Title
EVIDENCE FOR THE EXISTENCE OF TWO Y^* (1660) RESONANCES

Permalink
https://escholarship.org/uc/item/21x6d428

Authors
Eberhard, Philippe
Friedman, Jerome H.
Pripstein, Morris
et al.

Publication Date
1968-12-01
EVIDENCE FOR THE EXISTENCE OF TWO $\gamma_{1/2}^{1660}$ RESONANCES

Philippe Eberhard, Jerome H. Friedman, Morris Pripstein, and Ronald R. Ross

December 1968

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

LAWRENCE RADIATION LABORATORY
UNIVERSITY of CALIFORNIA BERKELEY
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
EVIDENCE FOR THE EXISTENCE OF TWO $Y_1^*(1660)$ RESONANCES

Philippe Eberhard, Jerome H. Friedman, Morris Pripstein, and Ronald R. Ross

December 1968
EVIDENCE FOR THE EXISTENCE OF TWO $Y^{*}_{1}(1660)$ RESONANCES

Philippe Eberhard, Jerome H. Friedman, Morris Pripstein, and Ronald R. Ross

Lawrence Radiation Laboratory
University of California
Berkeley, California

December 1968

The production angular distribution of the reaction

$$K^{-}p \rightarrow Y^{*+}_{1}(1660) + \pi^-$$

around 2.6 GeV/c, measured by using the

$(\Sigma\pi)^{+}$ and $(\Sigma\pi\pi)^{+}$ decay modes, is interpreted as evidence for
two distinct $Y^{*}_{1}(1660)$ resonances.

The production properties of the $Y^{*}_{1}(1660)$ or $\Sigma(1660)$ discussed here
were studied in the reactions

$$K^{-}p \rightarrow \Sigma^{+}\pi^{+}\pi^{-}\pi^{-}, \quad (1)$$

$$\rightarrow \Sigma^{-}\pi^{+}\pi^{+}\pi^{-}, \quad (2)$$

$$\rightarrow \Sigma^{0}\pi^{+}\pi^{-}, \quad (3)$$

$$\rightarrow \Sigma^{+}\pi^{0}\pi^{-}. \quad (4)$$

The data were obtained from an exposure of the Berkeley 72-inch hydrogen bubble chamber to a K^{-} beam from the Bevatron at momenta of 2.58, 2.61, and 2.70 GeV/c. The total K^{-} pathlength equivalent for these momenta is 12.8 events/\mu b. The events in reactions (1), (2), and (4) have been weighted to correct for biases in detecting short-lived and small-angle decay Σ's.

The Σ^{0} events in our sample have been weighted to correct for undetected short-lived Λ^{0}'s and for Λ^{0}'s that decayed outside our fiducial volume. The separation of the $\Sigma^{0}\pi^{+}\pi^{-}$ final-state events from $\Lambda^{0}\pi^{+}\pi^{-}$ and $\Lambda^{0}\pi^{+}\pi^{-}\pi^{0}$ final states has been described in Ref. 2.
From reactions (1)-(4), we have analyzed the \(\Sigma(1660) \) production in a quasi-two-body reaction of the type

\[
K^- p \rightarrow X^+ + \pi^-,
\]

(5)

where \(X^+ \) is the \((\Sigma\pi\pi)\) or \((\Sigma\pi)\) particle combination with an overall charge of +1. The production angle, \(\theta^* \), is the angle of the \(X^+ \) system with respect to the incident proton in the overall c.m. system of reaction (5).

Figure 1 (a, b) shows the invariant-mass distributions of the \((\Sigma\pi\pi)^+\) particle combination for those events of reactions (1) and (2) with \(0.95 < \cos \theta^* < 1.0 \) (interval I) and \(0.7 < \cos \theta^* < 0.9 \) (interval III), respectively. \(^3\), \(^4\) Figure 1 (c, d) and (e, f) show respectively the invariant-mass plots of the \(\Sigma^0\pi^+ \) system from reaction (3) and the \(\Sigma^+\pi^0 \) system from reaction (4), for the same intervals of \(\cos \theta^* \) as for (a, b). Pronounced enhancements around a mass of 1660 MeV are seen in Fig. 1 (a, d, and f) [i.e., for the \((\Sigma\pi\pi)^+\) system in interval I and for \((\Sigma^+\pi^0)\) in interval III]. The contribution from the \(\Sigma(1660) \) resonance is much less evident in Fig. 1 (b, c, and e) [i.e., for the \((\Sigma\pi\pi)^+\) mode in interval III and the \((\Sigma^+\pi^0)\) modes in interval I]. Thus the \(\Sigma(1660) \) production is apparently more peripheral in the \(\Sigma\pi\pi \) channel than in the \(\Sigma\pi \) channel or, in other words, the relative branching ratio \(\Sigma\pi\pi/\Sigma\pi \) seems to depend upon the production angle of the resonance.

Quantitative results have been obtained by fitting the \(X^+ \) invariant-mass distribution for various intervals in \(\cos \theta^* \) to a function of the form

\[
p = \text{phase space } [a + b(\text{Breit-Wigner form for the } \Sigma(1660))],
\]

(6)

where the width of the Breit-Wigner term was considered as energy-independent. Kinematical effects may cause shifts in the peak of the \(\Sigma(1660) \) mass distributions; therefore we have determined the mass, width, and amount for each final state separately, using in each case a sample of events with \(\cos \theta^* \geq 0.5 \).
The masses and widths determined in this way were then fixed and used in subsequent fits to smaller $\cos\theta^*$ intervals. All fits were made in the mass range of 1580 to 1800 MeV. The fits with fixed mass and width were made for the $\cos\theta^*$ intervals listed in Table I and the curves resulting from these fits are shown in Fig. 1. From the fits we have determined the differential cross sections, in μb/sr, corresponding to the fraction of events due to the Breit-Wigner term. These cross sections are listed in Table I.

If these cross sections are due to the production of a single $\Sigma(1660)$ resonance, then the results for the $\Sigma\pi\pi$ and $\Sigma\pi$ modes confirm the surprising and striking feature mentioned above that the $\Sigma(1660)$ relative branching ratio, $\Sigma\pi\pi/\Sigma\pi$, varies significantly with production angle. However, the $(\Sigma^0\pi^+)//(\Sigma^+\pi^0)$ relative branching ratio is consistent with unity, as expected, in all $\cos\theta^*$ intervals.

In Fig. 2, the measurements from each of the two $\cos\theta^*$ intervals I and III are represented by a point whose abscissa is our value of $d\sigma/d\Omega$ for the $\Sigma(1660)$ resonance in the $\Sigma\pi$ mode as obtained from reaction (3) only, and whose ordinate is $d\sigma/d\Omega$ for the resonance in the $\Sigma^+\pi^-\pi^+$ mode. On such a plot the errors are uncorrelated and approximately Gaussian. A one-standard-deviation ellipse surrounds each of the two points. The relative branching ratio $(\Sigma^+\pi^-\pi^+)/(\Sigma\pi)^+$ is the slope of the line from the origin to the plotted point.

For our results in regions I and III to be measurements of the same branching ratio would require a statistical accident equivalent to more than a three-standard-deviation fluctuation. For comparison, we also show in Fig 2 the line for this branching ratio determined from the formation experiment of the CERN-Heidelberg-Saclay (CHS) groups. Although our result
in interval III is consistent with the CHS value; our result in interval I is not.

The variable branching ratio can be explained by the presence of two resonances--one produced at very low momentum-transfers (decaying primarily to \(\Sigma \pi \pi \)) and a second resonance (decaying primarily to \(\Sigma \pi \)) also produced peripherally but at higher momentum-transfers. The CHS data would also contain both these resonances, but probably mostly the latter, judging from their branching ratio in Fig. 2.

We have also explored the possibility that the variation of our measured branching ratio could result from an interference effect between the background and the \(\Sigma(1660) \) signal. We found this explanation quantitatively possible; however, it would require the following conditions: (a) a large fraction (say, 30%) of the background would have to have the same spin, parity, and spin orientation as the \(\Sigma(1660) \); (b) the interference would have to be nearly the maximum possible in both \(\cos \theta^* \) intervals for both \(\Sigma \pi \pi \) and \(\Sigma \pi \) modes, and (c) the relative phase between the resonance and background would have to change by more than 150 deg in going from interval I to III for both the \(\Sigma \pi \pi \) and \(\Sigma \pi \) modes. This explanation, involving all these various conditions, seems very unlikely to us. We therefore conclude that the most probable hypothesis is the existence of two hyperon resonances (with isotopic spin 1) contributing to our mass enhancements in the 1660-MeV region.

This hypothesis could also account for some of the inconsistencies among the measured branching ratios of the \(\Sigma(1660) \) in other production experiments--a possibility already suggested by Primer et al., who speculated that there might be another resonance in the 1660-MeV region in addition to the \(\Sigma(1660) \) and \(\Sigma(1690) \). However, with regard to the \(\Sigma(1690) \)
reported seen in the $\Lambda\pi$ mode,9 we have studied the $\Lambda\pi^+$ mass spectrum (not shown here) in the reaction $K^-p \to \Lambda\pi^+\pi^-$, and we find an enhancement in the 1660-MeV mass region

$$\text{with a relative branching ratio } \frac{\Lambda\pi^+/\Sigma^+\pi^+\pi^+}{\sum_{\Lambda\pi\pi}} = 0.4 \pm 0.13,$$

in $\cos \theta^*$ interval I. This ratio disagrees significantly with the results quoted9 for the $\Sigma(1690)$.

The two-$\Sigma(1660)$ hypothesis, in addition to explaining the significant branching-ratio variation with production angle in our data and being a possible explanation of the branching-ratio discrepancies in other production experiments, could also account for the inconsistencies between our results and those of the CHS formation experiment6—such as the inconsistency within the $\Sigma\pi\pi$ mode regarding the relative branching ratio of $\Sigma(1660) \to \Lambda(1405)\pi/[(\Sigma\pi)_{I=1} + \pi]$.10, 11

With regard to the spin and parity of these two resonances, the analysis of Ref. 4, using the entire data from the same bubble chamber exposure used in this work, gives a spin-parity of $3/2^-$ for the $\Sigma\pi\pi$ mode. Furthermore, in the analysis of the $\Sigma^0\pi^+$ mode in another production experiment, Button-Shafer concludes12 that a spin-parity of $3/2^-$ is also favored for this latter mode. Finally, the results of the CHS formation experiment also favor $3/2^-$ for the $\Sigma\pi$ mode of the $\Sigma(1660)$. The results, therefore, from these production and formation experiments indicate that the two resonances would have the same spin-parity, namely, $3/2^-$. Two such resonances of the same I-spin, spin, and parity could have their masses and widths quite different from each other and still interfere
strongly with each other, so long as their Breit-Wigner shapes are overlapping. Therefore, the masses and widths of the two Σ(1660)'s listed in Table I, resulting from our simple fit of the Σππ and Σκ mass spectra, would not necessarily represent the true unperturbed values for these resonances. In fact, any enhancement of spin-parity $3/2^-$ seen in the Σ(1660) region would in principle contain a linear combination of two basic resonances. For example, this would be true of the objects which we observed to decay into the Σππ and Σκ final states; also the Σ(1690) could be a linear combination of these two basic resonances if its spin-parity is $3/2^-$. We gratefully acknowledge the continued encouragement and support of Professor Luis Alvarez and the many useful discussions with Professor Robert D. Tripp.
FOOTNOTES AND REFERENCES

†Work done under auspices of the U. S. Atomic Energy Commission.

1. The average weight of the Σ^+ events in reactions (1) and (4) is 1.40; that of the Σ^- events in reaction (2) and the Σ^0 events in reaction (3) is 1.14 and 1.10 respectively. The Σ^0 weights do not include the correction for the unseen neutral decay mode of the Λ. However, the results of the fit in Table I do include this latter correction.

3. We have combined the data of reactions (1) and (2), since our investigation shows that the $\Sigma(1660)$ production characteristics are the same and the background is small, in both reactions. The $\Sigma(1660)$ relative branching ratio, $(\Sigma^+\pi^-)/\Sigma^0\pi^+$, in our data is about 1.8 and does not appear to change with production angle. The deviation from unity of this branching ratio is explained in Ref. 4. This phenomenon does not affect the analysis of the work presented here.

5. Because the peak-to-background ratio for the $\Sigma^0\pi^+$ events is considerably better than that for the $\Sigma^+\pi^0$ events (2.3 for $\Sigma^0\pi^+$ compared with 1.24 for $\Sigma^+\pi^0$ in $\cos \theta^*$ interval III), we use 2 times the $\Sigma^0\pi^+$ mode as our measurement of the total $\Sigma\pi$ mode of production of $\Sigma(1660)$. This procedure reduces the uncertainties due to possible interference with background.

on High-Energy Physics, Vienna, 28 August - 5 September, 1968. A
summary of most of the results from the CERN-Heidelberg-Saclay
formation experiment is given by R. D. Tripp, rapporteur's talk, in
Proceedings of the XIVth International Conference on High-Energy
Physics, Vienna, 28 August - 5 September, 1968 (CERN, Scientific

7. The background was considered to be energy-independent, with its ampli-
tude and phase allowed to vary within a given production cos θ* interval.

Oxford-Rutherford Collaboration, Phys. Rev. 152, 1148 (1966); D. J.
may be found in A. H. Rosenfeld et al., Rev. Mod. Phys. 40, 77 (1968).

Letters 18, 266 (1967).

10. In our production experiment, the Σ(1660) decay into the Σππ system is
dominated by the [Λ(1405) + π] decay mode, as shown in Refs. 4 and 11,
with the presence of a very small amount of the [(Σπ)0 I=1 + π] mode
(Ref. 4). In contrast to this, the CHS formation experiment (Ref. 6)
yields an upper limit of 0.12 for the relative branching ratio Λ(1405) π/Σπ
and a measurement of 0.28 for [(Σπ)0 I=1 + π]/Σπ.

R. I. Hulsizer, D. W. Mortara, M. Pripstein, and W. P. Swanson,

Table I. Results of fit to $\Sigma(1660)$ production in $\Sigma\pi\pi$ and $\Sigma\pi$ modes.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Amount of $\Sigma(1660)$ in Interval (μb/sr)</th>
<th>Resonance parameters used in fit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interval I 0.95<cosθ^*<1.0</td>
<td>Interval II 0.9<cosθ^*<0.95</td>
</tr>
<tr>
<td>$\Sigma^{\pm}\pi^\mp$</td>
<td>57.0±4.1</td>
<td>21.1±3.8</td>
</tr>
<tr>
<td>$\Sigma^0\pi^+$</td>
<td>7.5±4.6a</td>
<td>13.5±5.5a</td>
</tr>
<tr>
<td>$\Sigma^{\mp}\pi^0$</td>
<td>6.0±5.5</td>
<td>6.4±4.4</td>
</tr>
</tbody>
</table>

a. Includes correction for unseen neutral decay of the Λ^0.
b. Values taken from fit of $\Sigma^0\pi^+$ mass spectrum.
FIGURE CAPTIONS

Fig. 1. Mass plots of the $\Sigma \pi \pi$ and $\Sigma \pi$ systems for various production $\cos \theta^{*}$ intervals. The events in the $(\Sigma^{0} \pi^{+})$ spectra have not been weighted to correct for the unseen neutral decay of the Λ in the Σ^{0} decay. The curves shown are the results from the fit described in the text.

Fig. 2. Fitted amount of $\Sigma(1660)$ production in the $(\Sigma^{\pm} \pi^{\mp} \pi^{+})$ mode versus that in the $(\Sigma \pi)^{+}$ mode, for two production $\cos \theta^{*}$ intervals (I, III) defined in the text and in Table I. The (dashed) ellipse around each of the two plotted points represents a one-standard-deviation error limit on the cross sections. The slope of the solid straight line from the origin to each of the two points is equal to the relative branching ratio $(\Sigma^{\pm} \pi^{\mp} \pi^{+})/(\Sigma \pi)^{+}$, in the respective $\cos \theta^{*}$ interval. The slope of the dashed straight line from the origin is equal to the branching ratio result from the CHS formation experiment (Ref. 6).
Fig. 1
Fig. 2
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.