</td>
<td>RA, CeD</td>
<td></td>
<td>7</td>
<td>1.16</td>
<td>66.8</td>
</tr>
<tr>
<td>1</td>
<td>rs11810217</td>
<td>EVI5</td>
<td></td>
<td></td>
<td>15</td>
<td>1.15</td>
<td>25.7</td>
</tr>
<tr>
<td>1</td>
<td>rs11581062</td>
<td>VCAM1</td>
<td>Yes</td>
<td></td>
<td>5</td>
<td>1.07</td>
<td>29.2</td>
</tr>
<tr>
<td>1</td>
<td>rs1335532</td>
<td>CD58</td>
<td>Yes</td>
<td></td>
<td>2</td>
<td>1.18</td>
<td>86.3</td>
</tr>
<tr>
<td>1</td>
<td>rs1323292</td>
<td>RGS1</td>
<td>CeD</td>
<td>Yes</td>
<td>1</td>
<td>1.12</td>
<td>80.1</td>
</tr>
<tr>
<td>1</td>
<td>rs7522462</td>
<td>KIF21B</td>
<td>UC, CeD, CrD</td>
<td></td>
<td>4</td>
<td>1.11</td>
<td>67.3</td>
</tr>
<tr>
<td>2</td>
<td>rs12466022</td>
<td>No gene</td>
<td></td>
<td></td>
<td>0</td>
<td>1.16</td>
<td>74.8</td>
</tr>
<tr>
<td>2</td>
<td>rs7595037</td>
<td>PLEK</td>
<td>CeD</td>
<td>Yes</td>
<td>4</td>
<td>1.15</td>
<td>54.9</td>
</tr>
<tr>
<td>2</td>
<td>rs17174870</td>
<td>MERTK</td>
<td>Yes</td>
<td></td>
<td>7</td>
<td>1.15</td>
<td>73.5</td>
</tr>
<tr>
<td>2</td>
<td>rs10201872</td>
<td>SP140</td>
<td>CLL</td>
<td></td>
<td>3</td>
<td>1.15</td>
<td>19.6</td>
</tr>
<tr>
<td>2</td>
<td>rs6718520</td>
<td>THADA</td>
<td></td>
<td></td>
<td>5</td>
<td>1.17</td>
<td>48.0</td>
</tr>
<tr>
<td>3</td>
<td>rs11129295</td>
<td>EOMES</td>
<td>Yes</td>
<td></td>
<td>1</td>
<td>1.09</td>
<td>36.3</td>
</tr>
<tr>
<td>3</td>
<td>rs669607</td>
<td>No gene</td>
<td></td>
<td></td>
<td>0</td>
<td>1.15</td>
<td>48.7</td>
</tr>
<tr>
<td>3</td>
<td>rs2028597</td>
<td>CBLB</td>
<td>Yes</td>
<td></td>
<td>1</td>
<td>1.13</td>
<td>90.7</td>
</tr>
<tr>
<td>3</td>
<td>rs2293370</td>
<td>TMEM39A</td>
<td></td>
<td></td>
<td>7</td>
<td>1.16</td>
<td>85.0</td>
</tr>
<tr>
<td>3</td>
<td>rs9282641</td>
<td>CD86</td>
<td>Yes</td>
<td></td>
<td>5</td>
<td>1.20</td>
<td>90.2</td>
</tr>
<tr>
<td>3</td>
<td>rs2243123</td>
<td>IL12A</td>
<td>CeD</td>
<td>Yes</td>
<td>3</td>
<td>1.09</td>
<td>29.2</td>
</tr>
<tr>
<td>5</td>
<td>rs6897932</td>
<td>IL7RA</td>
<td>T1D</td>
<td>Yes</td>
<td>7</td>
<td>1.11</td>
<td>75.7</td>
</tr>
<tr>
<td>5</td>
<td>rs4613763</td>
<td>PTGER4</td>
<td>CrD</td>
<td>Yes</td>
<td>1</td>
<td>1.21</td>
<td>16.8</td>
</tr>
<tr>
<td>5</td>
<td>rs2546890</td>
<td>IL12B</td>
<td>PS, CrD</td>
<td>Yes</td>
<td>4</td>
<td>1.15</td>
<td>56.2</td>
</tr>
<tr>
<td>6</td>
<td>rs1221293</td>
<td>BACH2</td>
<td>CeD, T1D</td>
<td></td>
<td>1</td>
<td>1.08</td>
<td>47.8</td>
</tr>
</tbody>
</table>
genome contains elements linked to biologic processes underscores that DNA regions without open reading frames can be biologically important and in fact do not contain what previously had been disregarded as “junk” DNA (Djebali et al., 2012; Bernstein et al., 2012).

Missing heritability

Despite the remarkable achievement of the IMEGC–WTCC2 GWAS, the estimate of the total contribution to MS heritability by the polymorphisms identified in this study was only 25%. Given that the MHC itself accounts for ~20% of MS heritability, the total contribution of the other 51 genetic loci to MS risk is only 5%. This suggests that 75% of MS genetic risk will be accounted for by variants that cannot be identified using SNP chips that are designed to test the common allele–common variant hypothesis. The identification of rare disease-causative alleles, that have weak or modest effects, poses an additional challenge for MS genetic analysis. First, the

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>SNP</th>
<th>Gene of interest</th>
<th>Immune disease</th>
<th>Known immune function</th>
<th>Neighboring genes</th>
<th>Odds ratio*</th>
<th>Population frequency of risk allele (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>rs802734</td>
<td>THEMIS</td>
<td>CeD</td>
<td></td>
<td>5</td>
<td>1.13</td>
<td>70.8</td>
</tr>
<tr>
<td>6</td>
<td>rs13192841</td>
<td>OLIG3</td>
<td></td>
<td></td>
<td></td>
<td>1.10</td>
<td>23.5</td>
</tr>
<tr>
<td>6</td>
<td>rs11154801</td>
<td>MYB</td>
<td>3</td>
<td>3</td>
<td>1.09</td>
<td>37.9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>rs17066096</td>
<td>IL22RA2</td>
<td>3</td>
<td>3</td>
<td>1.14</td>
<td>18.1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>rs1738074</td>
<td>TAGAP</td>
<td>CeD</td>
<td>2</td>
<td>1.14</td>
<td>53.5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>rs354031</td>
<td>ZNF767</td>
<td></td>
<td>4</td>
<td>1.14</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>rs1520333</td>
<td>IL7</td>
<td></td>
<td>3</td>
<td>1.11</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>rs4410871</td>
<td>MYC</td>
<td></td>
<td>2</td>
<td>1.09</td>
<td>71.2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>rs2019960</td>
<td>PVT1</td>
<td></td>
<td>1</td>
<td>1.16</td>
<td>24.3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>rs2150702†</td>
<td>MLANA</td>
<td></td>
<td>10</td>
<td>1.16</td>
<td>49.0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>rs3118470</td>
<td>IL2RA</td>
<td>RA</td>
<td>4</td>
<td>1.12</td>
<td>31.0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>rs1250542</td>
<td>ZMIZ1</td>
<td>CeD, IBD</td>
<td>3</td>
<td>1.10</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>rs7923837</td>
<td>HHEX</td>
<td>T2D</td>
<td>3</td>
<td>1.09</td>
<td>63.3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>rs650258</td>
<td>CD6</td>
<td></td>
<td>4</td>
<td>1.12</td>
<td>63.8</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>rs1800693</td>
<td>TNFRSF1A</td>
<td></td>
<td>4</td>
<td>1.12</td>
<td>48.2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>rs10466829</td>
<td>CLECL1</td>
<td>TID</td>
<td>9</td>
<td>1.12</td>
<td>46.9</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>rs12368653</td>
<td>CYP27B1</td>
<td>RA</td>
<td>33</td>
<td>1.11</td>
<td>44.7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>rs949143</td>
<td>MPHOSPH9</td>
<td></td>
<td>13</td>
<td>1.08</td>
<td>33.2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>rs4902647</td>
<td>ZFP36L1</td>
<td>CeD, TID</td>
<td>3</td>
<td>1.13</td>
<td>56.2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>rs2300603</td>
<td>BATF</td>
<td></td>
<td>3</td>
<td>1.08</td>
<td>70.4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>rs2119704</td>
<td>GALC</td>
<td></td>
<td>3</td>
<td>1.12</td>
<td>93.2</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>rs7200786</td>
<td>CLEC16A</td>
<td>TID</td>
<td>8</td>
<td>1.15</td>
<td>54.0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>rs1333054</td>
<td>IRF8</td>
<td></td>
<td>1</td>
<td>1.12</td>
<td>20.8</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>rs9891119</td>
<td>STAT3</td>
<td>CrD</td>
<td>25</td>
<td>1.10</td>
<td>38.9</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>rs7238078</td>
<td>MALT1</td>
<td></td>
<td>2</td>
<td>1.14</td>
<td>79.6</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>rs1077667</td>
<td>TNFSF14</td>
<td></td>
<td>3</td>
<td>1.14</td>
<td>78.6</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>rs8112449</td>
<td>TYK2</td>
<td>TID</td>
<td>12</td>
<td>1.10</td>
<td>69.5</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>rs874628</td>
<td>MPV17L2</td>
<td></td>
<td>11</td>
<td>1.07</td>
<td>71.7</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>rs2303759</td>
<td>DKKL1</td>
<td></td>
<td>9</td>
<td>1.11</td>
<td>29.6</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>rs2425752</td>
<td>CD40</td>
<td>RA</td>
<td>13</td>
<td>1.10</td>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>rs2248359</td>
<td>CYP24A1</td>
<td></td>
<td>2</td>
<td>1.11</td>
<td>58.8</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>rs2283792</td>
<td>MAPK1</td>
<td></td>
<td>9</td>
<td>1.12</td>
<td>52.7</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>rs140522</td>
<td>SOC2</td>
<td></td>
<td>15</td>
<td>1.12</td>
<td>34.5</td>
<td></td>
</tr>
</tbody>
</table>

*All p-values associated with each odds ratio are < 1 × 10⁻⁸, the genomic level of significance, i.e., Bonferroni correction for one million possible variants across the genome, a current estimate for all current genomic variants.

†These loci identified by recent meta-analysis (Patsopoulos et al., 2011).

CeD, celiac disease; CLL, chronic lymphocytic leukemia; CrD, Crohn’s disease; IBD, inflammatory bowel disease; PS, psoriasis; RA, rheumatoid arthritis; SNP, single nucleotide polymorphism; T1D, type 1 diabetes; T2D, type 2 diabetes; UC, ulcerative colitis.
number of rare variants is much greater than the number of common variants. Second, the majority of rare variants have not yet been described in publicly available databases. Identification and cataloguing of these rare variants will require sequencing many more genomes. Finally, optimal methods for typing an individual’s DNA for rare variants are still being developed. It remains to be determined whether rare variant SNP chips or other techniques such as individual exome or whole-genome sequencing will be the most effective method for identifying rare disease-associated alleles.

Vitamin D genetics

Vitamin D deficiency is a risk factor for MS susceptibility and likely accounts for some of the differences in MS’s geographic prevalence. Multiple studies showed that 25-OH vitamin D levels are lower in MS cases compared to controls in both European-descended and African American populations (Munger et al., 2006; Islam et al., 2007; Gelfand et al., 2011; Ramagopalan et al., 2011b). The IMSGC–WTCC2 GWAS identified two genes involved in vitamin D metabolism as conferring increased susceptibility to MS. CYP27B1 encodes an enzyme that catalyzes the synthesis of 1,25-dihydroxyvitamin D (1,25-dihydroxyvitamin D is the biologically active form of the vitamin). CYP24A1 encodes an enzyme that degrades 1,25-dihydroxyvitamin D. Given that vitamin D deficiency is a risk factor for MS and that two genes (CYP27B1 and CYP24A1), that regulate vitamin D synthesis and degradation, confer susceptibility to MS, it seems likely that these genes contribute to MS risk by decreasing levels of active vitamin D. CYP27B1 was also shown to influence MS risk in MS families with multiply affected individuals (Ramagopalan et al., 2011a). By systematically sequencing all genomic protein-encoding regions in 43 MS patients from multiplex families, a non-synonymous variant of CYP27B1 (R389H) was identified segregating in one family with an incompletely penetrant dominant inheritance pattern. This variant leads to complete loss of CYP27B1 activity and therefore causes low levels of 1,25-dihydroxyvitamin D. The R389H CYP27B1 variant was genotyped in 3000 parent-affected trios and was transmitted from parent to affected offspring in 19 trios. Other studies have not yet found an MS association for this rare allele. Nonetheless, taken together, these results underscore the important role of vitamin D in MS and show that not only environmental factors but also genetic factors influence vitamin D levels.

Vitamin D itself has important regulatory roles in gene expression. RNA expression level of the major MS susceptibility gene HLA-DRB1*15:01 is regulated by vitamin D, albeit somewhat paradoxically (i.e., expression of the allele is upregulated by vitamin D) (Ramagopalan et al., 2009). Vitamin D receptor-binding elements have been identified in the majority of MS-associated genes, implying that expression of many of these genes could also be controlled by vitamin D (Ramagopalan et al., 2010). Although the details of

Fig. 9.5. Multiple sclerosis (MS) genomic regions of interest identified by genome–wide association study (GWAS). (Reproduced from IMSGC, 2011.)
the network of interactions between genes that regulate vitamin D synthesis and MS susceptibility genes, whose expression is in turn regulated by vitamin D, have yet to be established, these studies illustrate the importance of vitamin D in MS pathogenesis. Low levels of vitamin D, either because of environmental factors such as decreased sunlight exposure or low dietary intake of vitamin D, or because of genetic traits that reduce levels of 1,25-dihydroxyvitamin D, clearly contribute to MS susceptibility and may also contribute to disease activity (Smolders et al., 2008; Soili-Hanninen et al., 2008; Mowry et al., 2010; Simpson et al., 2010).

EXOME AND GENOME SEQUENCING

Another example of exome sequencing’s power to detect rare alleles of MS susceptibility genes is the discovery of a missense mutation in the TYK2 gene (Dyment et al., 2012). An allele of the TYK2 gene was previously found to be protective in GWAS (Australia and New Zealand Multiple Sclerosis Genetics Consortium, 2009; Ban et al., 2009; Mero et al., 2010). In contrast, the missense allele identified by exome sequencing modestly increases the risk of MS. Similar to the study of CYP27B1, the rare allele of TYK2 (rs557627444) was first identified in a multiply-affected large MS pedigree and then replicated in 2104 trios.

The studies of CYP27B1 and TYK2 showcase the powerful advantage of exome sequencing. Unlike the SNP chip-based technology that is restricted by the genetic variants imprinted on the chip, sequencing the exome has the potential to identify any variant present within an individual’s coding DNA. Therefore exome-sequencing technology has the potential to identify rare coding variants that would not be identified using SNP chips.

Individual genome sequencing is also now possible. The cost of high-throughput sequencing has dramatically decreased since the first human genome was sequenced (~US$1 billion) and currently runs approximately $3500/genome. It is anticipated that in the next few years the price will fall further to less than $1000/genome. The advantage of genome sequencing over exome sequencing is that the entire genome is sequenced, which includes all the non-coding DNA that may contain important regulatory elements in addition to the sequences used to encode specific proteins. Not accounted for by the relatively low cost of sequencing is the added cost of data management and analysis for the additional non-coding sequences.

Although the technology for determining genetic sequences has rapidly progressed such that it will soon be commercially feasible to sequence any individual’s entire genome, the analytic techniques for interpreting the massive amounts of data are still being developed. The technology for deriving the primary sequence has temporarily outpaced the technology for genomic data analysis. Both software and hardware computational technologies are being developed that will enable desktop analysis of the human genome’s 3 billion basepairs.

Preliminary studies suggest that every individual’s DNA contains over 50,000 SNP variants and over 5000 insertion/deletion polymorphisms (Baranzini et al., 2010). Importantly, 42% of the SNPs and 86% of the insertion/deletion polymorphisms are novel, meaning that they had not been previously recorded in publicly available databases. Given the very large numbers of rare polymorphisms contained in every individual’s DNA, assigning disease-causative roles for these variants poses considerable methodologic challenges. The identification of the rare R389H CYP27B1 allele was made possible by the additional information imparted by the multiplex family structure and was validated by large-scale trio analysis. It is likely that additional rare coding variants will be identified by this approach. That whole-genome sequencing identifies many novel rare polymorphisms raises the question as to whether some of these variants could have relatively strong disease associations within a given family. Current technology does not offer an obvious solution to proving that so-called “private” disease-causing mutations, if such variants even exist, influence MS risk. If such variants exist the strategy of proving the disease-causative association for the specific allele of interest will fail because the specific allele will be found only within a very small minority of affected individuals. It may be nearly impossible to prove such associations using standard genetic methods. Nonetheless, unique alleles might aggregate within the same genes across many affected individuals. If the intergenic aggregation of unique alleles occurs more often than chance then the within-gene clustering may suggest association of the gene with the trait of interest.

The MHC and MS susceptibility

The MHC is 3.5 million bases (Mb) of DNA located on the short arm of chromosome 6. It is the most genetically dense area of the human genome and encodes over 3000 genes. The HLA genes are grouped into three structurally related classes from the telomere to the centromere: class I, class III, and class II (Fig. 9.6). The HLA genes encode for glycoproteins that are expressed on the cell surface and play critical roles in recognition of self-antigens by the immune system. Many of these genes are highly polymorphic, adding additional complexity to this locus. Multiple autoimmune diseases have risk alleles that map to this region, thereby...
underscoring its importance in the regulation of immune function (Rioux et al., 2009).

As a consequence of selective pressures or other factors, the MHC (especially in northern European populations) is characterized by extensive linkage disequilibrium that can span the MHC and confounds mapping studies. Thus, alleles of class I genes can be genetically linked to distant alleles of class II genes. Many of the HLA alleles were first identified serologically and gave rise to a complex and often inconsistent nomenclature. Recent extensive efforts were made at mapping the serologic types to DNA sequences and the genetic architecture of the MHC is now much better understood (Allcock et al., 2002; Stewart et al., 2004; Miretti et al., 2005; de Bakker et al., 2006; Horton et al., 2008). As a consequence, the genetic basis of the serotypes has been defined and a consistent nomenclature has finally come into focus that will help advance further study of the MHC (http://hla.alleles.org/).

As described above, the first genetic associations identified in MS were found for HLA class I alleles using serologic typing of HLA antigens on leukocytes (Bertrams and Kuwert, 1972; Bertrams et al., 1972; Jersild et al., 1972, 1973; Naito et al., 1972). When HLA class II alleles were also associated with MS susceptibility, it was proposed that the class I associations were accounted for by linkage disequilibrium with the class II loci (Winchester et al., 1975; Compston et al., 1976; Terasaki et al., 1976). Clarifying the associations of HLA loci with MS susceptibility was ultimately made possible by DNA-based typing of HLA polymorphisms in multiple datasets.

It is now clear that the primary MS susceptibility signal at HLA stems from the MHC class II locus. In European-descended populations the primary risk allele is HLA-DRB1*15:01, that is, part of a haplotype: DRB1*15:01, DQA1*01:02, DQB1*0602. This haplotype encodes for cell surface glycoproteins that can present antigen peptides to T cells. Together, these genes correspond to the serologic markers known as HLA-DR2, DQ6.

Fine mapping studies indicate that the most important contributors to MS susceptibility are polymorphisms in the HLA-DRB1 gene (Oksenberg et al., 2004). Neighboring polymorphisms in the HLA-DQBI1 gene, although tightly linked to DRB1, do not contribute to MS risk, thus establishing a centromeric boundary for MS risk at HLA-DRB1.

Multiple polymorphisms within HLA-DRB1 influence MS susceptibility in populations (Fig. 9.6). HLA-DRB1*1501 contributes to MS susceptibility with a dominant, dose-dependent effect (Barcellos et al., 2003). In African-descended populations, the closely related HLA-DRB1*15:03 allele contributes to MS risk (Oksenberg et al., 2004; Cree et al., 2009). HLA-DRB1*03 contributes to MS risk as a recessive trait (Ramagopalan et al., 2009). HLA-DRB1*13:03 also contributes to MS risk (Sawcer et al., 2011). In the presence of HLA-DRB1:15, the HLA-DRB1*08 allele further increases MS risk (Dyment et al., 2005; Barcellos et al., 2006; Chao et al., 2007), whereas the HLA-DRB1*14 and HLA-DRB1*10 alleles attenuate the risk of MS transmitted by HLA-DRB1*15 (Fig. 9.7). To add to the complexity, certain alleles seem to contribute to MS in some, but not all, populations. In Sardinia, in addition to HLA-DRB1*15 and HLA-DRB1*03, HLA-DRB1*04 alleles contribute to MS susceptibility (Marrosu et al., 1988, 1998, 2001; Brassat et al., 2005). Although the allelic interactions at this class II MHC locus are remarkably complex, similar principles will likely apply to other risk loci.
Fine mapping studies of the telomeric boundary of MS susceptibility have independently contributed to MS susceptibility, although the exact risk gene, or genes, in this region has not been precisely mapped (Brynedal et al., 2007; Yeo et al., 2007; Cree et al., 2010; Sawcer et al., 2011). Alleles of the class I gene HLA-A are proposed to have a protective effect for MS susceptibility. However, as with the class II locus, extensive linkage disequilibrium is present in the class I region and therefore the class I signal might stem from linked alleles of neighboring genes, including HLA-B (Healy et al., 2010), HLA-C (Yeo et al., 2007) and HLA-G (Cree et al., 2010). Alleles of these genes form a linked haplotype that spans the MHC: HLA-A*02:01–HLA-B*44:02–HLA-C*05:01–HLA-DRB1*04:01. Thus far, no study to date has had a sufficiently large number of subjects to establish definitively the precise location of the class I MS susceptibility signal. MHC class I locus influences MS susceptibility, which implies a role for innate immune function in MS.

Genotype–phenotype correlations

In addition to influencing MS risk, HLA alleles may contribute to the MS phenotype. The most consistent effect of HLA on MS phenotype is for the HLA-DRB1*15:01 allele on the age of onset. Several studies showed that this allele decreases the age of onset and does so in a dose-dependent manner (Celius et al., 2000; Masterman et al., 2000; Hensiek et al., 2002; Smestad et al., 2007; Cree et al., 2009; Sawcer et al., 2011). HLA-DRB1*15:01 may also contribute to the radiographic burden of disease on T2-weighted brain magnetic resonance imaging (MRI) and impact cognitive performance (Okuda et al., 2009). In contrast, the HLA-B*44:02 allele, that is proposed to be protective for MS susceptibility, may reduce the radiographic burden of disease on T2-weighted brain MRI (Healy et al., 2010). A consistent impact of HLA alleles on MS neurologic impairments, as measured by expanded disability status scale progression, has not been found (Marrosu et al., 1988; Romero-Pinel et al., 2011). Interestingly, a spontaneously occurring null allele of the HLA-DRB5 gene located telomeric to HLA-DRB1 might contribute to MS severity (Cailler et al., 2008). However, the IMMSGC GWAS efforts have thus far found no definite associations between non-HLA loci and disease severity, age of onset, or disease course (relapsing versus primary progressive).

CURRENT DIRECTIONS AND LIMITATIONS

Several genetic loci were not identified by the recent IMMSGC GWAS but only narrowly missed the cutoffs for genome-wide levels of statistical significance (NFkB1, CXCX5, SOX8, RPS6KB1, and TNFRSF6B). A recent meta-analysis also found several candidate loci with suggestive evidence of association (TBX21, EPS15LI, TNP2, and an intergenic SNP rs9596270) (Patsopoulos et al., 2011). One previously identified gene (CXR4) may have been missed due to a genotyping error (i.e., this might be a false negative). Several of these genes have known functions in immune regulation (e.g., NFkB1, CXCX5, TNFRSF6B, CXCR4, and TBX21) and efforts are underway using meta-analyses to establish whether these loci contribute to MS risk.

Saturated SNP studies are being performed to reduce the number of possible genes at each loci identified by the tagging SNPs. The results of the first large-scale targeted saturation SNP analysis (the IMMUNOCHIP) are expected soon.

Rare variants with low mean allelic frequencies (MAFs) are being examined by GWAS and exome and genome sequencing studies in multiplex families to identify novel rare variants. The success of exome sequencing in identifying rare variants of CYP27B1 and TYK2 illustrates the limitations of the common variant hypothesis. These rare alleles may only be the tip of the iceberg, with many more rare MS variants yet to be found by exploiting this strategy. However, these rare variants were identified in families with multiply affected members. Multiply affected families are relatively uncommon in MS and not all such families have informative structures for identification of rare variants. Furthermore, risk alleles in multiply affected families might be expected to have stronger effect sizes than variants that contribute to sporadic MS. At this time, no solution is apparent that does not require extremely large sample sizes using the case-control approach.

In populations of non-European descent, studies have replicated some, but not all, non-MHC SNPs (Johnson et al., 2010). It is encouraging that at least some MS risk alleles identified in European-descended populations replicate in other racial groups and further substantiates that such risk alleles are genuine. Several explanations for the lack of replication in diverse populations are possible. These include the relatively smaller sample sizes resulting in lack of power and an inadequate control for population stratification, epistatic interactions, and/or gene–environment interactions. Moreover, European-descended alleles are present in the control groups for non-European populations, which indicates that genetic diversity alone does not account for the divergence in genotype to phenotype correlation.

As impressive as the advances in recent years have been for MS risk gene discovery, several limitations of genetic research in MS have become clear. First, it is
highly unlikely that genotyping will yield clinically useful diagnostic tools. The effect sizes for genetic effects on MS risk are far too small to find application in diagnosing MS patients. Second, as ever larger sample sizes became necessary for identifying the genetic differences between MS cases and controls, it seems likely that equally large (or even larger) sample sizes will be necessary to identify those genetic factors that influence the MS clinical phenotype (e.g., whether the disease is relapsing or progressive at onset, whether the disease is predominantly spinal or cerebral, the rate of progression). As intriguing as the preliminary studies of MS risk genes on MRI and clinical correlates may be, the studies performed to date are underpowered and reported associations are likely false-positive results (similar to the experience in early studies of MS risk). Given that multiple factors influence the MS phenotype, including the widespread use of disease-modifying therapies, future studies of genotype–phenotype correlations may face even greater challenges than studies of MS risk. Similarly, although use of genetics as a tool for individualizing treatment selection holds intrinsic appeal, proof that a genetic marker is associated with a particular outcome is unlikely to be small. These daunting challenges raise the question as to whether genetic study in MS has therapeutic or prognostic value. Although MS genetics is unlikely to yield concrete clinical utility in the near future, genetics remains an invaluable tool for defining the key constituents underlying the complex biology of the disease. Only through identifying the genes involved in determining MS susceptibility can we hope to understand the role of heritability in the disease pathogenesis, which in turn may point to new therapeutic opportunities.

REFERENCES

