Title
Individual Differences in Adult Reading Are Associated with Left Temporo-parietal to Dorsal Striatal Functional Connectivity

Permalink
https://escholarship.org/uc/item/20t4x6c2

Journal
CEREBRAL CORTEX, 26(10)

ISSN
1047-3211

Authors
Achal, S
Hoeft, F
Bray, S

Publication Date
2016-10-01

DOI
10.1093/cercor/bhv214

Peer reviewed
Individual Differences in Adult Reading Are Associated with Left Temporo-parietal to Dorsal Striatal Functional Connectivity

Sanjay Achal¹,², Fumiko Hoeft⁴,⁵,⁶, and Signe Bray³,⁷,⁸,⁹

¹Department of Neuroscience, ²Hotchkiss Brain Institute, ³Department of Radiology, University of Calgary, Calgary, AB, Canada T2N 4N1, ⁴Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of California, San Francisco, CA 94143, USA, ⁵Haskins Laboratories, Yale University, New Haven, CT 06511, USA, ⁶Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan, ⁷Department of Paediatrics, ⁸Alberta Children’s Hospital Research Institute and ⁹Child and Adolescent Imaging Research Program, Alberta Children’s Hospital, Calgary, AB, Canada T3B 6A8

Address correspondence to Signe Bray, 2888 Shaganappi Trail NW, Calgary, AB, Canada T3B 6A8. Email: slbray@ucalgary.ca; Fumiko Hoeft, 401 Parnassus Avenue, Box 0984-F, San Francisco, CA 94143, USA. Email: fumiko.hoeft@ucsf.edu

Abstract

Reading skills vary widely in both children and adults, with a number of factors contributing to this variability. The most prominent factor may be related to efficiency of storage, representation, or retrieval of speech sounds. This phonological hypothesis is supported by findings of reduced activation in poor readers in left hemisphere ventro-lateral prefrontal and temporo-parietal phonological processing regions. Less well explained by phonological theories are reported hyperactivation in prefrontal, striatal, and insular regions. This study investigated functional connectivity of a core phonological processing region, the temporo-parietal junction (TPJ), in relation to reading skill in an adult community sample. We hypothesized that connectivity between TPJ and regions implicated in meta-analyses of reading disorder would correlate with individual differences in reading. Forty-four adults aged 30–54, ranging in reading ability, underwent resting fMRI scans. Data-driven connectivity clustering was used to identify TPJ subregions for seed-based connectivity analyses. Correlations were assessed between TPJ connectivity and timed-pseudoword reading (decoding) ability. We found a significant correlation wherein greater left supramarginal gyrus to anterior caudate connectivity was associated with weaker decoding. This suggests that hyperactivation of the dorsal striatum, reported in poor readers during reading tasks, may reflect compensatory or inefficient overintegration into attention networks.

Key words: caudate, functional connectivity, reading, temporo-parietal junction

Introduction

Fluent reading depends on efficient integration and binding of phonological, lexical, and semantic information. Despite the ubiquity of reading in modern society, reading competence varies widely in the population, with dyslexia or specific reading disorder (RD) identified in the lower tail of a continuous normal distribution (Shaywitz et al. 1992).

A number of factors have been linked to interindividual variability in reading competence and RD including variability in attention (Facoetti et al. 2000) and processing speed (Bogon et al. 2014). However, the most prominent contributor may be variability in the ability to represent, store, or retrieve speech sounds (Bradley and Bryant 1978; Wagner and Torgesen 1987; Snowling 1998). Phonological processing relies heavily on left

The TPJ is a region at the intersection of the posterior temporal sulcus, inferior parietal lobule, and lateral occipital cortex that has been implicated in several theories of RD. The left TPJ is thought to play a role in the encoding and retrieval of speech sounds (Ravizza et al. 2004), and abnormal connectivity of this region has been hypothesized to specifically relate to difficulties in retrieval of speech sounds during reading (Boets et al. 2013). Another theory of RD posits dysfunction in the magnocellular system as part of the dorsal visual processing stream (Demb et al. 1998). The dorsal visual processing stream has been argued to contain dorsal and ventral subdivisions, where the dorsal portion (d-d) includes the intraparietal sulcus and the ventral portion (v-d) includes inferior parietal regions encompassed by the TPJ (Rizzolatti and Matelli 2003); abnormal connectivity along this pathway may relate to visuospatial and visual processing deficits seen in RD (Demb et al. 1998; Franceschini et al. 2012). Portions of the TPJ are structurally and functionally connected to the dorsal attention network. Reading difficulties may also stem from the lack of a functionally distinct attention network (Koyama et al. 2013) or impaired TPJ-mediated attentional processes (Ravizza et al. 2011). Finally, the TPJ has been implicated in cerebellar theories of RD: the cerebellum is important during silent reading and language comprehension to help detect errors, direct attention, and ensure proper timing/sequencing (Fabbro 2000). Imaging studies have suggested that the cerebellum is a key part of a normative reading network and is actively connected to the right TPJ during reading (Turkeltaub et al. 2003).

Thus, several theories of RD implicate the TPJ through different functional networks: language, attentional, visual, and cerebellar. This is notable in light of the fact that the TPJ is located at the intersection of several brain networks (Mars et al. 2012; Bzdok et al. 2013; Power et al. 2013; Bray et al. 2015). Examining the relationship between functional connectivity and reading measures within each of these subnetworks may shed light on the neural mechanisms underlying interindividual variability in reading competence.

In addition to functional and structural correlates of reading around the TPJ that generally show decreased activation and gray matter in individuals with RD (Hoeft et al. 2007; Linkensdörfer et al. 2012; Krafnick et al. 2014), there have been consistent findings of increased activation in frontal, thalamic, dorsal striatal, and insular regions in individuals with RD (Maisog et al. 2008; Richlan et al. 2009, 2011; Diehl et al. 2014). Increased activation in less skilled readers has been attributed to overengagement, due to increased difficulty and effort necessary during reading tasks (Shaywitz et al. 1998; Brunswick et al. 1999; Milne et al. 2002). This compensatory theory is supported by findings of more prominent hyperactivation in older, or remediated, readers (Shaywitz et al. 2003; Hoeft et al. 2011; Richlan et al. 2011; Barquero et al. 2014).

The goal of the present study was to comprehensively investigate whether variability in TPJ functional connectivity is an indicator of reading competence in a community sample of adults for whom brain network development and reading skill has reached a relatively stable plateau. To this end, we used resting-state fMRI and a connectivity-based clustering approach to identify subregions around the TPJ with distinct, and relatively homogeneous, connectivity patterns. These regions were used to study the relationship between TPJ connectivity and reading measures in a community sample of adults spanning a wide range of reading abilities. We were particularly interested in testing whether TPJ functional connectivity differences would implicate regions also identified as structurally or functionally abnormal in meta-analyses of RD (Richlan et al. 2009, 2011).

Task-independent connectivity analyses can provide insight into circuit dysfunction, independent of performance. Associations between reading skill and TPJ connectivity with insular, prefrontal, or subcortical regions could help account for findings from task-based meta-analyses of RD. For example, if hyperactive frontal, striatal, and insular regions are epi-phenomenal and not specifically related to phonological compensation, we might not expect to find connectivity differences with left TPJ networks in weaker readers at rest. If, on the other hand, this hyperactivation is compensatory, that is cortico–subcortical networks are consistently overengaged due to increased effort required during reading, we might expect enhanced left TPJ to prefrontal, insular, and subcortical connectivity in weaker readers. By investigating a community sample of adults, our results can provide insight into the long-term outcomes in individuals who have likely experienced reading difficulties since childhood.

To address this question, we used connectivity-based clustering (Mars et al. 2011; Bray et al. 2013) to identify subdivisions within the TPJ with relatively homogeneous connectivity profiles. As previous studies have reported 3 functional subdivisions within the TPJ (Mars et al. 2012), with connectivity to the default-mode, salience, and ventral attention networks, we first report results using a 3-cluster solution as seeds. We additionally tested a higher resolution parcellation (8 subregions), which we hypothesized might reveal TPJ subnetworks with more specific connectivity patterns to regions involved in reading.

Methods

Participants and Cognitive Assessments

Participants were 48 adult humans ranging from 30 to 54 years of age, all of whom provided written consent to participate in this study using a form approved by the Institutional Review Board at the University of California, San Francisco and Stanford University. Participants were recruited through advertisements in the San Francisco Bay Area for individuals with a family history of reading difficulties and their unaffected spouses. Three participants were excluded due to motion artifacts, and cognitive measures were not collected for 1 participant, leaving a final sample of 44 (22 males). This final sample had a mean age of 43.0 ± 6.9 and included 5 left-handed and 2 ambidextrous participants, based on self-report. All participants were administered the Wechsler Abbreviated Scale of intelligence (WASI) (Wechsler 1999). Full-scale IQ (FIQ) was normal to above average for all participants with a mean of 121 ± 8.2 and a range from 105 to 134. Additional assessments of reading and spelling were acquired: the Test of Word Reading Efficiency (TOWRE) 2nd edition (Torgesen et al. 1999), Phonemic Decoding and Sight Word Efficiency subtests (PDE and SWE), the Adult Reading History Questionnaire (ARHQ) (Leffly and Pennington 2000), the Woodcock-Johnson IIIA Spelling subtest (WJ–SP) (McGrew and Woodcock 2001), Rapid Automated Naming (RAN) of Numbers (RAN-N) and Letters (RAN-L) (Wolf and Denckla 2005), the Woodcock Reading Mastery Test (WRMT) (Woodcock 1987, 25), and the Peabody Picture Vocabulary Test (PPVT) (Dunn and Dunn 1997). Detailed participant characteristics are provided in Table 1, where we note the
number of participants who scored below 90 (bottom 25th percentile) or above 110 (upper 25th percentile) on standardized reading measures. Four participants reported a previous diagnosis of dyslexia, 1 a diagnosis of learning disorder other than dyslexia, and 2 a diagnosis of attention deficit hyperactivity disorder (ADHD).

Rather than splitting our data into groups of stronger and weaker readers based on reading scores, we based our analyses on regression models to assess the relationship between functional connectivity and continuous reading measures. We refer to weaker readers as those scoring at the lower end of this continuum, and stronger readers as those scoring at the upper end.

Since measures such as timed pseudoword decoding are sensitive indicators of phonological processing, TOWRE-PDE was used as the main regressor of interest for functional connectivity analyses, and standard scores were obtained using the oldest available age as a reference, indicated as (SO). The 2 rightmost columns indicate the number of participants <90 or >110 on standardized scores. For the ARHQ, the number of participants ≥0.4 is noted (Maurer et al. 2003; Black et al. 2012). TOWRE, Test of Word Reading Efficiency; PDE, phonemic decoding efficiency; SWE, sight word efficiency; WJIIIA, Woodcock-Johnson IIIA; WRMT, Woodcock reading mastery test; PPVT, Peabody picture vocabulary test; ARHQ, adult reading history questionnaire.

MRI Data Acquisition

MRI data were collected at Stanford University using a GE Healthcare 3.0 Tesla 750 scanner and an 8-channel phased array head coil (GE Healthcare, Waukesha, WI, USA). Anatomical images were acquired using an axial-oblique 3D T₁-weighted sequence (fast spoiled gradient recalled echo [FSPGR] pulse sequence, inversion recovery preparation pulse [TI] = 400 ms; repetition time [TR] = 8.5 ms; echo-time [TE] = 3.4 ms; flip angle = 15°; slice thickness = 1.2 mm; 0.86 x 0.86 mm in-plane resolution; 128 slices; number of excitations = 1; field-of-view [FOV] = 22 cm; acquisition matrix = 256 x 192; duration = 4.54 min). Resting-state functional MRI (fMRI) data were acquired, with the subjects’ eyes closed, using an axial 2D GRE Spiral In/Out (SPRLO; Glover and Law [2001]) pulse sequence (TR = 2000 ms; TE = 30 ms; flip angle = 80°; slice thickness = 4.0 mm; number of slices = 31, descending; 3.44 x 3.44 mm in-plane resolution; number of temporal frames = 180; FOV = 22 cm). The duration of the resting scan was 6 min.

fMRI Preprocessing

Functional images were preprocessed using SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) in MATLAB (Mathworks, Natick, MA, USA). Images were corrected for slice timing and realigned to the first scan in the functional series. Preprocessed images were analyzed with Art software to identify volumes with >0.2 mm/TR scan-to-scan motion, which were excluded from correlation, and de-weighted in regression, models, and to calculate the mean frame-wise displacement (FD) for each participant. The number of excluded volumes ranged from 0 to 70. Supplementary Figure 1 shows the mean FD and number of excluded volumes across the sample. As described below, reading measures were regressed against functional connectivity patterns. Importantly, the number of frames excluded did not significantly correlate with reading measures (TOWRE-PDE: r = −0.04, P = 0.8; RAN-N: r = 0.0491 and P = 0.7517). Each participant’s T₁ anatomical scan was co-registered to the mean functional image of each run and segmented to obtain the CSF, gray, and white matter images, as well as normalization parameters to the Montreal Neurological Institute (MNI) template. For connectivity analyses, nuisance regression was applied to obtain residua-

Table 1 Detailed participant characteristics

<table>
<thead>
<tr>
<th>Measure</th>
<th>All participants (n = 44)</th>
<th>Mean (SD)</th>
<th>Score range</th>
<th>No. of participants below cutoff</th>
<th>No. of participants above cutoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>43.5 (5.5)</td>
<td>30 to 54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIQ</td>
<td>121.1 (8.2)</td>
<td>105 to 134</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOWRE-PDE (SO)</td>
<td>93.09 (9.54)</td>
<td>71 to 112</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOWRE-SWE (SO)</td>
<td>96.1 (12.11)</td>
<td>71 to >113</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WJIIIA spelling (S)</td>
<td>107.5 (9.0)</td>
<td>83 to 128</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapid naming numbers (SO)</td>
<td>112.3 (5.16)</td>
<td>102 to 126</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapid naming letters (SO)</td>
<td>108.43 (3.4)</td>
<td>97 to 120</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRMT-Word identification (S)</td>
<td>104.1 (7.8)</td>
<td>85 to 121</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRMT-Passage comprehension (S)</td>
<td>111.5 (8.7)</td>
<td>91 to 135</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRMT-Word attack (S)</td>
<td>106.3 (6.8)</td>
<td>93 to 118</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPVT (S)</td>
<td>111.4 (9.0)</td>
<td>93 to 132</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARHQ (cutoff at 0.4)</td>
<td>0.34 (0.13)</td>
<td>0.09 to 0.66</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Mean and standard deviation (SD) for age, FIQ, and scores on reading and vocabulary measures are detailed. (S) indicates that standard scores are provided; since the TOWRE and Rapid Naming tests do not have published norms for adults, scores were standardized using the oldest available age as a reference, indicated as (SO). The 2 rightmost columns indicate the number of participants <90 or >110 on standardized scores. For the ARHQ, the number of participants ≥0.4 is noted (Maurer et al. 2003; Black et al. 2012). TOWRE, Test of Word Reading Efficiency; PDE, phonemic decoding efficiency; SWE, sight word efficiency; WJIIIA, Woodcock-Johnson IIIA; WRMT, Woodcock reading mastery test; PPVT, Peabody picture vocabulary test; ARHQ, adult reading history questionnaire.
process were used to normalize the realigned functional images to Montreal Neurological Institute (MNI) template space. Normalized images were smoothed with a 6 mm FWHM Gaussian kernel.

TPJ Mask Creation

A mask encompassing the left TPJ region was created consisting of the inferior parietal lobule (IPL), supramarginal gyrus (SMG), and angular gyrus (AG) as defined in the Automated Anatomical Labeling (AAL) atlas (Maldjian et al. 2003) using the Wake Forest University (WFU) PickAtlas tool (http://fmri.wfubmc.edu/software/PickAtlas). The TPJ mask also included a posterior region of the superior temporal gyrus (STG) and an anterior portion of the middle occipital gyrus (MOG). These were added by including the respective anatomical masks for these regions but truncating the STG to only include the most posterior portion (posterior to MNI coordinate y = −18), and the MOG to only include the most anterior portion (anterior to MNI coordinate y = −84). Finally, a small gap between the posterior STG and MOG was manually filled in. A right TPJ mask was created as the mirror image of the left.

Cluster-Based Definition of TPJ ROIs

The TPJ was divided into clusters of voxels showing similar whole-brain connectivity profiles using k-means clustering in MATLAB. To reduce computation time, images were resampled to 4 mm^3 voxels prior to clustering (connectivity models described in subsequent sections used 2 mm^3 voxel images). A correlation matrix was generated for each participant in which each row corresponded to a voxel in the TPJ mask, each column corresponded to a voxel in the rest of the brain, and each matrix entry contained the correlation between time courses for the 2 corresponding voxels. These correlation matrices were averaged across the group and entered into k-means clustering. Clusters were generated from connectivity averaged across the entire sample, rather than in stronger and weaker readers separately, so that seed regions for connectivity analyses would be consistent across the sample, and avoid introducing bias in the location/extent of seed regions between groups. k-means clustering starts with a particular assignment of rows to clusters and iterates, re-assigning each row to the cluster whose center it is nearest to, until no further reassignment takes place. Here, the k-means algorithm started with random assignment and was run 10 times, to find the assignment that minimized the total distance to center. As previous structural connectivity literature has suggested that 3 large-scale networks make connections with the TPJ (Mars et al. 2012), the left and right TPJ were initially divided into 3 networks. As these clusters were relatively large, a more fine-grained parcellation was subsequently conducted. An 8-cluster solution was chosen as this was the minimum >3 that contained contiguous clusters in both hemispheres.

Table 2 Cluster information: 3-cluster solution

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Center of mass (X,Y,Z), mm</th>
<th>Size, mm^3</th>
<th>Color in Figure 1</th>
<th>AAL label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>−51, −44, 20</td>
<td>37 488</td>
<td>Violet</td>
<td>Superior temporal</td>
</tr>
<tr>
<td>2</td>
<td>−45, −45, 42</td>
<td>24 496</td>
<td>Orange</td>
<td>Inferior parietal lobe</td>
</tr>
<tr>
<td>3</td>
<td>−44, −63, 34</td>
<td>25 672</td>
<td>Green</td>
<td>Angular gyrus</td>
</tr>
<tr>
<td>Right</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>49, −45, 21</td>
<td>36 488</td>
<td>Violet</td>
<td>Superior temporal</td>
</tr>
<tr>
<td>2</td>
<td>44, −47, 41</td>
<td>25 568</td>
<td>Orange</td>
<td>Inferior parietal lobe</td>
</tr>
<tr>
<td>3</td>
<td>47, −5, 33</td>
<td>27 208</td>
<td>Green</td>
<td>Angular gyrus</td>
</tr>
</tbody>
</table>

TPJ Clustering: 3-Cluster Solution

Clustering of left and right TPJ resulted in 3 relatively symmetric clusters. The center of mass, size, and corresponding AAL label (Tzourio-Mazoyer et al. 2002) for each cluster are shown in Table 2. We observed an anterior cluster covering the SMG/IPL (orange in the central panels of Fig. 1), a posterior cluster covering the AG (green) and an inferior cluster covering the posterior superior temporal sulcus (STS) (violet). Average time courses from each of these clusters were regressed against whole brain signals to identify associated connectivity patterns, shown in the periphery of Figure 1. The network corresponding to the orange/SMG cluster included bilateral intraparietal sulcus, anterior insula, and dorsal prefrontal regions, consistent with the dorsal attention or fronto-parietal network (DAN; Power et al. [2011]). This network also included a bilateral occipito-temporal region that has been associated with orthographic processing (McCandliss et al. 2003), but recent work suggests that it is also integrated with the DAN at rest (Vogel et al. 2012). This network was anticorrelated with posterior cingulate, medial prefrontal, and anterior caudate regions (shown in blue). The AG/green network was associated with medial prefrontal and posterior cingulate/precuneus regions similar to the default-mode network or task-negative system (DMN; Fox et al. [2005]; Power et al. [2011]). This network was anticorrelated with visual, insular, and cingulate regions. The third, pSTS/violet cluster was associated with regions of the salience network (Seeley et al. 2007; Sridharan et al. 2008) including cingulate cortex and insula, but also showed positive connectivity to visual, motor, and superior parietal regions as well as thalamus (visible on lower right panel).

TPJ Clustering: 8-Cluster Solution

The left and right TPJ were separately divided into 8 subregions. The networks associated with each cluster are shown in Figure 2 (left) and Supplementary Figure 2 (right); the center of mass, size, and AAL label for each cluster are shown in Table 3. Similar to the 3-cluster solution, we identified subregions in both hemispheres with connectivity to regions of the DMN (green), DAN (orange), and cingulo-opercular or salience network (violet). Additional subregions were identified with connectivity to visual (light purple) and STS regions (blue). Finally, several subregions had connectivity patterns not typically seen in canonical networks, such as post-central + cingulate + parietal (red), insula + cingulate + visual + motor + thalamus (cyan) and posterior cingulate + inferior parietal + dorsal prefrontal (yellow). Similar to the 3-cluster case, several subregions also showed significant anticorrelation...
patterns (shown in dark blue on all peripheral panels), including subcortical and insular regions.

Functional Connectivity Models Using Cluster-Derived TPJ Regions-of-Interest

Regions of interest (ROIs) were defined from each cluster obtained from group-level parcellation of the TPJ. As described above, we used 2 clustering analyses: a 3-cluster solution to replicate a prior study of connectivity-based TPJ parcellation (Mars et al. 2012), and a more fine-grained 8-cluster solution. Association with decoding measures was examined for both solutions. Time courses were extracted by averaging over all voxels in an ROI at each time point; time-course extraction and subsequent models were performed in MNI space. These time courses were entered as regressors in a general linear model for each ROI and subject. Group-level between-subjects multiple regression models were conducted to assess relationships between connectivity of each TPJ cluster to TOWRE-PDE scores. These models included handedness (2 columns with ones for left-handed or ambidextrous participants), sex (1 = male), age, FIQ, and mean frame-wise displacement as covariates of no interest. Inferences were drawn at a height threshold of \(P < 0.001 \) uncorrected and cluster-level multiple comparisons correction set at \(P < 0.05 \) Family Wise Error (FWE) corrected. Results were overlaid on inflated cortical surfaces using caret software. This composite score was used in a second set of multiple regression models to assess generalizability of PDE findings to overall reading skills. Finally, as PDE scores may also depend on processing speed, a third set of models assessed specificity by using RAN-N, a measure of speeded naming and processing speed, as a regressor.

As previous work has shown reduced functional connectivity between left inferior frontal gyri (IFG) and parietal language regions in individuals with RD or weaker reading skills (Koyama et al. 2011; Boets et al. 2013; Schurz et al. 2014), we examined positive associations between PDE scores and connectivity from all left hemisphere seed regions to the left IFG at a reduced threshold of \(P < 0.001 \) uncorrected.

Results

3-Cluster Seed Correlations with Pseudoword Decoding

Regression models with pseudoword decoding scores identified, in the left hemisphere, a significant negative correlation with PDE
Figure 2. TPJ clusters and associated networks for 8-cluster solution, left hemisphere. Central panels show TPJ clusters for the left hemisphere overlaid on an inflated hemisphere (posterior pointed toward the right). Detailed information about seed clusters is presented in Table 3. Each cluster was used as a seed to identify the associated network across the group. These are shown around the periphery, on cortical surfaces, color-coded to match central clusters. Significant negative associations are shown in dark blue across all panels. These networks resemble the DMN (green), DAN (orange), salience (violet), similar to the 3-cluster solution. Visual (light purple) and STS (blue) networks emerged, as well as networks with connectivity patterns that do not correspond to canonical networks (red, yellow, cyan). Network overlays are thresholded at $P < 0.05$ FWE-corrected. DMN, default-mode network; DAN, dorsal attention network; STS, superior temporal sulcus; TPJ, temporo-parietal junction.

Table 3 Cluster information: 8-cluster solution

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Center of mass (X,Y,Z), mm</th>
<th>Size, mm3</th>
<th>Color in Figure 2</th>
<th>AAL label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>−45, −34, 44</td>
<td>12 168</td>
<td>Red</td>
<td>Inferior parietal lobule</td>
</tr>
<tr>
<td>2</td>
<td>−43, −47, 45</td>
<td>13 424</td>
<td>Orange</td>
<td>Supramarginal gyrus/inferior parietal lobule</td>
</tr>
<tr>
<td>3</td>
<td>−42, −58, 44</td>
<td>11 576</td>
<td>Yellow</td>
<td>Angular gyrus</td>
</tr>
<tr>
<td>4</td>
<td>−44, −65, 30</td>
<td>16 200</td>
<td>Green</td>
<td>Posterior angular gyrus</td>
</tr>
<tr>
<td>5</td>
<td>−52, −52, 17</td>
<td>10 760</td>
<td>Blue</td>
<td>Middle temporal</td>
</tr>
<tr>
<td>6</td>
<td>−56, −31, 14</td>
<td>11 560</td>
<td>Cyan</td>
<td>Superior temporal</td>
</tr>
<tr>
<td>7</td>
<td>−41, −73, 15</td>
<td>9536</td>
<td>Light purple</td>
<td>Middle occipital</td>
</tr>
<tr>
<td>8</td>
<td>−58, −34, 29</td>
<td>9728</td>
<td>Violet</td>
<td>Supramarginal</td>
</tr>
<tr>
<td>Right</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>40, −46, 42</td>
<td>16 704</td>
<td>Red</td>
<td>Inferior parietal lobule</td>
</tr>
<tr>
<td>2</td>
<td>46, −46, 44</td>
<td>13 416</td>
<td>Orange</td>
<td>Supramarginal gyrus/inferior parietal lobule</td>
</tr>
<tr>
<td>3</td>
<td>50, −58, 29</td>
<td>12 104</td>
<td>Yellow</td>
<td>Superior angular gyrus</td>
</tr>
<tr>
<td>4</td>
<td>42, −63, 41</td>
<td>13 496</td>
<td>Green</td>
<td>Angular gyrus</td>
</tr>
<tr>
<td>5</td>
<td>51, −54, 17</td>
<td>13 368</td>
<td>Blue</td>
<td>Middle temporal</td>
</tr>
<tr>
<td>6</td>
<td>56, −30, 14</td>
<td>11 008</td>
<td>Cyan</td>
<td>Superior temporal</td>
</tr>
<tr>
<td>7</td>
<td>40, −73, 15</td>
<td>8848</td>
<td>Light purple</td>
<td>Middle occipital</td>
</tr>
<tr>
<td>8</td>
<td>59, −33, 31</td>
<td>8408</td>
<td>Violet</td>
<td>Supramarginal</td>
</tr>
</tbody>
</table>
scores using the left anterior SMG/IPL cluster (orange in Fig. 1) with bilateral caudate head ([12, 26, 6], \(n = 245, Z = 4.78\)) and right dorsal caudate ([22, 4, 28], \(n = 142, Z = 4.26\)). This cluster survived small volume correction in a 10-mm sphere around the right caudate peak reported as hyperactive in RD in a recent meta-analysis (Tailarach: [16, 10, 10]; Richlan et al. [2011]). We also found a positive association for this cluster with PDE scores in pericalcarine cortex ([4, −72, 4], \(n = 152, Z = 3.76\)). Both significant effects were located in regions on average anticorrelated with the SMG cluster across the group, as seen in blue in the top panels of Figure 1. No significant effects were found for right hemisphere clusters.

An ROI analysis in the left IFG pars opercularis identified a cluster from only the SMG/IPL (orange) seed at \(P < 0.001\) uncorrected ([−54, 24, 8], \(n = 15, Z = 3.74\)), consistent with the previous literature.

8-Cluster Seed Correlations with Pseudoword Decoding

Multiple regression models investigated correlations between PDE scores and connectivity patterns with each of 16 seed regions (8 in each hemisphere). In the left hemisphere (Fig. 4), from the SMG/IPL cluster (orange in Fig. 2), negative correlations with PDE scores were observed in bilateral caudate head ([12, 26, 6], \(Z = 5.19\) and [−18, 28, 0], \(Z = 4.4, n = 506\)), similar to the results from the 3-cluster solution. Additional negative effects for this cluster were found in right dorsal caudate ([22, 4, 28], \(n = 215, Z = 4.42\)), and in several white matter regions adjacent to anterior and posterior caudate ([−30–8 32], \(n = 118, Z = 4.95\); [−30, −36, 22], \(n = 208, Z = 4.89\); [−22, 20, 18], \(n = 193, Z = 4.23\)). Significant negative effects in the caudate were located in regions that are on average anticorrelated with the TPJ seeds (top left panels in Fig. 2). That is, in weaker readers, these regions were less anticorrelated. Also similar to the 3-cluster solution, the SMG/IPL (orange) cluster showed a positive correlation with PDE scores in left IFG pars opercularis at a reduced threshold of \(P < 0.001\) uncorrected ([−54, 24, 8], \(n = 18, Z = 3.7\)). In the right hemisphere, a positive correlation with PDE scores was observed in connectivity between the AG cluster and left occipito-temporal cortex ([40, −68, 10], \(n = 14, Z = 4.0\); Fig. 5). This effect was located in a region on average anticorrelated with the seed.

3- and 8-Cluster Seed Correlations with Composite Reading Skill Score

To assess generality of these findings to reading skill, similar models were run using a composite reading score. Significant effects for these models are shown in Supplementary Figures 3–5. This analysis replicated the caudate findings reported for PDE scores and identified additional significant correlations. For the 3-cluster solution, only the left IPL/SMG cluster showed significant negative associations with reading scores, in bilateral caudate head ([16, 34, 6], \(n = 1093, Z = 5.2\)), and dorsal caudate ([24, 10, 20], \(n = 209, Z = 4.2\)). For the 8-cluster solution, again, in the left hemisphere, from the SMG/IPL cluster (orange in Fig. 2), negative correlations were observed in bilateral caudate head ([16, 34, 6], \(Z = 5.7\) and [−18, 28, 0], \(Z = 5.0, n = 1686\)). A second cluster (AG; yellow in Fig. 2) showed a similar negative relationship to bilateral caudate head ([12, 30, 0], \(n = 377, Z = 4.4\); [−18, 26, 2], \(n = 368\), [−18, 28, 0], \(Z = 4.4, n = 506\)).
one right hemisphere cluster had a significant positive association with this measure in left occipito-temporal cortex ([12, 28, 6], n = 133, Z = 4.5) connectivity and phonemic decoding scores. Panel is color-coded to match TPJ cluster seed regions from Figure 2. AG, angular gyrus; PDE, phonemic decoding efficiency; TPJ, temporoparietal junction.

Z = 4.1), in addition to a significant positive correlation with PDE scores in right temporal cortex ([50, −66, 20], n = 115, Z = 4.6). In the right hemisphere, we found a negative correlation between the IPL/SMG cluster (orange) and right anterior caudate ([12, 28, 6], n = 133, Z = 4.5). Positive correlations were found between the IPL (red) cluster and left middle frontal gyrus ([−34, 42, 14], n = 147, Z = 4.6) between the superior AG cluster (yellow) and left occipito-temporal cortex and calcarine sulcus ([−38 −68, 8], n = 150, Z = 4.3; [2, −88, 10], n = 195, Z = 4.3) and between the middle occipital (light purple) cluster and left TPJ ([−50, −46, 40], n = 112, Z = 4.3).

3- and 8-Cluster Seed Correlations with RAN-N Scores

To assess specificity of these findings compared with another reading-related measure but independent from decoding measures, similar models were run using all 6 and 16 bilateral clusters that form the 3- and 8-cluster solutions, and speeded naming and processing speed (RAN-N scores) as the regressor of interest. For the 3-cluster solution bilaterally, no significant effects were observed. For the 8-cluster solutions, results showed that only one right hemisphere cluster had a significant negative correlation with this measure in left occipito-temporal cortex ([−48 −62 −12], n = 134, Z = 4.3). In a set of models including both PDE and RAN-N scores, the anterior caudate clusters reported above remained significantly associated with PDE scores and showed no significant association with RAN-N scores (at P > 0.001 uncorrected). Thus, the significant relationship between SMG/IPL to anterior caudate connectivity observed for TOWRE-PDE and composite reading skill scores was not apparent for RAN-N scores.

Discussion

The left TPJ is a core region implicated in reading and RD (Maisog et al. 2008; Richlan et al. 2009, 2011), yet variation in TPJ network connectivity has not been comprehensively investigated in relation to reading abilities. Using a data-driven connectivity clustering approach to define subregions around the TPJ, we found that connectivity between bilateral IPL/SMG and caudate head showed a negative association with phonemic decoding and reading skill scores (i.e., worse reading skill is reflected in less negative connectivity). Additional findings were that inter-hemispheric TPJ connectivity and right TPJ to left prefrontal and pericalcarine cortex connectivity were positively correlated with PDE scores (i.e., worse performance was reflected in less positive connectivity). The identified relationships between functional connectivity of subnetworks around the TPJ and reading skill adds to our understanding of interindividual variability in reading competence and help to reconcile findings from functional imaging meta-analyses of RD of co-occurring underactivation near the TPJ and overactivation in subcortical regions.

We note that while 4 participants reported a historical diagnosis of dyslexia and 14 scored above 0.4 on the ARHQ (Maurer et al. 2005; Black et al. 2012), the present study did not directly contrast participants with RD against typical readers. Thus, it is perhaps not clear whether our findings would extend to a group comparison of typical readers against adults with a clear diagnosis of RD. That said, several authors have pointed out that reading measures in adults tend to be continuous rather than dichotomous (Rodgers 1983; Jorm et al. 1986; Stevenson 1988; Shaywitz et al. 1992; Fletcher 2009), suggesting that a correlation approach is appropriate for investigations of reading, and can provide insight into the neural bases of RD.

The dorsal caudate has been highlighted as consistently overactive in RD (Kronbichler et al. 2006; Hoefl et al. 2007; Richlan et al. 2009, 2011); we note that the PDE-associated connectivity identified here survived small volume correction around the right caudate peak reported as hyperactive in RD in a recent meta-analysis (Richlan et al. 2011). Functionally the caudate, or dorsal striatum, has been implicated in implicit learning (Nicolson et al. 2010) and involved in word, relative to spatial, interference (All et al. 2010). In our analyses, the SMG/IPL seed was associated with regions of the dorsal attention or fronto-parietal network and was anticorrelated with anterior caudate at rest, but less so in weaker readers, possibly indicating an overintegration of anterior caudate into fronto-parietal attention networks. Increased functional connectivity between left IFG and left caudate in RD has also been reported (Finn et al. 2013). Given the connectivity profile of the TPJ subregion showing this effect, and the fact that caudate hyperactivation appears more prominently in meta-analyses of adult relative to child RD studies (Richlan et al. 2011), our results support a hypothesis that a long-term increase in effortful articulatory processing (Shaywitz et al. 1998; Brunswick et al. 1999; Milne et al. 2002) has resulted in reduced anticorrelation, or inhibition, between fronto-parietal attention networks and caudate head in weaker readers. An alternative interpretation is that this anticorrelated subcortical/cortical network simply shows a reduced organization in less skilled readers. A longitudinal study would be required to tease apart the long-term effects of compensation strategies on connectivity patterns.

Several task-based neuroimaging studies of RD have interpreted overengagement of regions such as the caudate and inferior frontal gyrus as compensatory (Shaywitz et al. 1998, 2002; Brunswick et al. 1999; Hoefl et al. 2007). In addition to caudate findings, we also replicated findings of reduced TPJ to IFG functional connectivity in RD (Boets et al. 2013). This disconnection at rest may imply differences in properties of connecting white matter (Boets et al. 2013) that require compensatory overengagement of TPJ and IFG to achieve the same level of information transmission. Thus, together with the caudate findings, we observed both weaker positive and negative correlation between the TPJ and regions previously reported to show hyperactivation in task-based studies.

It has been suggested that the phonological deficit may be best understood as a difficulty with phonemic retrieval rather than representation (Boets et al. 2013; Boets 2014), with retrieval difficulties caused by underconnectivity of left hemisphere language and auditory regions. In the present study, we also found a correlation between left TPJ to IFG connectivity and PDE scores,
at a statistical threshold appropriate for an a priori ROI. Findings regarding the relationship between task-independent functional connectivity of left temporo-parietal cortex and left IFG and reading skill have been mixed (Koyama et al. 2011, 2013; Boets et al. 2013; Finn et al. 2013; Schurz et al. 2014). Connectivity between BA39 and Broca’s region has been shown to correlate more strongly with reading measures during reading tasks relative to rest (Hampson et al. 2006), though consistent connectivity differences in RD across both task and resting conditions has also been shown (Schurz et al. 2014). It is also notable that several studies have used residuated task-based scans rather than resting scans (Boets et al. 2013; Finn et al. 2013), potentially contributing to inconsistent findings across “task-independent” connectivity studies.

Alternative theories have suggested that RD is rooted in abnormalities in visual processing (Demb et al. 1998) and visual-spatial attention (Faccoetti et al. 2000; Franceschini et al. 2012). In the present study, right hemisphere connectivity between AG and pericalcarine cortex positively correlated with phonemic decoding. Aberrant connectivity of visual regions in RD has also been shown in several recent reports (van der Mark et al. 2011; Finn et al. 2013; Fan et al. 2014; Schurz et al. 2014). Deficits in basic visual processing have long been linked with RD, particularly in the magnocellular pathway (Demb et al. 1998). Recently, a genetic risk factor for developmental dyslexia, a deletion in intron 2 of the DCD2 gene, has been linked to impaired illusory motion processing, a magnocellular dorsal stream function (Gori et al. 2015). The most prominent findings here were aberrant connectivity between anterior caudate and a TPJ subregion functionally connected to DAN regions such as the intraparietal sulcus, putative human frontal eye fields, and dorsolateral prefrontal cortex. Many studies have highlighted abnormalities in visuospatial attention in RD (Faccoetti and Molteni 2001; Hari et al. 2001; Faccoetti et al. 2003, 2006; Sirietanu et al. 2005; Liddel et al. 2009; Faccoetti, Corradi et al. 2010; Faccoetti, Truissardi et al. 2010). Converging evidence also suggests that difficulties in visuospatial attention are an important predictor of reading abilities (Valdois et al. 2004; Shaywitz and Shaywitz 2008; Franceschini et al. 2012, 2013). Reading remediation (Franceschini et al. 2013) may rely largely on alterations in visual or auditory attentional functions of the dorsal attention network (Ronconi et al. 2014). Our findings indicate that integration between fronto-parietal attention networks and visual and subcortical regions is an important predictor of phonological processing and reading skills.

A set of left-lateralized cortical regions has consistently been implicated in language and reading (Ojemann et al. 1989), and structural abnormalities in left hemisphere regions in pre-reading children may predict later reading difficulties (Clark et al. 2014). However, some studies that have applied network analyses to resting functional connectivity have not found evidence for a dedicated reading network (Vogel et al. 2012, 2013). Regions involved in reading are members of default-mode, visual, motor, and fronto-parietal networks (Vogel et al. 2013). A theoretical framework has been proposed for language more generally (Fedorenko and Thompson-Schill 2014), in which a core set of “language” regions may functionally interact with a set of domain general regions during the performance of language tasks. In support of this view, the correlates of phonemic decoding identified here were not specifically localized to language regions, but rather were distributed across visual, fronto-parietal attention, and default-mode network associated regions of the TPJ.

The TPJ region of interest was initially divided into 3 subregions with connectivity patterns similar to those described in previous work (Mars et al. 2012; Bzdok et al. 2013): an anterior cluster connected to fronto-parietal attention network regions such as dorsolateral prefrontal cortex and intraparietal sulcus, a posterior cluster connected with DMN-associated regions such as medial prefrontal/anterior cingulate cortex and posterior cingulate cortex and an inferior cluster with cingulo-opercular regions resembling the “salience” network (Seeley et al. 2007). When moving to the 8-cluster solution, 2 more focused visual and STS networks were identified (light purple, blue), while the DMN (green) and DAN (orange) remained. The salience (yellow) network became more focused and networks with intermediate connectivity were apparent (red, yellow, cyan). The TPJ divisions observed here are consistent with a recent parcellation of left lateral parietal cortex (Nelson et al. 2010). The TPJ is located at the intersection of several large-scale networks in the brain, and it has been suggested that these regions of high community density have a privileged “hub” position by linking several brain networks (Power et al. 2013; Bray et al. 2015). It is notable that an intermediate DAN/DMN (yellow) cluster was among those that showed a positive correlation with phonemic decoding scores in visual regions. This region may play an important role in linking multiple functional networks, with implications for complex skills such as phonemic decoding.

The left and right TPJ are often considered separately in neuroimaging studies, partly due to differences in their attributed functions. Regions near the left TPJ are known to play a role in aspects of language (Binder et al. 1997), semantics (Binder and Desai 2009), and reading (reviewed in Price [2012]). Left SMG has been implicated in phonological processing (McDermott et al. 2003), articulatory rehearsal (Démonet et al. 1994), and linking basic components of vocabulary knowledge (Lee et al. 2007), the AG in semantic processing (Vandenberghe et al. 1996), and the posterior STG in early auditory processing and speech perception (Fiez et al. 1996). Left TPJ has also been implicated in verbal short-term memory (Ravizza et al. 2011). The right TPJ has been more frequently implicated in social processing and aspects of attention, including attention shifts (Shulman et al. 2007, 2009; Corbetta et al. 2008; Mars et al. 2012; Bzdok et al. 2013; Krall et al. 2015). In the present study, although left and right TPJ were submitted to connectivity clustering separately, the identified TPJ clusters and corresponding connectivity patterns were largely bilateral. We did not specifically assess lateral bias in TPJ networks across the group (Kucyi et al. 2012); however, we did find specific and distinct correlations with phonemic decoding from TPJ seeds in both the left and right hemispheres. This suggests that right hemisphere networks involved in both visual processing and attention (among other functions) may be important for reading skill, though in a manner distinct from the left hemisphere networks.

While most hypotheses regarding functional connectivity differences in patient populations center on reductions in positive connectivity, it is notable that in the present study several negative connections showed a significant relationship with reading skill. Although some studies have focused on group differences without reporting the direction of baseline connectivity (Finn et al. 2013), several recent RD studies have also observed significant differences in anticorrelation or negative connectivity in RD. Remediated readers showed more negative connectivity between left fusiform gyrus and right medial prefrontal cortex relative to typical and nonremediated dyslexic readers (Koyama et al. 2013). Several regions that are typically anticorrelated with the left IPL, including anterior cingulate, post-central gyrus, right hippocampus, and precuneus, are less anticorrelated or positively correlated in RD readers across reading and resting tasks.
(Schurz et al. 2014). While interpretation of differences in negative connectivity can be more challenging, findings involving negative connectivity in RD, psychiatric (Cullen et al. 2014; Stegmayr et al. 2014), and neurodevelopmental disorders (Jung et al. 2014) suggest that variability in negative connectivity may be an important predictor of symptoms and warrants further research.

The use of a data-driven parcellation to identify functional subdivisions within the TPJ, and a well characterized and adequately sized community adult sample, are strengths of the current study; however, it is also not without limitations. The duration of the resting scan was 6 min. While this duration is not atypical (Koyama et al. 2011), some studies suggest that longer scans may provide improved convergence of intervoxel correlations (Birn et al. 2013). Participants had their eyes closed during the scan, and no physiological monitoring was conducted to ensure that they were not sleeping. After the scan session, participants were asked whether they fell asleep, and none reported doing so. However, we cannot rule out the possibility that some participants may have fallen asleep during the scan. ADHD is highly comorbid with RD in children (Semrud-Clikeman et al. 1992), and 2 participants reported a previous diagnosis of ADHD. However, clinical or subclinical symptoms of inattention were not assessed as part of this study. As noted above, it is not clear whether findings here using regression against continuous reading measures would generalize to group differences between typical readers and adults with a clear diagnosis of RD. We also note that in adult readers, it is challenging to distinguish connectivity patterns related to the core deficit of reading difficulties from patterns related to differences in experience and compensation strategies that may have been in operation for decades.

In conclusion, our findings suggest that individual variability in reading depends on connectivity within TPJ networks. Specifically, our results show overconnectivity of anterior caudate in weaker readers, suggesting that hyperactivation of dorsal striatum frequently reported in RD may be caused by overintegration with fronto-parietal attention networks. More broadly, our results support theories that reading skill depends on integration of multiple domain-general networks (Vogel et al. 2013; Fedorenko and Thompson-Schill 2014), with regions around the TPJ that have previously been implicated in reading.

Supplementary Material

Supplementary material can be found at: http://www.cercor.oxfordjournals.org/.

Funding

S.A. was supported by a studentship from the Hotchkiss Brain Institute. S.B. was supported by an NSERC Discovery Grant and the Alberta Children’s Hospital Foundation (ACHF). F.H. was funded by Eunice Kennedy Shriver National Institute of Child Health and Human Development Grants K23HD054720, R01HD067254 (PI: L. Cutting, Vanderbelt U), R01HD065794 (PI: K. Pugh, Haskins Labs), P01HD01994 (PI: J. Rueckl, Haskins Labs), and the National Institute of Mental Health R01MH104438 (PI: C. Wu Nordahl, UC Davis MIND Institute); the Flora Family Foundation; a University of California, San Francisco (UCSF) Catalyst Award, the UCSF Resource Allocation Program, and the Dyslexia Foundation through the Extraordinary Brain Series.

Notes

Conflict of Interest: None declared.

References

