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s u m m a r y

Two-dimensional (2D) flow models based on the well-known governing 2D flow equations are applied to
floodplain analysis purposes. These 2D models numerically solve the governing flow equations simulta-
neously or explicitly on a discretization of the floodplain using grid tiles or similar tile cell geometry,
called ‘‘elements”. By use of automated information systems such as digital terrain modeling, digital ele-
vation models, and GIS, large-scale topographic floodplain maps can be readily discretized into thousands
of elements that densely cover the floodplain in an edge-to-edge form. However, the assumed principal
flow directions of the flow model analog, as applied across an array of elements, typically do not align
with the floodplain flow streamlines. This paper examines the mathematical underpinnings of a
four-direction flow analog using an array of square elements with respect to floodplain flow streamlines
that are not in alignment with the analog’s principal flow directions. It is determined that application of
Manning’s equation to estimate the friction slope terms of the governing flow equations, in directions
that are not coincident with the flow streamlines, may introduce a bias in modeling results, in the form
of slight underestimation of flow depths. It is also determined that the maximum theoretical bias, occurs
when a single square element is rotated by about 13�, and not 45� as would be intuitively thought. The
bias as a function of rotation angle for an array of square elements follows approximately the bias for a
single square element. For both the theoretical single square element and an array of square elements,
the bias as a function of alignment angle follows a relatively constant value from about 5� to about
85�, centered at about 45�. This bias was first noted about a decade prior to the present paper, and the
magnitude of this bias was estimated then to be about 20% at about 10� misalignment. An adjustment
of Manning’s n is investigated based on a considered steady state uniform flow problem, but the magni-
tude of the adjustment (about 20%) is on the order of the magnitude of the accepted ranges of friction
factors. For usual cases where random streamline trajectory variability within the floodplain flow is
greater than a few degrees from perfect alignment, the apparent bias appears to be implicitly included
in the Manning’s n values. It can be concluded that the array of square elements may be applied over
the digital terrain model without respect to topographic flow directions.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Two-dimensional grid type mathematical models are increas-
ingly used in civil engineering and planning for the analysis of
two-dimensional unsteady flow effects. The diffusion formulation
of the governing flow equations is readily applied to such models.
The earliest analysis and use of the diffusion formulation of the
ll rights reserved.

: +1 949 242 6099.
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governing flow equations is discussed by a number of researchers
including Xanthopoulos and Koutitas (1976), Ponce et al. (1978),
Akan and Yen (1981), Hromadka and Lai (1985), and Hromadka
et al. (1987). Perhaps the earliest such general use two-dimen-
sional flow model is the public domain Diffusion Hydrodynamic
Model developed for the US Geological Survey (USGS DHM,
Hromadka and Yen (1987) among other publications by those
authors) which has been used for a variety of two-dimensional
unsteady flow studies including coupled two-dimensional over-
land flow with one-dimensional channel flow problems where
channel flow interfaces as both a source or sink to the overland
flow grid system depending on current hydraulic conditions being
modeled. Subsequently, proprietary models have been developed
that ‘‘implement[s] the Diffusion Hydrodynamic Model (DHM) cre-
ated by Hromadka and Yen” (see Bertolo and Wieczorek (2005)
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among others). Hromadka and Yen (1987) showed that the diffu-
sion formulation of the flow equations adequately portrays flows
with Froude numbers up to 4. Another two-dimensional diffusion
model developed by G.L. Guymon for applications in alluvial fan
flow modeling in Maricopa County, Arizona, USA applies a probabi-
listic extension to USGS DHM. Lal (2005), for example, stated,
‘‘These studies showed that diffusion flow models can be used
successfully to simulate a variety of natural flow conditions”. The
diffusive wave approximation has been applied to overland and
channel flows for a looped channel system (Luo, 2007). The diffu-
sive wave approximation has also been used to model extreme
flood events, where channel and overbank flows are routed, and
the principal variable is Manning’s n (Moussa and Bocquillon,
2008). A thorough investigation of ‘‘reduced complexity codes”,
including the diffusion formulation, and comprehensive literature
review has been done by Hunter et al. (2007). Because of increasing
Fig. 1. USGS DHM surface model developed from USGS DEM data (1
use of the diffusion formulation of the flow equations and its
application to grid type models of the problem overland flow
domains, for example, US Army Corps of Engineers gridded
surface/subsurface hydrologic analysis model GSSHA (Ogden
et al., 2003), further research to improve computational efficiency
and accuracy will continue to be needed.

GIS programs can be used to develop large databases of topo-
graphic mapping discretized into the elements used in such cou-
pled 1D–2D models. The ease of computer graphics and GIS
enable such 2D flow analogs to be readily applied to large 2D flow
regions. For example, Fig. 1 from Jordan (2003) illustrates a USGS
DHM model containing more than 2000 square grid elements
(‘‘elements”). Some flow models use regular polygon elements
such a triangles, squares, hexagons, or octagons to cover the 2D
problem domain, and other models use irregularly shaped polygo-
nal elements. Wilson et al. (2007) report a model with 1.7 million
52 m (500 ft.) grid element sides), with detail over alluvial fan.
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square elements to investigate large-scale seasonal inundation of
Amazon wetlands. It has been previously shown that an array of
square elements (e.g. four-direction flow in the Cartesian coordi-
nate system as used in USGS DHM) which are aligned with flow
streamlines provides an unbiased estimate of steady state uniform
flow (SSUF) depth, whereas use of three or greater than four flow
directions per element does not. The bias in computations is seen
as a loss in accuracy of estimates of flow depth associated with ar-
rays of elements of other shapes (e.g. triangles, octagons). The
mathematical conclusions were developed for an arbitrary number
n of flow path directions, all equally spaced with angle 2p/n, and
included the theoretical case as n approaches infinity (Hromadka
et al., 2007). In the current paper, only four-direction flow is
investigated.

In the current paper, some issues are considered regarding the
arbitrary placement and subsequent alignment of an array of
square elements with respect to the underlying two-dimensional
flow streamlines in the flow regime. For example, the computer
program USGS DHM documentation (Hromadka and Yen, 1987)
shows several application problems where elements are laid out
by hand on topographic maps conforming to the anticipated
streamline directions, such that axis orientations of individual ele-
ments are in alignment with anticipated flow streamlines. Use of
GIS, however, for larger investigations containing thousands of ele-
ments, typically results in problem domain grid developments that
either do not consider streamline directions, or are only approxi-
mately oriented with respect to topographic flow directions.
Therefore, the flow analog used in USGS DHM, for example, is
not necessarily being applied in perfect alignment with the
streamlines, and therefore the application of Manning’s equation
to determine friction slope in the x- and y-directions (Sfx and Sfy)
is not necessarily exact. It can be demonstrated that arbitrary
alignment of elements with respect to flow streamlines may result
in slightly different computational results unless attention is paid
to such effects by modifying the Manning’s friction factor as used
in the diffusion formulation. The magnitude of this difference is
small. This principle was first noted by Horritt and Bates (2001)
a decade prior to the present paper. It was recognized that flow
vectors differed by about 20% from theory, and more importantly,
this effect reached a maximum at about 10� between alignment of
free surface slope and alignment of one of the grid axes. The pres-
ent paper provides a theoretical explanation of what was first rec-
ognized in practice.

By equating the diffusion flow equations to the standard energy
equation as applied to steady state uniform flow (SSUF) of the flow
regime set at various trajectory angles with respect to element
alignment axis, the ratio of Manning’s n at any angle to Manning’s
n for SSUF can be calculated and the magnitude of the difference
from unity can be estimated. This friction factor ratio is a function
of element alignment with the flow regime angle. This friction fac-
tor adjustment compensates for the effect of the modeling grid axis
not being aligned with the flow regime. From the developed equa-
tion, it is seen that the greatest change of ratio with respect to an-
gle occurs within very small angles of rotation from 0� to about 5�,
and from about 85� to 90�. For greater angles of rotation (between
about 5� and about 85� symmetrical about 45�), the ratio remain-
s close to a constant value. This latter result may be significant
when contemplating how the Manning’s friction factor is esti-
mated in the field. That is, field measurements of flow regimes typ-
ically involve flows where streamlines are not in parallel alignment
and, therefore, would already be in the range of angles from 5� to
85� under the above computational model. When streamlines are
parallel, the ratio has a value of 1.0. Otherwise, when streamlines
are not parallel, the computational model predicts a ratio of about
1.2. However, should the friction factor be based upon field mea-
surements where streamlines are very unlikely to be parallel, then
such effects may already be included in the measure of the friction
factor itself. In other words, field calibration makes the theoretical
ratios developed in the computational model redundant. The
implication for automated gridding of square elements with
four-direction flow is that the array of square elements may be ap-
plied over the digital terrain model without respect to topographic
flow directions.

In the following, the magnitude of bias for the conditions of
SSUF where the flow analog principal flow directions are at an an-
gle h with respect to the flow streamlines is investigated, the ratio
of Manning’s n at any angle to Manning’s n for SSUF is developed.

2. Mathematical development

To develop a theoretical analysis that can be verified by tradi-
tional calculation methods, the special flow condition of steady
state, uniform turbulent flow (SSUF) is assumed throughout the
2D flow regime, R. Let X be a smaller region in R such that flow
streamlines are all parallel in X such that the flow in X can be ana-
lyzed as one-dimensional flow in X even though application of a
2D flow analog on R would necessitate the application of the 2D
analog in X.

The problem for analysis is the application of the four-direction
flow analog, with square elements used in USGS DHM, to this stea-
dy-state, uniform 1D flow in X, with constant topographic slope,
So, where the streamlines are at an angle h with respect to the prin-
cipal flow directions used in the four-direction flow analog. USGS
DHM is used in this paper as a case study for analysis purposes be-
cause the model is not proprietary, boundary conditions may be
easily established, and continuity may be easily verified.

The well-known partial differential equations (PDEs) that de-
scribe incompressible fluid flow in two dimensions, with all verti-
cal components assumed invariant at a point (x, y), are given by
one equation of mass continuity:

dqx

dx
þ

dqy

dy
þ dH

dt
¼ 0 ð1Þ

And two equations of motion:
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where (x, y) are the Cartesian coordinates; t is time; g is the gravi-
tational acceleration; qx and qy are unit flows in the x and y Carte-
sian coordinate directions; Sfx and Sfy are friction slopes in the x, y
directions; h is flow depth; and H is the water surface elevation.
These three PDEs form the underpinning for computer models of
two-dimensional (2D) flow and also computer models of one-
dimensional (1D) channel flow networks coupled with 2D topo-
graphic flow models. For example, see the US Geological Survey
computer program ‘‘Diffusion Hydrodynamic Model” (USGS DHM)
by Hromadka and Yen (1987); also see Brater et al. (1996), Chapter
14, p. 33; and Maidment (1993), Chapter 21, pp. 26–27.

At issue is the 2D flow analog used and the application of Man-
ning’s equation in computing information that is subsequently
used in the 2D flow analog when flow streamlines are not aligned
with analysis principal flow directions. The governing flow Eqs.
(1)–(3) involve the friction slope terms Sfx and Sfy which are typi-
cally computed by application of Manning’s equation for an ele-
ment aligned with principal flow directions. However, as will be
shown below, additional mathematical considerations may be
needed when arbitrarily using Manning’s equation in a 2D flow
analog for an element not so aligned.
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For the SSUF problem considered, qx, qy, and h are all constant in
X, and the 2D flow equations simplify to reduce the to the system
of PDEs:

Sfx þ
@H
@x

� �
¼ 0 ð4Þ

Sfy þ
@H
@y

� �
¼ 0 ð5Þ

where @H
@x and @H

@y are constants in X, and where

h ¼ tan�1 qy

qx

� �
ð6Þ

Therefore, for the subject SSUF problem, the relevant friction
slope terms are given by the partial derivatives,

Sfx ¼ �
@H
@x

ð7Þ

Sfy ¼ �
@H
@y

ð8Þ

which indicates that the friction slopes in the x, y directions are
equal to the slope of the water surface in the same directions. A
modeling approach typically used in 2D models is to extend the
above results into a generalization,

Sfz ¼ �
@H
@z

; z ¼ x; y ð9Þ

for arbitrary direction z, and then substitute into Manning’s
equation (wherein shallow flow in a wide rectangular channel is as-
sumed and all of the resistance is due to bottom friction, neglecting
the side boundary layer effects) to obtain a unit flow rate, qz,

qz ¼
1
n

y5=3s1=2
z ; z ¼ x; y ð10Þ

where n is the Manning’s friction factor; and y is the flow depth.
However, as will be shown below, direct use of Eq. (10) may intro-
duce a bias in computational results. It is noted that for the consid-
ered SSUF problem, the USGS DHM formulation solves the governing
system of PDE of Eqs. (4)–(8). It has been noted that the governing
system of equations is solved exactly only if time steps are suffi-
ciently short to avoid computational instability (Hunter et al.,
2005). USGS DHM employs a time-stepping algorithm that reduces
or expands the time step size depending on hydraulic conditions
anywhere in the model. To avoid computational instability, the time
step may be reduced at any locality while the time step at other loca-
tions in the model may remain unchanged or expand.

A typical 2D modeling flow analog is to develop networks of
connections between geometric elements, and then use qs to com-
pute flow rates that apply during a small model time step, Dt.

For the considered four-direction flow analog, flow directions
are in the x, y directions only, whereas in an unaligned flow,
streamlines are at an angle h with the positive x-axis. For 2D grid
size W, flow velocities in the projected x- and y-directions are ob-
tained from the streamline flow velocity, vs, by

vy ¼ v s sin h

vx ¼ v s cos h

v2
s ¼ v2

x þ v2
y

9>=
>; ð11Þ

With flow depth a constant in X, under the considered SSUF
problem assumptions,

h2v2
s ¼ h2v2

x þ h2v2
y ð12Þ

or
q2
s ¼ q2

x þ q2
y ð13Þ

where qs is the unit flow along the streamlines that are parallel in
the considered SSUF problem.

From the flow assumptions,

hvx ¼ qx ¼ qs cos h

hvy ¼ qy ¼ qs sin h

)
ð14Þ

typically, for the considered SSUF problem, modeled unit flows in
the x- and y-directions are approximated by a similar application
of Manning’s equation, where the gradient of the water surface
along same trajectory matches the gradient of the topography along
the trajectory,

qx ¼
1
n

h5=3
4 s1=2

ox

qy ¼
1
n

h5=3
4 s1=2

oy

9>>=
>>; ð15Þ

where h4 is the resulting four-direction flow analog flow depth by
use of the above application of Manning’s equation, and where h
is constant in X given the considered SSUF problem assumptions;
and the topographic slopes in the x, y directions are Sox, Soy where

Sox ¼ so cos h

Soy ¼ so sin h

�
ð16Þ

Therefore, combining Eqs. (15) and (16), we have the four-direc-
tion flow analog approximations for the subject problem
assumptions,

qx ¼ ah5=3
4 cos1=2 h

qy ¼ ah5=3
4 sin1=2 h

)
ð17Þ

where

a ¼ 1
ffiffiffiffi
so
p

=n ð18Þ

The flow width projection of the grid, W�, is given by

W� ¼Wðsin hþ cos hÞ ð19Þ

And unit flow across W� with the streamlines is qs, where

qs ¼ ay5=3
n ð20Þ

where yn is the normal depth from Manning’s equation.
Setting inflow to the grid equal to its flow analog outflow gives

qsW
� ¼Wðqx þ qyÞ ð21Þ

or,

ay5=3
n Wðsin hþ cos hÞ ¼ ah5=3

4 Wðcos1=2 hþ sin1=2 hÞ ð22Þ

which reduces to

h5=3
4 ¼ sin hþ cos h

cos1=2 hþ sin1=2 h

� �
y5=3

n ð23Þ

or

h4 ¼
sin hþ cos h

cos1=2 hþ sin1=2 h

� �3=5

yn ð24Þ

In Eq. (24), h = 0� or h = p/2 radians places the streamlines in
alignment with the principal flow directions of the four-direction
flow analog, and also in alignment with the x and y axes, and Eq.
(24) gives the solution,

h4 ¼ yn; h ¼ 0; p=2 ð25Þ

For values of h = 0� and 90�, the aligned case, h4 = yn, and the
computed depth equals SSUF normal depth.
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For other values of h, the grid principal flow paths are not in
alignment, and h4 < yn. Use of Manning’s equation in Eq. (15) re-
quires a factor, b, to make the computed depth h4 equal to normal
depth, yn.

From the above equations, the factor, b, is given by,

b ¼ bðhÞ ¼ sin hþ cos h

cos1=2 hþ sin1=2 h

� ��3=5

ð26Þ

where again,

h ¼ tan�1 qy

qx

� �

To develop the factor, b, for any angle, the following trigono-
metric relationships apply:

sin h ¼
qy

g

cos h ¼ qx

g
g ¼ ðq2

x þ q2
yÞ

1=2

9>>>>>=
>>>>>;

ð27Þ

Let r be defined by,

r ¼ qy=qx; for qx � 0 ð28Þ

Substituting Eq. (27) into Eq. (26) gives,

bðhÞ ¼
ðqy þ qxÞg

ð ffiffiffiffiffiqx
p þ ffiffiffiffiffi

qy
p Þ= ffiffiffigp

 !�3=5

ð29Þ

or, after reducing,

bðhÞ ¼ ð1þ rÞ
ð1þ

ffiffiffi
r
p
Þð1þ r2Þ1=4

" #�3=5

ð30Þ

Note that as h ? p/2, r ?1, and b ? 1. Also, at h = 0, r = 0, and
b = 1. At h = p/4, which is the maximum angle out of alignment for
the four-direction flow analog, qx = qy and r = 1, giving b = 23/20 or
approximately, b = 1.11.

Therefore, the factor, b, for any angle, can be expressed as a ratio
of normal depth to computed depth

bðhÞ ¼ yn=h4 ð31Þ

for h values between h and p/2. Because qx and qy are known by the
flow analog application, Eq. (31) is readily applied.

3. Extension of Manning’s equation

From the previous section, use of a similar application of Man-
ning’s equation to flow vectors that are not in alignment with the
considered SSUF problem streamlines may introduce a bias in the
estimation of hydraulic properties. In this section, the identified
possible bias is addressed by redefining the application of the flow
vector friction factor. For the considered SSUF problem, equating
inflow into the grid to grid outflow by the four-direction flow ana-
log gives,

1
n

y5=3
n s1=2

o Wðcoshþ sin hÞ ¼ 1
cn

y5=3
n Wðs1=2

oy þ s1=2
ox Þ ð32Þ

where c is a factor applied to Manning’s n value as applied in the
four-direction flow analog such that h4 = yn.

From Eq. (16) and combining with Eq. (32) gives c as a function
of angle h and,

cðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
cos h
p

þ
ffiffiffiffiffiffiffiffiffiffi
sin h
p

cos hþ sin h
ð33Þ

A plot of c(h) is shown in Fig. 2. From Fig. 2, the average value of
c(h) taken at 1� increments from 0� to 90� is slightly greater than
1.19. The average value of c(h) taken at 1� increments from 5� to
85� is slightly greater than 1.20. That is, there is little variation in
c(h) for almost all h, and c(h) = 1.0 only for h = 0� and h = 90�. The
value of c(h) at 45� is exactly 21/4, or 1.189.

Combining Eqs. (32) and (33), the combination of c(h) and Man-
ning’s n (for the streamline direction) gives N(h) where

NðhÞ ¼ ncðhÞ ð34Þ

where, approximately,

NðhÞ ¼
1:2; 85 > h > 5�

1:1; 0 < h < 5� or 85 < h < 90�

1:0; h ¼ 0�

8><
>: ð35Þ
4. Application problem

For the considered SSUF problem, the mathematical (diffusion)
formulation used in USGS DHM simplifies to Eqs. (7) and (8) as
does a fully dynamic formulation. Therefore, both the USGS DHM
flow analog that is based on the diffusion formulation (Hromadka
and Yen, 1987), rather than the fully dynamic equation set, is
equally relevant in solving the considered SSUF application prob-
lem herein. For other applications where there is a departure from
SSUF, it has been shown that the diffusion formulation used in
DHM produces very nearly the same results as a fully dynamic for-
mulation (Hromadka and Yen, 1987) for Froude numbers less than
about 4. This is consistent with Ponce et al. (1978), who developed
applicability criteria for kinematic and diffusion models. Using the
SSUF flow conditions described below with Ponce Eq. (17), the ini-
tial flow ramp of 2 h, followed by steady flow of 10 h meets the
applicability criterion.

In constructing multi-element four-direction flow analog arrays
to model SSUF with USGS DHM, it was found that a base SSUF flow
field with 400 elements, each 30.5 m (100 ft.) wide, was sufficient
to demonstrate the theory. The objective was to achieve a shallow
uniform subcritical flow about 1 ft. deep. Theoretical model normal
depth was 30.24 cm (0.992 ft.). A model in perfect alignment with
the flow field had a constant topographic slope of 0.0016; dis-
charge, q, of 0.093 m3/s/m (unit discharge, q, of 1 cfs/ft.); and Man-
ning’s n of 0.050. The modeled flow was bounded at the upstream
end by 20 inflow boundary elements with q sufficient to sustain
normal depth of about 0.3 m (1 ft.) extending some distance down-
stream. The modeled flow was bounded at the downstream end by
critical outflow boundary elements. The flow profile is described as
the subcritical drawdown curve, M2 in Chow §9–3 and 9–4 (1959).
As modeled, the Froude number at the upstream end of the model
was about 0.31. Fig. 3 illustrates the aligned model.

Models not in alignment with SSUF consisted of the same 400
element array rotated about the lower right corner so that the
slope measured along the angle of alignment remained at
0.00116. Flow paths were bounded at the left and right sides by
elements with base elevations raised above flow depth. The rows
of inflow elements upstream and outflow elements downstream
of the modeled flow were truncated at the left and right boundary
elements. Rotation angles were chosen at integral ratios of bound-
ary elements, e.g. 1h:1v was tan�1(1/1) or 45�; 1h:2v was tan�1(1/
2) = 26.6 or �27�; 1h:3v was tan�1(1/3) = 18.4 or �18�; 1h:4v was
tan�1(1/4) = 14.0 or �14�; 1h:5v was tan�1(1/5) = 11.3 or �11�;
and 1h:10v was tan�1(1/10) = 5.7 or �6�.

Upstream boundary elements received a unit flow discharge of
about 1 cfs/ft. based on the width of the flow path measured be-
tween the innermost dimensions of the flow boundaries. Figs. 4
and 5 illustrate typical models for 14� and 27� rotation
respectively.



Fig. 2. Plot of c(h) = [(
p

cos h) + (
p

sin h)]/(cos h + sin h).

Fig. 3. Aligned model.
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Each of the rotated models had base topography contour lines
perpendicular to the northwest to southwest flow directions. The
base contour lines were at perfect right angles with respect to flow
streamlines, but in varying degrees of rotation with respect to ele-
ment orientation.

Continuity for all models was verified by comparing total out-
flow over all the outflow elements with total inflow, at hour 12
of the SSUF modeling period. Outflow discharges matched inflow
discharges within 0.01%.

Flow uniformity was tested and achieved by analyzing USGS
DHM output data for velocities at each element, focusing on the
central elements used for flow depth analysis. USGS DHM output
includes flow velocities in the four Cartesian coordinate directions,
N, E, S, and W. For steady flow, averages of N and S velocities



Fig. 4. Model rotated 14�.

T.V. Hromadka II et al. / Journal of Hydrology 389 (2010) 177–185 183
provide the velocity in the N–S direction, and similarly for the E–W
direction. Resolving these velocities into angular and velocity com-
ponents yields flow direction through each element, which com-
pared well with theoretical flow directions. Table 1 summarizes
the results.

For both the aligned and rotated models, c(h) was estimated by
first analyzing each rotation model with Manning’s n = 0.050. Con-
sistent with theory, the flow depths in all rotated models were
slightly less than the computed normal depth. Manning’s n was in-
creased according to Eq. (33) and a second analysis was made. In
most cases, the computed depth was not quite equal to normal
depth, so a third value of Manning’s n was interpolated or extrap-
olated based on the results of the first two analyses, and a third
analysis was made. If the computed flow depth was equal to nor-
mal depth, the actual value of c(h) was computed as model Man-
ning’s n /0.050. If the computed flow depth was not equal to
normal depth, a three-point interpolation or extrapolation of previ-
ously-computed data was used to estimate a value of Manning’s n
that would result in computed depth equal to normal depth. The
actual value of c(h) was computed as model Manning’s n/0.050.

Table 1 and Fig. 6 summarize the results for the aligned and ro-
tated cases. For rotation angles other than 0� (and 90� by symme-
try), flow depths were lower than normal depth. Manning’s n
values needed to develop a computed depth equal to normal depth
were within the range reported in the literature, with the highest
being 0.061. For example, Chow (1959) reports floodplain n-values
ranging from 0.035 to 0.070 for a normal n-value of 0.050. Several
general conclusions are readily apparent:

Computed values of c(h) generally follow the trend of the
theoretical values.
The aligned model computed c(h) at zero (and 90� by symmetry)
matches theoretical c(h) exactly.

The rotated model computed c(h) at 45� matches theoretical
c(h) exactly.

The rotated models computed c(h) at 6�, 11�, 14�, 18�, and 27�
(and 63�, 72�, 76�, 79�, and 84� by symmetry) closely approximate
theoretical c(h).

5. Discussion

In the field estimation of Manning’s friction factor values,
watercourses and floodplains are typically identified that approxi-
mately satisfy steady-state flow conditions, and that also satisfy
approximately one-dimensional uniform flow conditions. Applica-
tion of a grid tiling of elements to such areas, using very small ele-
ments (i.e., with side dimension approaching the limit established
by the Courant criterion), could result in a mathematical situation
analogous to the considered SSUF problem setting examined in this
paper. From the results summarized in Fig. 6, it is logical to
hypothesize that the flow streamlines are typically randomly vary-
ing in trajectory with respect to the grid flow analog’s principal
flow directions, and at angles oftentimes greater than a few de-
grees. In such a case, the field-estimated friction factor value, n,
used to calibrate the model should already include the c(h) factor,
which is essentially a constant value except for trajectories in
nearly perfect alignments with the principal flow directions. There-
fore, the issue may be viewed that c(h) is already included in the
Manning’s n values, except in those rare conditions where random
streamline trajectory variability within the channel flow does not
vary more than a few degrees from perfect alignment. Adjust-
ments, if applied, would be on the order of magnitude of the



Fig. 5. Model rotated 27�.

Table 1
Summary of results – angular analysis and gamma computations.

Nominal
anglea (deg)

Angle (deg) Computed angle
(low, deg)

Computed angle
(average, deg)

Computed angle
(high, deg)

Theoretical
depth (cm)

Depth at
n = 0.050 (cm)

n To achieve
D = 30.24

Computed
gamma

Theoretical
gamma

0, 90 0.0 0.0 0.0 0.0 30.24 30.24 0.0500 1.000 1.000
6, 84 5.7 4.6 6.7 8.6 30.24 27.34 0.0596 1.192 1.120
11, 79 11.3 9.8 11.8 12.8 30.24 26.97 0.0606 1.212 1.218
14, 76 14.0 12.9 14.5 17.2 30.24 26.58 0.0612 1.224 1.218
18, 72 18.4 17.9 19.5 21.2 30.24 26.88 0.0604 1.208 1.215
27, 63 26.6 25.4 25.7 26.2 30.24 27.13 0.0597 1.195 1.203
45 45.0 45.0 45.0 45.0 30.24 27.28 0.0594 1.188 1.189

a angle by symmetry.
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accepted ranges of friction factors. It follows that an array of square
elements applied over the digital terrain model without respect to
topographic flow directions would not require any adjustment to
account for variability of streamline trajectory.

Results from an early application of USGS DHM support the
hypothesis that c(h) is already included in the Manning’s n values,
and support the application of an array of square elements over the
terrain model without respect to topographic flow directions. Syn-
thetic unit hydrographs (s-graphs) developed from USGS DHM cor-
related well with the NRCS unit hydrographs, for an array of square
elements laid over a gaged mountain watershed with complex
topography (Hromadka and Nestlinger, 1985).

Nonetheless, use of the c(h) term brings into consistency the
numerical solution of the governing flow equations, for the consid-
ered SSUF problem, for the considered flow analog and tiling of
elements.
6. Conclusions

Application of Manning’s equation to compute x and y axis pro-
jected flow direction friction slopes for use in the governing 2D
flow equations may produce a biased result in hydraulic computa-
tions in situations where flow streamlines exceed a few degrees
from perfect alignment. To investigate the nature and magnitude
of this possible bias, a steady state uniform flow problem is exam-
ined and ratios of computed Manning’s n to SSUF Manning’s n with
respect to angle are derived. Investigation of a ratio with respect to
Manning’s n, as opposed to introducing a new factor into Man-
ning’s equation, is justified for the typical application of USGS
DHM to analyze shallow overland flow in floodplains. Engman
(1989) has shown that the governing flow equations can be solved
with proper boundary conditions and the selection of only one
parameter, Manning’s n. For elements aligned with principal flow



Fig. 6. Application problem – compare Gamma theory with USGS DHM model
results.
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streamlines, the ratio has a value of 1.0. Otherwise, when elements
are not aligned with streamlines, the computational model pre-
dicts a ratio of about 1.2.

It might be concluded that Manning’s n could be adjusted for
each element so that computed depths match actual depths. How-
ever, the small variation in Manning’s n across the wide range of
streamline flow angles with respect to the element alignments
makes this an ineffective process that might indeed be superfluous.
For usual cases where random streamline trajectory variability
within the floodplain flow is greater than a few degrees from per-
fect alignment, the ratio c(h) appears to be implicitly included in
the Manning’s n values. It can be concluded that the array of square
elements may be applied over the digital terrain model without re-
spect to topographic flow directions.
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