Lawrence Berkeley National Laboratory
Recent Work

Title
INITIAL-STATE CONFIGURATION-INTERACTION SATELLITES IN THE PHOTOEMISSION SPECTRUM OF Cd

Permalink
https://escholarship.org/uc/item/22f9v4x5

Authors
Suzer, Sefik
Shirley, D.A.

Publication Date
1974-02-01
INITIAL-STATE CONFIGURATION-INTERACTION SATELLITES IN THE PHOTOEMISSION SPECTRUM OF Cd

Sefik Suzer and D. A. Shirley

February 21, 1974

Prepared for the U. S. Atomic Energy Commission
under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY
This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
INITIAL-STATE CONFIGURATION-INTERACTION SATELLITES IN THE PHOTOEMISSION SPECTRUM OF Cd*

Sefik Suzer and D. A. Shirley

Department of Chemistry and
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

21 February 1974

The photoemission spectrum of atomic cadmium (4d\(^{10}\)5s\(^2\)1S) should show three peaks, at binding energies\(^1\) of 8.99 eV, 7.58 eV, and 18.28 eV, arising respectively from transitions to the (d\(^{10}\)s\(^2\)2S), (d\(^9\)s\(^2\)2D\(_{5/2}\)) and (d\(^9\)s\(^2\)2D\(_{3/2}\)) final states in Cd\(^+\). In addition to these three lines, we have also observed two weaker peaks at 14.44(3) eV and 14.79(3) eV in high-temperature ultraviolet photoemission studies on atomic Cd. These latter peaks are assigned to the (d\(^{10}\)p\(^2\)P\(_{1/2}\)) and (d\(^{10}\)p\(^2\)P\(_{3/2}\)) states, respectively. Their presence in the spectrum is attributed to photoemission of an np (n \(\geq 5\)) electron from (d\(^{10}\)5pn\(_p\)1S) components that are mixed into the nominal (d\(^{10}\)s\(^2\)1S) ground state by configuration interaction, forming the eigenstate

\[\Psi(1S) = a|d^{10}S_{1/2}\rangle + \sum_{n \geq 5} b_n |d^{10}5p_{n\pi}1S\rangle + \ldots. \]

The largest configuration mixing coefficient \(b_n\) should be that of the (5p\(^2\)1S) configuration, due to its being "quasi-degenerate" with (5s\(^2\)1S).\(^3\) Berkowitz, et al.\(^2\) have recently observed similar lines in the photoemission spectrum of Hg. It seems probable that such "CI lines" will be observable in many atomic systems, and that they can provide useful information about electron correlation in these systems.
The experiments were carried out with 21.2 eV HeI radiation at 633°K, using the high-temperature probe in a Perkin-Elmer P.S. 18 Ultraviolet Photoelectron Spectrometer. A typical spectrum is shown in Fig. 1. Derived parameters, based on average values from three separate runs, are given in Table I. Energy calibrations were carried out by introducing Xe and Ar gases with the sample. The spectrometer resolution was 30 meV FWHM. Because the spectrometer efficiency decreases with increasing ionization potential, the observed intensities in Table I have only qualitative significance.

Configuration-interaction satellite lines in photoemission spectra have been observed as "shake-up" peaks in gases and solids and as satellites in multiplet spectra. Such satellites are usually interpreted as arising from final-state configuration interaction. They therefore have the same symmetry as the main final-state peak (this result is also discussed as an "EO" selection rule for shake-up "transitions"). The Cd+ satellites are strictly forbidden by this selection rule. They arise instead from initial-state configuration interaction. The selection rule for such transitions is much less restrictive: any state is eligible that may be reached by a one-electron transition from configurations mixed into the ground state. A preliminary search for the other allowed lines (e.g., the 4d10 6s2 S1/2 line at 19.28 eV) has yielded negative results, presumably because the small admixtures of their parent configurations into the ground states could not yield intensities observable with our present sensitivity.

References
* Work performed under the auspices of the U. S. Atomic Energy Commission.
Table I. States of Cd$^+$ observed in photoemission from Cd vapor.

<table>
<thead>
<tr>
<th>Final state</th>
<th>Apparent relative intensity$^\text{(a)}$</th>
<th>Binding energy, eV$^\text{(a)}$</th>
<th>Energy from optical data$^\text{(b)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4d105s23s</td>
<td>(1)</td>
<td>8.98(2)</td>
<td>8.991</td>
</tr>
<tr>
<td>4d105p23P$_{1/2}$</td>
<td>0.03(1)</td>
<td>14.44(3)</td>
<td>14.463</td>
</tr>
<tr>
<td>4d105p23P$_{3/2}$</td>
<td>0.06(1)</td>
<td>14.79(3)</td>
<td>14.771</td>
</tr>
<tr>
<td>4d95s23D$_{5/2}$</td>
<td>2.5(2)</td>
<td>17.57(2)</td>
<td>17.578</td>
</tr>
<tr>
<td>4d95s23D$_{3/2}$</td>
<td>1.3(2)</td>
<td>18.28(2)</td>
<td>18.276</td>
</tr>
</tbody>
</table>

$^\text{(a)}$ This work. Values given are averages of three runs. Errors in last place are given parenthetically. The Xe lines at 12.130 eV and 13.436 eV and the argon lines at 15.759 eV and 15.937 eV were used for calibration.

$^\text{(b)}$ Ref. 1.

Figure Caption

Fig. 1. Photoemission spectrum of Cd vapor at 633⁰K using 21.2 eV HeI radiation. The whole spectrum took 2.5 hrs. to scan. Lines marked "s" arise from the HeI 23.08 eV radiation (i.e., 1s3p(^1P^0) → 1s2).
Fig. 1

Cd (HeI)

2S

2P_{3/2}

2P_{1/2}

2D_{5/2}

2D_{3/2}

Hundreds of counts / sec

Ionization potential (eV)

x10

6 8 10 12 14 16 18 20

6 8 10 12 14 16 18 20

0 2 4 6 8 10

6 8 10 12 14 16 18 20
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.