Title
AQU2: Detection and Identification of Aquatic Microorganisms

Permalink
https://escholarship.org/uc/item/21c8q5cw

Authors
Beth Stauffer
Mrinal Mahapatro
Chongwu Zhou
et al.

Publication Date
2005
Detection and Identification of Aquatic Microorganisms

Beth Stauffer, Mrinal Mahapatro, Chongwu Zhou, Ari Requicha, Alex Lee, Chao Li, Stefanie Moorthi, Dave Caron
USC/UCLA CENS http://www.cens.ucla.edu

Introduction: Understanding and observation of aquatic microbial populations

Ecologically important marine microorganisms

- Harmful Algal Blooms
 - Blooms that are toxic to marine life and harmful to human health are increasing nationally and globally.
 - Many bloom-forming algae are small in size and patchy in distribution, making detection and identification problematic.
 - The conditions under which blooms occur and subside are still poorly understood and require massive sampling efforts on both spatial and temporal scales.

Model systems

- Aureococcus anophagefferens
 - A. anophagefferens is a small (2-3 µm) spherical cell which is the cause of so-called ‘Brown Tides,’ discolorations of the waters off the Mid-Atlantic coast.
 - Brown Tides have serious impacts on shellfisheries and water quality.

- Lingulodinium polyedrum
 - L. polyedrum is a bloom-forming dinoflagellate that causes so-called ‘Red Tides’ off the California coast.
 - Blooms of L. polyedrum have been associated with fish and shellfish mortality events

Problem Description: Understanding aquatic microbial population development

Experimental studies in laboratory testbed

- Artificial stimulation of a ‘brown tide’ in a thermally stratified column with a demonstration of predation effects
- Monitoring of diel vertical migration of a red tide dinoflagellate, L. polyedrum, in a thermally stratified column

Microorganism sensing and identification

- Flow cytometric identification & enumeration using a fluorescently-labeled monoclonal antibody specific against A. anophagefferens
- Identification of single A. anophagefferens cells using atomic force microscopy (AFM) and antibody-functionalized tips
- Fabrication of nanowire and carbon nanotube sensors and demonstration of sensing principles for A. anophagefferens

Proposed Solution: Laboratory-based population studies and unique detection techniques

Approaches

- Artificial stimulation of Brown Tide in column testbed
 - A thermally stratified column was inoculated with a culture of A. anophagefferens and its growth was monitored over several weeks.
 - After maximum growth was attained, a predator, Pedinella sp., was added to the column and the population dynamics were followed using flow cytometry and microscopical techniques.

- Study of diel vertical migration of Red Tide dinoflagellate in column testbed
 - A thermally stratified column was inoculated with a culture of L. polyedrum and its relative vertical position was studied over the course of a week.
 - L. polyedrum showed distinct vertical migration over a 24-hour period, accumulating in the surface waters early in the morning and dispersing throughout the column at night (Figure 1).

- This experiment also allowed for direct comparison between a newly-developed QPCR technique and more classical microscopical techniques for enumeration of L. polyedrum cells.

- Immuno-based flow cytometric approach for enumeration of A. anophagefferens
 - A fluorescently-labeled antibody specific to A. anophagefferens was used to detect cells in natural seawater samples.

- This technique is now used for routine analysis of natural water samples (Figure 2A).

- Detection of A. anophagefferens using AFM and antibody-functionalized tips
 - A. anophagefferens cells were immobilized on an Si/SiO2 surface using PEI and the specific monoclonal antibody; AFM tips were functionalized with antibody using an ethanolamine approach.
 - Over 100 force-distance measurements were made of single cells on surfaces containing immobilized cells and surfaces with blocked, non-reactive cells. The f-d curves show a definite difference between these surfaces (Figure 2B).

- Nanowire and carbon nanotube sensing of A. anophagefferens
 - Successfully synthesized single-walled carbon nanotubes and a variety of novel nanowires based on In2O3, SnO2 and CdO.
 - Preliminary tests to confirm the capability of our nanotube transistors to detect A. anophagefferens, showing a drop in conductivity following the addition of cells (Figure 3)