Title
STRENGTH VS. TOUGHNESS RELATION IN Fe-HIGH MANGANESE ALLOYS

Permalink
https://escholarship.org/uc/item/2336w4tf

Author
Morris, J.W.

Publication Date
1984-04-01
Presented at the 107th Iron and Steel Institute of Japan, Narashino, Japan, April 1-3, 1984

STRENGTH VS. TOUGHNESS RELATION IN Fe-HIGH MANGANESE ALLOYS

Y. Tomota and J.W. Morris, Jr.

April 1984

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call Tech. Info. Division, Ext. 6782.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
STRENGTH VS. TOUGHNESS RELATION IN Fe–HIGH MANGANESE ALLOYS

Y. Tomota* and J. W. Morris, Jr.

Department of Materials Science and Mineral Engineering
and
M.M.R.D., Lawrence Berkeley Laboratory,
University of California, Berkeley, CA 94720

INTRODUCTION

Charpy impact tests were performed on the 16 to 36 wt% Mn steels whose tensile properties have already been reported [1]. The effect of Mn content on the ductile–brittle transition behavior was basically identical with other workers’ results [2,3]. However, since the reasons for these phenomena are quite unclear, advanced experimental facts are presented for further discussion.

EXPERIMENTAL PROCEDURE

The alloy preparation has been described in the previous report [1]. After solution treatment at 1000°C for 1 h followed by water quenching, the ASTM standard Charpy V-notch impact test specimens were machined. The tests were carried out at various temperatures from -196°C to 250°C. Chemical information at the grain boundaries was investigated by Auger electron spectroscopy (AES).

RESULTS AND DISCUSSION

The impact energy is plotted against test temperature in Fig. 1. The following three conclusions may be obtained from this figure:

(1) the ε (hcp) martensite existing in the as-quenched condition and/or formed during deformation, deteriorates the toughness, as typically seen in the 25 Mn alloy. The ductile–brittle transition (DBT) of this alloy at around 150PtoPtC and below is attributed to the reverse ε → γ transformation at elevated temperatures. Although the specimens containing large amounts of ε show lower impact energies, the fractured surfaces consist of shallow dimples (see Fig. 2b). For the phase compositions of each alloy see Ref. 1.

(2) The deformation-induced α' martensite in 16 to 20% Mn alloys enhances the toughness but much α' formation leads to the DBT associated with the fracture mode change from transgranular (dimple) to intergranular (Fig. 2a).

* Associate Professor, Faculty of Engineering, Ibaraki University, Hitachi, Japan.
(3) The alloys with more than 36 wt% Mn also show intergranular fracture at low temperatures (Fig. 2c), although the impact energy at -196°C is not so low.

The reason for intergranular fractures of the above (2 and 3) is now under investigation. The AES study thus far has shown no clear evidence of the segregation of any impurity elements at grain boundaries, while the tendency of Mn enrichment has been observed.

Figure 3 exhibits the relation between yield strength and Charpy impact energy where data obtained at different temperatures are plotted. The best combination in the Fe-high Mn binary system would be obtained in stable austenite or martensite alloys not containing a martensite. However, these two alloys have a common drawback of the possibility of intergranular fracture at low temperatures.

ACKNOWLEDGMENTS

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

REFERENCES

1. Y. Tomota and J.W. Morris, Jr., presented at the 107th ISIJ annual meeting.
Fig. 1. Ductile-brittle transition curves of Fe-Mn alloys.
Fig. 2. SEM fractographs of Charpy specimens tested at -196°C.
A) 15 Mn - intergranular fracture, B) 25 Mn - dimple, and
C) 36 Mn - intergranular + dimple mode.
Fig. 3. Relationship between yield strength and Charpy impact energy.
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.