Analysis of formaldehyde fluxes above a Ponderosa Pine forest measured via eddy-covariance

Citation:

UCAR/NCAR/UCP Authors:
- Karl, T., Atmospheric Chemistry Division (ACD)
- Kim, S., Atmospheric Chemistry Division (ACD)
- Turnipseed, A.A., Atmospheric Chemistry Division (ACD)
- Mauldin, R.L., Atmospheric Chemistry Division (ACD)
- Cantrell, C.A., Atmospheric Chemistry Division (ACD)
- Flocke, F.M., Atmospheric Chemistry Division (ACD)
- Guenther, A.B., Atmospheric Chemistry Division (ACD)

Other Authors:
- Keutsch, F.
- Digangi, J.
- Henry, S.
- Nakashima, Y.
- Mak, J.
- Hansel, A.
- Kajii, Y.

UCAR Affiliations: Atmospheric Chemistry Division (ACD)

Abstract:
The OH radical is the most important tropospheric oxidant. An important question surrounds missing OH sink terms observed in biogenically influenced regions, which have been proposed to be caused by unmeasured biogenic volatile organic compounds (BVOCs). Formaldehyde (HCHO) is formed during oxidation of virtually all BVOCs. Observation of the HCHO eflux from the forest provides a direct measure of HCHO sources and serves as constraint on the in-canopy oxidation of unmeasured, reactive BVOCs. We present the first reported measurements of HCHO flux via eddy covariance observed with the Madison Fiber Laser-Induced Fluorescence instrument in a rural forest northwest of Colorado Springs, CO. Upward HCHO fluxes up to 200 μg m⁻² hr⁻¹ were observed. We investigate the contribution of fast VOC oxidation chemistry and other HCHO emission sources, such as soil, leaf litter and plants, to assess whether the observed fluxes can be explained with known in-canopy sources and sinks of HCHO.

Classification: Non-refereed
Resource Type: Presentation/webcast
Date Presented: August 28, 2011

Relations:

Copyright Notice:
The right to use this resource for non-commercial, non-profit research, or educational purposes only, as are more fully described in the UCAR Terms of Use.

Citable URL: http://nldr.library.ucar.edu/repository/collections/OSGC-000-000-011-120