Title
Endoplasmic Reticulum Stress Sensor IRE1 alpha Preserves Function of the Stressed Myocardium

Permalink
https://escholarship.org/uc/item/1xm022tg

Author
Steiger, DeAnna

Publication Date
2013

Peer reviewed|Thesis/dissertation
A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Molecular, Cellular, and Integrative Physiology

By

DeAnna Lee Steiger

2013
Many diseases and insults to the heart disrupt homeostasis in the endoplasmic reticulum (ER) and cause ER Stress, leading to activation of the ER stress response, or Unfolded Protein Response (UPR) signaling pathway. The UPR from the endoplasmic reticulum is emerging to play a vital role in health and disease. The most ancient member of this signaling pathway, IRE1 alpha, has been reported to induce both protective UPR and apoptotic downstream signaling events in various tissues, but the role for IRE1 alpha in heart is unknown. We aimed to characterize the specific contribution of IRE1 alpha in heart in health and in response to stress.

We generated a mouse model with inducible, heart-specific IRE1 alpha overexpression in order to investigate a role for IRE1 alpha in heart under baseline and stressed conditions. We observed that IRE1 alpha did not induce a detrimental phenotype in the absence of stress. Moreover, IRE1 alpha overexpression preserved heart function in response to pressure overload. Adaptive UPR signaling was enhanced
while inflammatory and fetal gene program members were blunted. Also, IRE1 alpha activation and downstream signaling was transient in cardiac myocytes in vitro. Inflammatory cytokine expression was reduced following IRE1 alpha expression, recapitulating observations made in vivo.

IRE1 alpha induces adaptive, transient signaling in heart. We conclude that the UPR signaling repertoire includes unknown, heart-specific endogenous regulatory mechanisms. To our knowledge, this is the first report of a specific and protective role for IRE1 alpha in heart and provides new evidence for the integration of ER stress and inflammatory signaling.
The dissertation of DeAnna Lee Steiger is approved.

Thomas M. Vondriska
Aldons J. Lusis
James N. Weiss

Yibin Wang, Committee Chair

University of California, Los Angeles
2013
Table of Contents

A. Chapter 1 Introduction 1
 a. Cardiovascular Diseases and Heart Failure 1
 b. Intracellular Signaling Networks and Adaptation to Stress 1
 c. Intracellular Signaling Maintains Protein Homeostasis 2
 d. IRE1 is Regulated by Multiple Mechanisms 6
 e. ER Stress Signaling Promotes Cell Death 6
 f. ER Stress Signaling in Heart; friend or foe? 7
 g. The Role of IRE1α in Heart is Unknown 10

B. Chapter 2 Materials and Methods 12
 a. Animal Models and Surgical Procedures 12
 b. Histology 13
 c. Cell Culture 14
 d. Western Blot 14
 e. RNA and RT-PCR Analysis 15
 f. IRE1α RNase Activity Assay 16
 g. Statistical Analysis 16

C. Chapter 3 IRE1α Protects Myocardium from Heart Failure Induced by Pressure Overload 17
 a. Generation of IRE1α Transgenic Animals 17
 b. IRE1α Does Not Induce Detrimental Phenotype in Heart in the Absence of Stress 19
 c. IRE1α Preserves Heart Function After Pressure Overload 21
D. Chapter 4 IRE1α Induces Adaptive and Transient Unfolded Protein Response Signaling in Cardiac Myocytes 25
 a. IRE1α Induces Stress Signaling in Various Cell Types 25
 b. IRE1α Induces Adaptive and Transient UPR Signaling in Cardiac Myocytes 27
E. Chapter 5 Discussion 31
F. Chapter 6 Future Directions 34
G. Chapter 7 References 40
List of Figures

Figure 1-1. The Unfolded Protein Response Restores ER Homeostasis 4
Figure 3-1. Transgenic Strategy of Tamoxifen Regulated IRE1α Overexpression 18
Figure 3-2. IRE1α Does Not Induce Phenotype in Heart in the Absence of Stress 20
Figure 3-3. IRE1α Preserves Heart Function in Response to TAC 22
Figure 3-4. Molecular Profile of IRE1α Mice After Four Weeks of TAC 24
Figure 4-1. IRE1α Activates UPR and Stress Signaling in INS-1 Cells 26
Figure 4-2. NRVMs Are Sensitive to ER Stress 27
Figure 4-3. IRE1α Induces Adaptive UPR Signaling in NRVM 29
List of Tables

Table 1. Primers Used for RT-PCR Experiments
ACKNOWLEDGEMENTS

It is with sincere gratitude that I acknowledge the many coworkers and colleagues that have contributed to this work. The animal work could not have been possible without the talent of Jing Gao, Haiying Pu, Eric Anderson, Vincent Ren and Jim O’Hearn. The members of the Wang Lab all provided stimulating and challenging discussion and also helped to improve technical aspects of the experiments. The Division of Molecular Medicine provided tremendous research support throughout the study. Furthermore, the students and professors of the Molecular, Cellular and Integrative Physiology graduate program provided a highly inspiring atmosphere. I wish to thank my mentor for his constant enthusiasm for basic science and relentless optimism and also Tom Vondriska, Jake Lusis and Jim Weiss for providing inspiring discussion and clear direction throughout the course of study.

I also wish to acknowledge Dr. Eric J. Steiger for his unwavering support and patience. Without my study buddy, this work would not have been possible. I also want to thank my dear Frederick, for sharing his sheer joy for life with Eric and me.

This work was supported by an institutional training grant from the National Institutes of Health in Molecular, Cellular and Integrative Physiology at the University of California at Los Angeles T32 GM065823 and a National Institute on Aging Ruth L. Kirschstein National Research Service Award F31 AG038156A.
DeAnna Lee Steiger

PROFILE
Business savvy scientist with solid comprehension of the Pharmaceutical and Healthcare Industries. High performance professional with advanced presentation and interpersonal skills. Team player with initiative, discipline, and consistency. Proven leader with a relentless focus on the clinical application of scientific discoveries.

EXPERTISE
Heart failure physiology and treatment, animal models of heart failure, molecular biology and pharmacology. Building relationships, communication of scientific data to diverse audiences, and building consensus across functional areas.

EDUCATION
NIGMS Pharmacology & Translational Biology 2007
University of California San Diego
- Pharmacology, animal models and imaging of heart failure and Cardiovascular disease

MS, Entomology and Applied Ecology 2006
University of Delaware

BS, Biology 2002
Pacific Lutheran University

PROFESSIONAL EXPERIENCE
Licensing Associate, External Research & Development, Amgen 2013-
- Evaluate licensing opportunities based on scientific rigor for medical pharmaceutical company
- Drive cross-functional review process
- Direct communications between internal and external stakeholders

Founder and Chair, Advancing Women in Science & Engineering (AWiSE) 2012-2013
- Identified an unmet need, formally proposed and received funding for a new program to develop women leaders in the biotech and pharmaceutical industries
- Established an advisory board and mentor network of key opinion leaders and high-level industry professionals
- Forged partnerships with key organizations to accelerate buy-in and maximize impact
- Worked within a team to organize a successful kickoff event with 90 attendees and to launch a mentoring program

Marketing & Industry Outreach Coordinator, UCLA Business of Science Center 2011-2012
- Wrote marketing summaries of emerging medical technologies, promoted licensing of university discoveries
- Established and maintained strategic partnerships with 25 biotech and pharmaceutical industry leaders
- Led outreach efforts, acted as point of contact for external stakeholders, increased event attendance by 200%
Student Consultant, UCLA Business of Science Center 2010-2013
- Assessed commercialization potential of 40 emerging medical technologies
- Identified intellectual property to license, target markets, and potential competitors for a biomedical device startup company
- Worked within multi-disciplinary team to generate specific recommendations for the company's business plan

TECHNICAL EXPERIENCE

Predoctoral Research Fellow, University of California Los Angeles 2007-2013
- Awarded NIH T32 Fellowship in Molecular, Cellular, and Integrative Physiology
- Awarded NIA F31 Fellowship for Novel Mechanisms of ER Stress Regulation in Aging Heart
- Designed and executed research projects, troubleshoot and optimized experimental conditions, and led two researchers to identify cell signaling events protective against heart failure
- Employed cutting-edge imaging methods to advance translation of research findings into clinically relevant conclusions
- Secured multiple federal grant awards totaling more than $100,000
- Presented findings at seminars, American Heart Association national conferences, and in journals (total of 11 presentations, 1 abstract, and 1 manuscript)

Graduate Student Researcher, University of Delaware 2004-2006
- Designed, prototyped, and optimized a device to measure insect susceptibility against Bt insecticide

TEACHING EXPERIENCE

Teaching Assistant, University of California Los Angeles 2007-2008
- Taught endocrine physiology to 150 senior pre-medical undergraduate students

Assistant Language Teacher, Shimane Board of Education, Izumo City, Japan 2002-2004
- Collaborated with Japanese teachers of English to generate curriculum and teach 400 senior high school students

PROFESSIONAL AFFILIATIONS

- American Heart Association National and Basic Cardiovascular Sciences chapters
- Association for Women in Science
- Southern California Biomedical Council
- UCLA Business of Science Center
CHAPTER 1

Introduction

A. Cardiovascular Disease and Heart Failure

Cardiovascular diseases are the number one cause of mortality in the United States and worldwide (1). Heart failure comprises 35% of cardiovascular diseases and is one of the most significant diseases facing people today. It affects more than five million people in the United States alone.

Heart failure is most simply defined as the disease that results from the heart being unable to pump sufficient blood to the body. Heart failure is a progressive disease with a spectrum of symptoms and pathologies including hypertrophy, compensated heart failure where the heart enlarges but is able to maintain function, and decompensated heart failure where the heart ventricle walls thin and function is diminished. Effective treatments remain elusive due to our limited understanding of the many causes, clinical manifestations, and underlying disease mechanisms. Advancing the understanding of underlying mechanisms will provide additional treatment strategies and novel therapeutic targets.

B. Intracellular Signaling Networks and Adaptation to Stress

The heart is a dynamic organ with constant mechanical activity that provides the body with a consistent supply of freshly oxygenated blood. The heart is constantly challenged by stresses. Insults from external stimuli, hormonal input, exercise, and
disease all stress the heart. Appropriate responses to stress stimuli occur as the result of cellular signaling activity. Intracellular signaling networks bring about structural and functional changes that allow the heart to adapt to various stresses and meet increasing demands. Challenges and injuries cause a wide variety of cellular disruptions, ranging from calcium dysregulation, changes in redox status, alteration of nutrient requirements, mechanical stress, and increased hormonal input (2). Many of these insults disrupt homeostasis in the endoplasmic reticulum (ER), causing a state termed ER stress. ER stress is increasingly being appreciated as a critical factor underlying heart function and failure (3).

Protein maturation and integrity are critical factors affecting cellular signaling which are now gaining the attention of researchers and clinicians alike. Precise cellular signaling communication requires structural integrity of signaling molecules. Protein function is highly dependent upon protein structure. Protein structure is achieved by complex folding arrangements and conformations. Thus, misfolded proteins may not function correctly and take on new activities. If cellular signaling molecules take on rogue activity, the resultant cellular and tissue outcomes can have drastic implications for health and disease (4). Therefore, precise protein folding and maturation are critical for maintaining correct cellular signaling integrity. During ER stress, protein maturation is disrupted, causing activation of cell signaling pathways to restore ER homeostasis.

C. Intracellular Signaling Maintains Protein Homeostasis

The endoplasmic reticulum is the site of protein folding for all membrane and secreted proteins as they are generated. Polypeptides are co-translationally transported
from the ribosome into the lumen of the ER where a reducing environment allows peptides to be folded into correct protein conformations (5-7).

Because cell identities, cell to cell interactions, and extracellular communications are achieved through membrane protein interactions, correct membrane protein folding and modification in the ER lumen is critical for cell homeostasis and viability. Similarly, secreted proteins must achieve their precise conformations in order to cause intended endocrine and paracrine effects, further requiring precise protein folding in the ER (8). In recent years, it has become apparent that peptide folding and maturation is impaired in many diseases (9-12).

Homeostasis within the ER lumen is monitored and preserved by highly conserved quality control mechanisms (Figure 1-1) (4). Any type of disruption to ER homeostasis, including altered redox status, calcium buffering, aggregation or accumulation of client peptides is said to produce ER stress (8, 13-14). During ER stress, a specific ER stress response, also known as Unfolded Protein Response (UPR), becomes activated to convey information from the ER lumen to the nucleus (15, 16). This culminates in activation of transcription factors to upregulate target molecules that will restore ER homeostasis (17). The three ER stress signaling molecules act in concert to restore optimal protein folding conditions and enhance protein folding capacity, reduce the client protein folding load, and degrade unfolded peptides.

Misfolded and damaged proteins in the ER trigger a cascade of highly conserved signaling events to restore ER homeostasis by attenuating de novo protein synthesis, enhancing protein folding capacity, restoring ER lumen reducing environment, and promoting targeted peptide degradation (14). This integrated response has several
major components, including ER stress sensors/ signal transducers and target proteins as shown in Figure 1-1 (18). Three ER stress sensors are located on the ER membrane and include Inositol Requiring 1 (IRE1α), Pancreatic eukaryotic initiation factor 2 kinase-like Endoplasmic Reticulum Kinase (PERK) and Activating Transcription Factor 6 (ATF6). In metazoans, the three ER stress sensors and signal transducers collectively orchestrate cellular signaling in response to ER stress.

Figure 1-1. The Unfolded Protein Response Restores ER Homeostasis. ATF6, PERK and IRE1α monitor conditions in the ER lumen and become activated by BiP release upon accumulation of unfolded proteins. Activation of the three stress sensors and signal transducers leads to upregulation of adaptive protein folding chaperones and concurrent reduction in protein folding load. If ER stress is not resolved, IRE1α can induce apoptosis signaling through MAPK cascades or mitochondrial apoptotic pathways.

IRE1α and PERK are serine/threonine protein kinases specifically localized on the ER membrane. Dimerization motifs extend into the ER lumen where they are masked by ER specific chaperone BiP/Grp78/Hspa5, rendering them inactive under basal conditions (18-20). ATF6 is a member of the bZIP transcription factor family and
is retained on the ER membrane under basal conditions where golgi localization signaling sequences are also masked by BiP (20, 21).

Anytime peptide folding or protein maturation in the ER lumen is compromised, unfolded proteins accumulate in the ER lumen. BiP preferentially binds to exposed hydrophobic regions of unfolded peptides (22) and, thus, can be competitively recruited away from ER stress sensors any time unfolded peptides accumulate (19). Sequestration of BiP causes a release of inhibition on the three stress sensors. ATF6 translocates to the golgi apparatus for further processing, then is shuttled to the nucleus (21, 23). IRE1α and PERK homo-oligomerize and trans-phosphorylate at serine/threonine sites in the cytosolic domains, conferring conformational changes required for activation (24-26). Phosphorylation of IRE1α activates its intrinsic RNase activity, inducing specific removal of a non-classical intronic sequence from the X-box Binding Protein-1 (Xbp1) mRNA, leading to efficient expression of the functional XBP1 protein as a potent nuclear transcription factor (27-29). Active transcription factors XBP1 and ATF6 induce UPR gene expression of heat shock proteins, antioxidant proteins, and ER-associated protein degradation proteins. Meanwhile, activated PERK phosphorylates elongation initiation factor 2 (eIF2α) and inhibits protein synthesis (30). Therefore, a coordinated UPR reduces protein folding load and increases protein folding, reducing, and disposal capacity in order to resolve ER stress and restore ER homeostasis. UPR signaling is critical to normal cellular function (17).
D. IRE1 is Regulated by Multiple Mechanisms

IRE1 is the most ancient ER stress sensor and is conserved from yeast to mammals (31). IRE1 has two isoforms, IRE1α and IRE1β, differing in expression pattern. IRE1α has ubiquitous expression whereas IRE1β is expressed exclusively in the gut (16, 31). Although IRE1α and PERK share strong homology in both luminal and kinase domains (32), IRE1α may be regulated by additional mechanisms. The current dogma of IRE1α regulation is that, like ATF6 and PERK, IRE1α is held in an inactive state by BiP in the ER lumen (19, 33-34). Upon BiP release, IRE1α is allowed to dimerize and oligomerize within the ER membrane, bringing kinase domains within proximity for trans-autophosphorylation (35). Following initial activation by phosphorylation, IRE1α undergoes a conformational change which results in a RNase domain platform being created to which Xbp1 unspliced transcript is recruited (36). The IRE1α RNase splices 26 nucleotides from unspliced Xbp1 transcript to produce a spliced transcript isoform which, because of the frameshift, is efficiently translated on the ribosome (27-28). This unconventional cytosolic splicing event produces a highly active transcription activator (29, 37).

E. ER Stress Signaling Promotes Cell Death

ER stress signaling can induce apoptosis directly through multiple paths and also indirectly by intersection with other signaling pathways. Signal integration between different branches of the UPR and other signaling pathways is highly complex and may be cell type specific. There are many ways by which ER stress can induce apoptosis and there are many nodes where these signaling pathways intersect.
If adaptive UPR signaling does not restore ER homeostasis, cell death signaling pathways can become activated through IRE1\(\alpha\) and PERK pathways (6, 38, 39). During severe ER stress, IRE1\(\alpha\) binds to TRAF2 and activates Mitogen Activated Protein Kinase (MAPK) signaling cascades including ASK1, JNK, and p38 activation and apoptosis (40-41). Mitochondria-initiated apoptosis may also be activated by IRE1\(\alpha\) by direct interaction with BAX and BAK (42). Alternatively, IRE1\(\alpha\) and TRAF2 interactions with JNK may also activate autophagy in order to promote cell survival during ER stress (43).

Unlike IRE1\(\alpha\), PERK has specific kinase activity toward eIF2\(\alpha\), leading to global attenuation of protein translation and reducing protein folding load on the ER (30). At the same time, this inhibition frees ribosomal machinery for translation of eIF2\(\alpha\)-independent transcripts, including ATF4 (44-45). ATF4 regulates transcription of Gadd153/CHOP, a key signal integrating ER stress with mitochondrial-mediated apoptosis (46). CHOP expression can also be enhanced by p38 MAPK, suggesting additional nodes where the PERK and IRE1\(\alpha\) branches of the UPR intersect with MAPK signaling pathways.

F. ER Stress Signaling in Heart; friend or foe?

The specific role of ER stress signaling in heart is not clear. ER stress signaling is activated in response to ischemia (47-48), pressure overload (49), and hypoxia (13, 50-51) but it is unclear whether ER stress signaling is protective or detrimental to heart in these settings. Some studies suggest ER stress induction contributes to myocyte
apoptosis and heart failure (47, 50, 52-53) while others report it is cardioprotective (48, 54).

Protective signaling during the ER stress response activates transcription of molecules to restore the specialized ER luminal environment (redox or calcium status), increase the size of the ER so to increase the peptide folding capacity of the ER, upregulate expression of protein folding chaperones, or enhance protein degradation of misfolded peptides. ATF6 has been identified as a highly protective signaling pathway (48). Overexpression of ATF6 in heart induced expression of two protein folding chaperones, BiP and GRP94, and provided protection against ischemia/reperfusion injury including reduced necrosis and apoptosis. Similarly, XBP1, downstream of IRE1α activation, was found to be protective against hypoxia and myocardial infarction also by inducing BiP (54). BiP can inhibit the apoptotic signal CHOP and reduce apoptosis in cardiomyocytes (55). Therefore ATF6 and IRE1α promote adaptation to ER stress and restoration of homeostasis.

Detrimental effects of ER stress signaling by PERK and IRE1α have also been identified. Angiotensin II, along with tunicamycin and thapsigargin, can induce both adaptive protein folding chaperones and apoptotic signal CHOP, which is downstream of the PERK branch of ER stress signaling (49). ER stress can also induce hypertrophy signals Atrial Natriuretic factor (ANF) and Brain Natriuretic factor (BNF), suggesting that ER stress could underly remodeling of the heart. Cancer patients using Imatinib developed heart failure, which was found to induce ER stress and apoptosis in a mouse model (52). Imatinib induced JNK activation, cytochrome c release from mitochondria leading to cell death, left ventricular dysfunction and heart failure. IRE1α has been
reported to activate JNK, and act in complex with TRAF2 and ASK1 (apoptotic signaling molecules) indicating a highly detrimental outcome from IRE1α signaling in heart (40). Therefore, both PERK and IRE1α downstream signaling can promote apoptosis in cardiac myocytes.

Several investigations have uncovered intersections between inflammation and ER stress signaling (56). In the heart, deletion of CHOP can blunt apoptosis, inflammation, and injury in response to ischemia/reperfusion (57). Activation of p38 MAPK in heart led to increased expression of inflammatory cytokines TNFα and IL6, interstitial fibrosis, abundant extracellular matrix, and impaired heart function whereas inhibition of p38 reversed these negative effects (58). Further investigation into the intersection between inflammation and ER stress signaling will fill an important gap in our understanding of the biology of heart failure.

The specific role of ER stress signaling in heart is not clear. ER stress signaling is activated in response to acute and chronic stresses in heart (13, 48, 49, 51). ATF6 was reported to protect heart against ischemia/reperfusion injury, while PERK and downstream CHOP is apoptotic (46, 57). A role for IRE1α in heart is completely unknown. IRE1α has been reported to induce adaptive signaling through XBP1 or apoptotic signaling by interaction with TRAF2, ASK1 and JNK. Therefore, IRE1α is poised to be a critical decision maker for life or death decisions in cardiomyocytes.

G. The Role of IRE1α in Heart is Unknown

ER stress signaling is emerging to be an important signaling pathway for health and disease. ATF6, PERK, and IRE1α are three ER stress sensors and signal
transducers that monitor the status of protein folding in the lumen of the ER and are activated when ER homeostasis is disrupted. This Unfolded Protein Response activates a transcriptional program to re-establish efficient protein folding homeostasis in the ER. The role of UPR signaling in heart is poorly understood. IRE1α has been shown to promote either apoptotic signaling activities through JNK, TRAF2 (59) or adaptive signaling through XBP1 (27, 29). ATF6 has been shown to maintain normal heart physiology and also protect against ischemia/reperfusion injury (48). PERK signaling, on the other hand, promotes apoptotic signaling pathways (59). The role of IRE1α in heart is completely unknown. Advancing the understanding of IRE1α in heart will fill an important gap in knowledge of heart biology. Additional characterization of ER stress signaling in heart may provide important insight into underlying disease mechanisms and also novel therapeutic strategies.

In order to investigate the specific contribution if IRE1α in heart, we generated an animal model with heart specific, tamoxifen inducible IRE1α overexpression. IRE1α overexpression did not lead to any detrimental phenotype at baseline conditions. Under stress, however, IRE1α was cardioprotective, preserving heart function following pressure-overload. ER stress signaling was preserved, and fetal gene program was inhibited in IRE1α mice, suggesting intersection between ER stress and fetal gene program regulation. Inflammatory cytokines TNFα and IL-6 mRNA expression were also blunted after pressure overload, suggesting IRE1α mediated regulation of inflammatory cytokines in heart. Thus, IRE1α may have protective activities specific to heart. In vitro characterization studies revealed that IRE1α has adaptive and transient UPR signaling activity in cardiomyocytes, suggesting that heart possesses cardiomyocyte-specific
regulatory mechanisms that remain to be characterized. Further, we identified signal integration between the UPR and inflammatory signaling pathways. This highlights the potential for heart-specific IRE1α activities that are achieved by integration between multiple pathways.
CHAPTER 2

Materials and Methods

A. Animal Models and Surgical Procedures

The investigation conforms with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1985). All procedures were performed in accordance with the University of California, Los Angeles animal welfare guidelines.

IRE1α was cloned into a vector for generation of transgenic animals with cre-regulated expression of the transgene of interest (60). Transgenic animals were generated in C57/Bl6 background through collaboration with the UCLA Molecular Genetics Technology Center. Founder animals were identified by PCR with transgene specific primers.

Animals with heart-specific, inducible IRE1α overexpression were generated by crossing transgenic founder animals with previously established αMHC-Mer-Cre-Mer (MCM) transgenic mice (61, 62). IRE1α transgene overexpression was induced by intraperitoneal injection of Tamoxifen Citrate Salt (Sigma) 20mg / kg body weight/ day for five days (62). Wild-type and floxed single transgenic littermate animals treated with tamoxifen or double transgenic flox-GFP/ CRE animals treated with vehicle were also used as controls. Both male and female mice age 12-16 weeks were included in this study.
Transverse Aortic Constriction (TAC) was performed as previously described with modifications (63). Mice were anesthetized with ketamine (80mg/kg) / xylazine (20mg/kg) by i.p. injection. Respiration was provided by mechanical ventilation with 95% O2 (tidal volume 0.5 mL, 130 breaths per minute). Left parasternal thoracotomy was performed to access the transverse aorta, which was tied with 5-0 nylon suture on a 27 gauge needle. The needle was removed, leaving in place a 65-70% constriction of the aortic lumen. Constriction of the aorta was confirmed by measuring differential blood flow through the right and left carotid arteries one week after surgery.

Animals were continuously anesthetized with 1.5% isoflurane and 95% oxygen. VisualSonics Vevo 770 and Vevo 2100 imaging systems and 30mHz scanhead (Toronto, Ontario, Canada) was used to collect short and long axis B-Mode and M-Mode views. Reported values refer to short axis measurements and calculations.

B. Histology

Hearts were perfused and fixed in 10% formalin prior to embedding in paraffin. All short axis sections were prepared from mid-ventricle. Sections of 4 µm heart were deparaffinized and rehydrated prior to staining by hematoxylin and eosin (H&E) or Masson trichrome and Verhoeff's Van Gieson. Stained tissue sections were recorded as digital images by Aperio XT whole slide scanning system and snapshot images were taken using the ImageScope software.
C. Cell culture

293 cells were maintained in DMEM supplemented with 10% RBS and 1% pen/strep. Lipofectamine reagent (Life Technologies) was used according to the manufacturer’s protocol to achieve overexpression of the flox-GFP-IRE1α construct. INS-1 cells were cultured in RPMI1640 according to published methods (64). Neonatal Rat Ventricular Myocytes (NRVM) were harvested from 1-3 day old Sprague-Dawley rat pups as described previously (65) and cultured in serum-free DMEM supplemented with 1% pen/strep and ITS. NRVM were infected with adenovirus for IRE1α tagged with –Myc and incubated for two days before additional treatment with 5g/mL TM for 4 hours, 100 nM TG for 4 hours or 10μM H2O2 for 30 minutes. Experiments with prolonged IRE1α expression were incubated for five days before RNA or protein analysis.

D. Western Blot

Cells were harvested for protein analysis with standard lysis buffer containing 1% Triton-X 100, 1mM β-glycerophosphate, 2.5mM Na4P2O7, 20mM NaF, 1mM Na3VO4, 1mM PMSF and protease inhibitor cocktail (Roche). Proteins were boiled for 5 minutes in LDS loading buffer containing 0.1% β-mercaptoethanol and separated on a 4-12% Bis-Tris SDS-PAGE (Life Technologies). Specific proteins were detected with antibodies directed against p-IRE1α (Novus Bio), IRE1α, Actin, (Santa Cruz Biotechnology), BiP/Grp78 (Stressgen), p-p38, p38, p-JNK, JNK, p-IEF2α, eIF2α, GFP, and CHOP (Cell Signaling Technologies).
E. RNA and RT-PCR Analysis

Total RNA was isolated from heart or cells with TRIzol (Life Technologies). For animal studies, cDNA was prepared using iScript Reverse Transcription Supermix and amplified with SsoFast EvaGreen Supermix on a CVX96 thermal cycler (all Bio-Rad). For cell studies, cDNA was prepared using Superscript II (Invitrogen) and amplified with SYBR green supermix on a MyIQ system (Bio-Rad). Primer sequences are shown in Table 1.

Table 1. Primers used for RT-PCR experiments

<table>
<thead>
<tr>
<th>Primers for mouse</th>
<th>FORWARD</th>
<th>REVERSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xbp1 Total</td>
<td>TGGACTCTGACACTGTTGCC</td>
<td>CTCTGGGGAAGGACATTTGA</td>
</tr>
<tr>
<td>sXbp1</td>
<td>CAGTGGTCCGCCACCGTCCATC</td>
<td>TGCCGCGCCAGCCCTTTCTA</td>
</tr>
<tr>
<td>Xbp1 splicing</td>
<td>GTTCCAGAGGTGGAGGCCA</td>
<td>CATGACAGGGTCCAACCTTGTC</td>
</tr>
<tr>
<td>CHOP</td>
<td>TATCTCATCCCCAGGAAACG</td>
<td>GGGCACTGACCACCTGTTT</td>
</tr>
<tr>
<td>BiP</td>
<td>GAGGCTGTAGCCTATGGTGC</td>
<td>TTTGTAGGGGTCGTCACCC</td>
</tr>
<tr>
<td>Rps26</td>
<td>GCCTCTTTACATGGGCTTTT</td>
<td>GCCATCCATAGCAAGGTTGT</td>
</tr>
<tr>
<td>Primers for mouse/ rat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRE1α</td>
<td>ACGGTGGAACATCTTTTCCA</td>
<td>TGGGATCATAGCAATCAT</td>
</tr>
<tr>
<td>IRE1α MYC</td>
<td>TCAGGAGACGCTGGGTCCAT</td>
<td>AGAGATCAGTCTGTCTGCGCT</td>
</tr>
<tr>
<td>ANF</td>
<td>CTGATGGAATTTCAAGACCTGCT</td>
<td>CTCTGGGCTCAAATCTGGTC</td>
</tr>
<tr>
<td>βMHC</td>
<td>CTCAAATGGGAAGGATCACA</td>
<td>CCTCGAGAAACTCCGGAGG</td>
</tr>
<tr>
<td>TNFα</td>
<td>CTCTTCAAGGGAAAGGCTG</td>
<td>TGGAGACTCTCCTCCAGTA</td>
</tr>
<tr>
<td>GAPDH</td>
<td>TCCTGCAACCAAACCTCGTAG</td>
<td>GATGACCTGCCCACAGCCTTG</td>
</tr>
<tr>
<td>Primers for rat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RatXBP1</td>
<td>CTCAGAGGCCAGTAGTCCAAG</td>
<td>ACAGGGTCCAACCTTGTCAG</td>
</tr>
<tr>
<td>sXBP1</td>
<td>TCTGCTGAGTCGGCAGCAGG</td>
<td>CTCTAGACTAGGGTTGG</td>
</tr>
<tr>
<td>uXBP1</td>
<td>CAGACTACCTGCGCTTTTG</td>
<td>CTTGTGGAGCCTAGCTTG</td>
</tr>
<tr>
<td>CHOP</td>
<td>CCTTCACTAATGCTGACCTGC</td>
<td>CGCTCGTCTTTCTCAGCAAG</td>
</tr>
<tr>
<td>BIP</td>
<td>TTCCGCTCTACCATGAAACC</td>
<td>CTTATTGTTACGGTGGGCT</td>
</tr>
</tbody>
</table>
F. IRE1α RNase Activity Assay

IRE1α RNase activity toward Xbp1 mRNA was monitored by semiquantitative PCR. Both unspliced and spliced Xbp1 mRNA was amplified with primers targeting the region surrounding the IRE1α splicing site (Forward 5'GTTCCAGAGGTGGAGCCA3', Reverse 5'CATGACAGGGTCCAACTTGCC3'). Products were amplified with the cycling protocol of 95°C for 30 followed by 35 cycles of 95°C for 0:30, 60°C for 0:30 and 72°C for 0:25 followed by 72°C for 10:00. PCR products were separated on 4% agarose gel.

G. Statistical Analysis

Data are presented as mean ± 1 standard deviation. Means of two groups were compared by two-tailed Student t-test. Means of more than two groups were compared by ANOVA. Differences between groups were considered statistically significant when p<0.05. Significant differences compared to control genotypes are indicated by # and significant differences compared to baseline within the same genotype group are indicated by *.
IRE1α Protects Myocardium from Heart Failure Induced by Pressure Overload

A. Generation of IRE1α Transgenic Animals

In order to elucidate a specific role for IRE1α in heart, we generated an animal model with IRE1α overexpression. Because IRE1α overexpression has been reported to be detrimental to several cell types, we employed a strategy where IRE1α expression would be both inducible and restricted to the heart (Figure 3-1A). To that end, cDNA encoding IRE1α tagged with Myc was inserted following a floxed GFP cassette so that, in the absence of cre, the ubiquitous promoter drives GFP expression (66). In the presence of cre, however, the floxed GFP cassette (which contains a stop codon) is removed, allowing IRE1α-Myc expression. Efficient cre-dependent IRE1α protein overexpression was first achieved in vitro, confirming the strategy (Figure 3-1B-C). Flox-GFP-IRE1α-Myc single transgenic animals were identified by PCR and western blot, where GFP protein expression was confirmed (Figure 3-1D). Single transgenic founder animals were then crossed with αMHC-MCM animals where cre expression is restricted to heart and activity is tamoxifen dependent (61, 62, 67). Four genotype groups; wild type, αMHC-MCM, flox-GFP-IRE1α and αMHC-MCM/flox-GFP-IRE1α were represented in offspring litters in ratios expected from the breeding pair (data not shown). Double transgenic flox-GFP-IRE1α-Myc/αMHC-MCM animals treated with tamoxifen had significant induction of IRE1α mRNA expression (p=0.01) (Figure 3-1E-F).
Figure 3-1. Transgenic Strategy of Tamoxifen Regulated IRE1α Overexpression. A. Schematic of transgenic strategy where IRE1α-Myc follows constitutive GFP expression in the absence of Cre recombinase. Crossing with transgenic
animals positive for heart specific (αMHC promoter) tamoxifen-mediated cre, shown as modified estrogen receptor (mER) CRE mER produces double transgenic animals that, when provided with tamoxifen, have heart specific overexpression of IRE1α-Myc. B. Validation of IRE1α conditional overexpression strategy in vitro. Brightfield (top) and fluorescent images (bottom) of 293 cells expressing flox-GFP-Ire1α or Cre + Flox-GFP-IRE1α. Note that cells with IRE1α expression are irregular in shape and detached from the culture dish. C. Western blot from cells treated in B where IRE1α is overexpressed and activated in the presence of Cre recombinase. D. Ubiquitous GFP protein expression in all tissues tested in flox-GFP-IRE1α single transgenic animals. E. IRE1α mRNA from hearts of wildtype or double transgenic animals treated with vehicle or tamoxifen was measured by quantitative RT-PCR. F. Exogenous IRE1α-Myc mRNA amplified by PCR. G. IRE1α does not cause adverse phenotype in the absence of stress. Gross outward health was monitored by weekly measurement of body weight over the course of four weeks following treatment as indicated.

B. IRE1α Does Not Induce Detrimental Phenotype in Heart in the Absence of Stress

No obvious phenotype was observed in adult IRE1α animals four weeks after transgene induction (Figure 3-2). No adverse heart functional or structural changes were observed, though LIVDd was slightly increased compared to control animals (wildtype and single transgenic littermates) (Figure 3-2A-C). Tissue structure and organization in histological sections was also indistinguishable between control and IRE1α transgenic animals (Figure 3-2D). Heart weight/body weight ratio was also indistinguishable between control and IRE1α transgenic animals (Figure 3-2E). Together, these observations indicate that IRE1α did not lead to any detrimental phenotype upon overexpression in adult heart.

IRE1α overexpression can induce activation and downstream UPR signaling in the absence of ER stress in vitro (68). In order to determine if this was also the case in
Figure 3-2. IRE1α Does Not Induce Phenotype in Heart in the Absence of Stress. A. Representative M-Mode images viewing the short axis of the left ventricle of control and IRE1α animals. B. Left ventricular function, measured by ejection fraction and fractional shortening, were calculated from short axis M-mode images collected weekly for four weeks following tamoxifen treatment. C. Left ventricular internal diameter (LVID) and Left ventricular posterior wall (LVPW) was measured during diastole and systole from short axis M-Mode images. All dimensions are reported in millimeters (mm). Error bars represent standard deviation. Comparisons were found to be significant where indicated (# denotes comparison to control genotype and * indicates comparison to same genotype group baseline treatment where p<0.05). D. Long axis (four chamber) sections collected from control or IRE1α hearts four weeks after treatment as indicated and stained with hematoxylin and eosin. E. Heart weight to body weight (HW/BW) ratio was calculated from hearts collected four weeks after treatment as indicated. Both male and female animals were included in this data. F-G. RT-PCR was used to measure UPR (F) and fetal gene program and inflammatory signaling (G) after 4 weeks of IRE1α overexpression in heart. Expression is indicated as arbitrary units (A.U.) and was calibrated against Rps26S.

heart, we measured mRNA of sXbp1, Bip, and CHOP (Figure 3-2F). IRE1α overexpression led to slight increases in sXbp1 and Bip expression though neither target reached statistical significance (p=0.33 and p=0.1, respectively). Apoptotic factor CHOP, on the other hand, was slightly decreased (p=0.61). The expression of ANF...
(p=0.42), β-MHC (p=0.27), and TNFα (p=0.18) were all unchanged following IRE1α overexpression, supporting the observation that IRE1α did not cause any detrimental phenotype to heart (Figure 3-2G).

C. IRE1α Preserves Heart Function After Pressure Overload

UPR preconditioning has been shown to protect against acute tissue injuries (69). Because no detrimental phenotype was observed following IRE1α transgene induction, and adaptive UPR signaling was slightly increased, we hypothesized that IRE1α overexpression could protect against stress-induced injury in a similar fashion. In order to test this hypothesis, control and IRE1α transgenic animals were treated with pressure-overload by transverse-aortic constriction (TAC) (63, 70). IRE1α preserved heart function after TAC (Figure 3-3A). Pressure overload did not cause a detrimental change to heart function or structure in IRE1α animals (Figure 3-3B-C). After four weeks, ejection fraction and fractional shortening were both significantly higher in IRE1α animals than in control animals (Figure 3-3B) and LVID at diastole and systole were unchanged over the course of the study (Figure 3-3C). TAC caused hypertrophy in both IRE1α and control animals (Figure 3-3D-E).

Because IRE1α preserved heart function, we hypothesized that protective UPR signaling would be enhanced, and detrimental signaling would be dampened in response to TAC. We used RT-PCR to measure UPR, fetal gene program, and inflammatory signaling and western blot to measure stress signaling activation after TAC. IRE1α preserved adaptive UPR signaling and inhibited markers of the fetal gene program, inflammation, and heart failure signaling. sXbp1 and BiP mRNA were
increased in IRE1α animals after TAC (Figure 3-4A-B). CHOP, which was slightly lower in IRE1α animals at baseline, increased four weeks after TAC (Figure 3-4B). ER stress marker ATF4, which is a transcription factor selectively translated following eIF2α-mediated translational inhibition (44), was significantly lower in IRE1α animal hearts at baseline, but increased in IRE1α animals in response to TAC (p=0.04). BiP protein expression was increased at baseline and after TAC (Figure 3-4C). From these data,
we concluded that IRE1α overexpression enhanced adaptive UPR signaling and preserving heart function in response to TAC.

In addition to enhancing adaptive UPR signaling, IRE1α expression blunted the molecular shift to the fetal gene program and activation of stress signaling after TAC. Both ANF and βMHC mRNA expression were unchanged in response to TAC (Figure 3-4D). Moreover, stress signaling was not activated. Activated p38 was not increased in IRE1α hearts four weeks after TAC (Figure 3-4E).

ER stress signaling by IRE1α and TRAF2 has been reported to activate inflammatory cytokines (71). We measured inflammatory cytokine expression by RT-PCR and fibrotic dispositions by EVG/Trichrome staining of heart tissues. In animals with IRE1α overexpression, both TNFα and IL-6 were significantly reduced after TAC compared to wildtype (p=0.03) and compared to baseline (p=0.001) (Figure 3-4F). IRE1α animals had less myocardial fibrosis than control animals (Figure 3-4G).
Figure 3-4. Molecular Profile of IRE1α Mice After Four Weeks of TAC. A. Quantitative RT-PCR of sXbp1 from animals treated with tamoxifen or tamoxifen and four weeks TAC. Each bar represents mRNA expression from a single animal. B. Quantitative RT-PCR measuring mRNA expression of ER stress signaling four weeks after tamoxifen or tamoxifen and TAC treatment. C. Western blot measuring protein expression of UPR signaling in hearts from genotypes and treatment groups as indicated. D. Quantitative RT-PCR as in B, measuring mRNA expression of fetal gene program induction after tamoxifen or tamoxifen and TAC. E. Western blot measuring p38 MAPK activation in hearts from control and IRE1α groups at baseline and four weeks after TAC as indicated. F. RT-PCR measuring inhibition of inflammatory cytokine TNF and IL-6 after TAC. G. Trichrome/ EVG staining for fibrosis in short axis sections from mid-ventricle of heart after four weeks TAC. In all RT-PCR experiments, # denotes significant difference between control and IRE1α animals within the treatment group and * denotes significant difference within the same genotype between No TAC and TAC treatments.
CHAPTER 4

IRE1α Induces Adaptive and Transient Unfolded Protein Response Signaling in Cardiac Myocytes

A. IRE1α Induces Stress Signaling in Various Cell Types

IRE1α has been reported to induce cell death in CHO, COS, and 293 cells (31). In order to establish a robust system for investigation of IRE1α signaling in heart in vitro, IRE1α was first expressed in 293 cells or INS-1 cells. After 2 days, both 293 and INS-1 cells with overexpressed IRE1α were irregular in shape, rounded up, and detached from the culture dishes (Figure 3-1A, 4-1A).

In order to investigate UPR activation following IRE1α overexpression in INS-1 cells, RNA and protein were collected from cells two days after treatment. IRE1α kinase and RNase were both found to be activated following IRE1α overexpression. Spliced Xbp1 mRNA was amplified by PCR in samples with IRE1α overexpression in a dose-dependent fashion (Figure 4-1B). Phospho-eIF2α was increased with IRE1α, indicating parallel activation of PERK (Figure 4-1C). BiP protein was also increased following IRE1α expression.

Besides adaptive UPR signaling, IRE1α has been shown to activate MAPK signaling, including p38 and JNK (40). Therefore, we investigated downstream MAPK signaling by IRE1α in INS-1 cells (Figure 4-1D). IRE1α overexpression led to a dose-dependent increase in p-JNK, but not p-p38. Therefore, we concluded that IRE1α
overexpression in INS-1 cells led to activation of all three branches of UPR as well as the detrimental p-JNK signaling pathways independent of true ER stress.

Figure 4-1. IRE1α Activates UPR and Stress Signaling in INS-1 Cells. A. Brightfield images of 293 (top) and INS-1 (lower) cells two days after treatment as indicated. B. Schematic of IRE1α RNase activity assay and amplification of sXBP-1 and uXBP-1 by PCR with IRE1α or TM treatment. C. Western blot measuring activation of UPR in INS-1 cells IRE1α overexpression. D. As in C, but monitoring MAPK stress signaling.
Figure 4-2. NRVMs Are Sensitive to ER Stress. A. RT-PCR to measure IRE1-KA overexpression after 2 days in NRVMs and UPR signaling members CHOP and Bip. B. RT-PCR to measure UPR induction after TM-mediated ER stress in NRVMs. In all RT-PCR experiments, # denotes significant difference between control and IRE1α animals within the treatment group and * denotes significant difference within the same genotype between No TAC and TAC treatments.

B. IRE1α Induces Adaptive and Transient UPR Signaling in Cardiac Myocytes

In order to uncover the molecular mechanism underlying cardioprotection by IRE1α in vivo, we further investigated IRE1α-mediated UPR signaling in NRVMs. We first established whether or not virus treatment would activate endogenous UPR signaling. Treatment with kinase dead IRE1α adenovirus did not activate UPR signaling (Figure 4-2A). Neither BiP (p=0.64) nor Chop (p=0.53) expression were induced in response to IRE1α overexpression. Treatment with true ER stress by Tunicamycin,
however, activated UPR as indicated by RT-PCR measurements of increased BiP (p=0.004) and CHOP (p=0.002) expression (Figure 4-2B).

In order to next investigate UPR signaling by IRE1α, IRE1α-Myc was overexpressed by adenovirus and gross cell morphology, activation, activity, and downstream signaling were assessed. After two days, NRVM with IRE1α overexpression were indistinguishable from untreated controls (Figure 4-3A) whereas 293 and INS-1 cells with the same treatment were highly irregular in shape and detached from the culture dish (Figure 3-1A and Figure 4-1A). IRE1α-Myc protein expression and kinase and RNase activation in NRVM were confirmed by western blot and PCR, respectively (Figure 4-3B-C). Adaptive protein chaperone Bip was significantly upregulated following IRE1α overexpression (p=0.03). Apoptotic molecule Chop, on the other hand, was not (p=0.09). Expression of TNFα was reduced with IRE1α expression (p=0.03), recapitulating the observations of blunted inflammatory cytokine expression in vivo. We did not observe activation of either adaptive (Bip) or apoptotic (Chop) downstream UPR signaling following IRE1α-KA expression, further indicating that the adaptive signaling we observed downstream of IRE1α expression was specific to IRE1α and not an artifact of viral infection (Figure 4-2A). Additionally, we confirmed that true ER stress elicited an UPR in cardiac myocytes (Figure 4-2B).

We next sought to uncover the contribution of chronic IRE1α overexpression in NRVMs. Prolonged p-IRE1α activation (5 days) did not cause sustained RNase or downstream UPR gene expression (Figure 4-3E-G). Bip expression was not significantly greater in IRE1α-expressing cells (p=0.25). Even after sustained IRE1α expression, CHOP mRNA expression was not induced (p=0.76) compared to control.
This result suggested that IRE1α kinase activation was sustained, but RNase activity and UPR signaling was transient in NRVMs in the absence of ER stress.

Figure 4-3. IRE1α Induces Adaptive UPR Signaling in NRVM. A. Representative images of NRVMs viewed at 20X magnification two days after treatment. B. Western blot of IRE1α expression and kinase activation (p-IRE1α Ser724). C. Xbp1 PCR splicing assay to assess IRE1α RNase activation in NRVMs. D. RT-PCR to measure IRE1α expression and adaptive and apoptotic downstream UPR signaling. Significant differences (p<0.05) compared to control are indicated by #. E. NRVMs were treated with Adv-IRE1α-Myc, nothing, or Adv-IRE1α-KA-Myc for five days before harvesting. Western blot of IRE1α protein expression and sustained activation by phosphorylation. F. Xbp1 splicing PCR assay. NRVMs were treated as in A and total RNA was collected after five days. G. RT-PCR measuring UPR induction after five days of IRE1α overexpression in NRVMs. H. IRE1α does not induce stress signaling or full UPR in the absence of stress. Western blot of total protein from NRVMs treated as indicated. TM, tunicamycin 5μg/mL 4 hours, TG, thapsigargin 100nM 4 hours, H2O2, 10 μM 30 minutes.
In order to understand if IRE1α could protect against specific ER stress insults, we treated cells with various forms of ER stress in the presence of absence of IRE1α expression (Figure 4-3H). We measured MAPK signaling activation by western blot. IRE1α did not activate any stress signaling on its own. Cells with IRE1α had reduced activation of JNK when challenged with ER stress, whereas p-p38 activation and CHOP were not markedly reduced.
CHAPTER 5

Discussion

The Unfolded Protein Response is an important cellular response to various insults and is activated in human heart failure (49), ischemic heart disease (47) and heart failure in response to the cancer drug imatinib (52). Recent experimental models have recapitulated these observations (48-49) but it is unclear whether ER stress signaling contributes to protective (48, 54-55) or pathological signaling to heart (50, 52, 57, 73).

UPR signaling can be cardioprotective (48) or deleterious (55, 57). An animal model with constitutive activation of ATF6 had strong protection against a model of ischemia reperfusion. CHOP, on the other hand, is a strong inducer of apoptosis in cardiac myocytes as CHOP deletion protected mouse hearts against apoptosis in ischemia/reperfusion injury (57). Chop deletion in NRVMs was also protective against apoptosis in the setting of ER stress by proteasome inhibition (55). IRE1α is capable of both protective and apoptotic signaling through XBP1 or TRAF2 and MAPK signaling cascades, respectively. IRE1α preserved heart function and adaptive ER stress signaling in response to pressure overload insult. Here we report the molecular events in vitro that may underlie the protective phenotype in vivo.

We sought to uncover a role for IRE1α in whole heart and so generated a mouse model with heart-specific, temporally regulated IRE1α overexpression. Like others, we observed that IRE1α overexpression in vitro caused cell death in several cell lines (31).
In whole heart, IRE1α overexpression did not lead to change in heart structure or function and induced slight upregulation in adaptive molecule BiP. This led us to hypothesize that, in cardiac myocytes, IRE1α protective signaling may be preferentially activated in the absence of true ER stress and that IRE1α may prevent cardiac injury.

Preconditioning has been shown to improve outcomes in response to acute injury in kidney (74), eye (75), neurons (76), and heart (48). Here, we demonstrate that IRE1α protects the heart against pressure-overload injury. We observed that IRE1α mice had preserved heart function and myocardial structure in response to pressure-overload. Fibrosis and inflammatory signaling are known to be significant contributors to left ventricular remodeling. We tested whether expression levels of inflammatory cytokines were reduced. Indeed, both TNFα and IL-6 mRNA expression was strongly reduced in IRE1α animals following TAC. TNFα signaling is induced by p38 in heart (58). We were unable to detect an increase in p-p38 in IRE1α hearts after TAC, suggesting this signaling pathway is not preferentially activated downstream of IRE1α in our model. Thus, our results reveal a new intersection between IRE1α and inflammatory signaling pathways. Integration between ER, inflammation, and MAPK signaling networks is not fully characterized.

In order to uncover the molecular mechanism of IRE1α-mediated cardioprotection, we investigated IRE1α signaling in NRVMs. IRE1α specifically induced downstream adaptive UPR signaling, including activation of Xbp1 splicing and Bip mRNA expression. These observations were reconstituted in diverse cell types, including 293 and INS-1. On the other hand, apoptotic signaling pathways were never induced by IRE1α, even though NRVMs were sensitive to ER stress. Even sustained
IRE1α kinase activation did not lead to morphological abnormality (data not shown) or induction of apoptotic Chop.

The data presented here suggest a protective role for IRE1α. In heart, IRE1α was cardioprotective against a pressure overload. It is unknown if IRE1α will provide a similar protective role in acute injuries, such as ischemia/reperfusion or myocardial infarction. Moreover, this study highlights the need for greater understanding of integration between UPR, MAPK, and inflammatory signaling pathways. Also, the data presented herein suggests the presence of cardiac specific IRE1α regulatory mechanisms that are yet to be characterized.
CHAPTER 6

Future Directions

ER stress is gaining attention as an important factor underlying many diseases, including heart diseases (10, 78). Understanding the biology of ER stress signaling may identify novel therapeutic targets (59). ER stress signaling has been described as protective (48, 54, 55) or detrimental to heart (50, 52, 57, 73). Stress signaling from the Endoplasmic Reticulum is a critical component of cellular homeostasis.

Unfolded Protein Response signaling by IRE1α is highly conserved from yeast to mammals and can have drastic protective or apoptotic effects. IRE1α overexpression was detrimental to many cell types, but not NRVM. IRE1α-mediated cardioprotection to chronic pressure-overload suggests that signaling activities and regulation specific to cardiac myocytes may exist and are not yet identified.

Additional characterization of IRE1α-mediated UPR signaling in cardiomyocytes is needed in order to advance the understanding of ER biology. Investigations of highest priority are to identify heart-specific IRE1α interaction partners. Because endogenous IRE1α expression is very low and not measurable by standard western blot, an approach where IRE1α is overexpressed in cardiac myocytes in vitro would be required. IRE1α-Myc would be overexpressed in vitro and IRE1α-Myc protein complex pulled out by -Myc antibody-directed immunoprecipitation. Alternatively, this experiment could be conducted using adult cardiac myocytes from animals where IRE1α is overexpressed, assuming that the process by which the myocytes are collected from the heart does not
activate ER stress signaling pathways. Proteins from the IRE1α-Myc complex would then be separated by electrophoresis and specific proteins would be identified by mass spectrometry. This approach has already been accomplished by members of our laboratory to identify IRE1α interacting partners in 293 cells, providing the reagents, technical strategy, and also the dataset to compare IRE1α interacting partners in 293 cells versus cardiac myocytes. This investigation would be critical for identifying the molecular signaling that contributes the heart-specific role for IRE1α.

The current investigation identified a new, protective role for IRE1α in heart. Unlike in 293 and INS-1 cells, NRVMs did not have detrimental phenotype following IRE1α overexpression. In search of the molecular mechanisms underlying this observation, we discovered that during extended overexpression, IRE1α remained activated by phosphorylation independent of the RNase. Even though abundant phospho-IRE1α could be detected, no spliced Xbp1 could be observed, suggesting that IRE1α kinase and RNase activities could be uncoupled. Alternatively, this result could be indicative of an unknown cytosolic regulator of IRE1α RNase. The experiment described above to characterize IRE1α interacting partners may provide insight into the cytosolic regulation of IRE1α RNase activity.

It is also possible that IRE1α has activity toward mRNA targets in addition to Xbp1 in NRVMs. Future investigations into IRE1α regulation would test these hypotheses. It is likely that no single mechanism fully explains the diverse cellular behaviors that are observed.
IRE1α overexpression in vitro was reported to cause cell death in several cell lines (reported here and reference (31)). We sought to uncover a role for IRE1α in whole heart. In pursuit of this, we generated a mouse model with heart-specific, temporally regulated IRE1α overexpression. We did not observe any adverse phenotype following IRE1α overexpression in heart in adult mice. This led us to hypothesize that IRE1α protective signaling may be preferentially activated in the absence of true ER stress in heart. We found that downstream BiP expression was slightly higher in IRE1α animals, and thus may act as preconditioning against cardiac injury.

Preconditioning, or priming, specific cell signaling pathways has been shown to be cardioprotective against ischemia/reperfusion injury in mouse models (79). Preconditioning by activating UPR pathways has been shown to protect neurons, kidney, and retina against acute injury (74-76). We found that IRE1α overexpression provided protection against a chronic pressure overload stress model in a manner similar to preconditioning. Future studies into cardioprotection by IRE1α will address the question of whether this protective effect is also observed in an acute injury such as ischemia/ reperfusion. Data reported here indicates that even in the setting of acute ER stress in vitro, IRE1α did not induce detrimental signaling; suggesting that the cardioprotected phenotype observed following chronic pressure overload may also be seen in response to acute injury.

IRE1α is capable of both protective and apoptotic signaling, either through XBP1 or TRAF2 and MAPK signaling cascades, respectively. XBP1, with ATF6, upregulates BiP in response to ER stress thereby providing adaptation to ER stress and protection
from CHOP mediated cell death (55). In contrast, IRE1α interactions with TRAF2 allow complex formation with JNK in vitro (40). Roles for TRAF2 and JNK in the heart have been interrogated (independent of IRE1α), but it is unclear how the volatile and diverse activities of JNK contribute to IRE1α downstream signaling. It is also unknown if the reported interactions of various molecules with IRE1α, including JNK, are recapitulated in heart in vitro or in vivo.

Although the molecular mechanisms of IRE1α activation have been known for many years, many questions remain. Endogenous IRE1α protein expression is reported to be very low, and is not detected by standard western blot (19). Because of this, characterization of the molecular identity and interaction partners of IRE1α requires model systems where IRE1α is overexpressed. IRE1α overexpression can drive activation in the absence of ER stress, thus potentially forcing interactions in vitro which do not occur in vivo.

Additional cytosolic activation states have been reported, but it is unknown if these activities occur in vivo. IRE1α may possess additional RNase activity directed toward a library of mRNAs for degradation (80). It has been proposed that this mRNA degradation is part of the adaptive ER stress response and represents an additional mechanism by which IRE1α relieves ER stress by reducing protein folding load. Alternatively, this could also be part of the cell death program where self-destructive activities disrupt cell homeostasis so that apoptosis pathways will become activated. It is unknown if these pathways exist. These conflicting hypotheses are yet to be investigated.
Molecular characterization of IRE1α activation has been limited by inherent properties of IRE1α. Unique properties of IRE1α, such as having an N-terminus within the highly specialized ER lumen environment, a transmembrane domain, and an RNase domain within the cytosol creates a technical challenge that, so far, has prevented accurate crystallization. Partial structures have been reported with the cytosolic domain in complex with small molecules but arrive at conflicting conclusions due to the different IRE1α partial peptides that are used for crystallization. This underscores the structural complexity of this conserved stress sensor. Until full-length, native IRE1α is characterized, the true molecular nature of IRE1α activation and regulation will not be fully understood. Further, a full-length IRE1α crystal structure would allow investigation into the interaction between BiP and IRE1α within the ER lumen and provide additional information about IRE1α activation and inactivation in response to ER stress.

Currently, experimental limitations prevent true understanding of ER stress within the ER lumen. Experimental manipulations to investigate properties of the ER lumen inherently disturb the highly specialized environment and, thus, present a fundamental challenge. New imaging and calcium sensor tools can be used to visualize properties of the ER lumen, but because they require overexpression of recombinant fluorescent proteins, do not actually portray a physiologic state. Therefore, innovative research techniques and strategies will be required to advance understanding of true ER biology.

Fibrosis and inflammatory signaling is known to be a significant contributor to left ventricular remodeling. Because we saw preserved function in IRE1α animals, we tested whether inflammatory cytokine expression was reduced. Indeed, both TNFα and IL-6 mRNA expression was strongly reduced in IRE1α animals following TAC compared
to controls or IRE1α animals at baseline. P38 has been reported to induce TNFα signaling in heart. We were unable to detect any increase in p-p38 in IRE1α hearts after TAC, suggesting this signaling pathway may not be activated downstream of IRE1α in our model. Further investigations into signal integration between UPR and inflammatory pathways will identify additional intersections and regulatory mechanisms.

Although countless investigations have characterized the highly conserved UPR signaling pathway, many questions remain. Molecular, cellular, and integrative biology of the ER contributes to health and disease. Advancing the understanding of UPR signaling from the ER will likely drive development of new therapeutic strategies for new drugs to treat many diseases, including heart failure.
CHAPTER 7

References

