Title
CHARACTERIZATION OF THE ""SHORT TIME"" IN GASEOUS DIFFUSION ANALYSES.

Permalink
https://escholarship.org/uc/item/236315qb

Authors
Masaryk, Joseph S.
Fulrath, Richard M.

Publication Date
1973
CHARACTERIZATION OF THE 'SHORT TIME' IN GASEOUS DIFFUSION ANALYSES

Joseph S. Masaryk and Richard M. Fulrath

January 1973

Prepared for the U. S. Atomic Energy Commission
under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
CHARACTERIZATION OF THE "SHORT TIME" IN GASEOUS DIFFUSION ANALYSES

Joseph S. Nasaryk and Richard M. Fulrath

Inorganic Materials Research Division, Lawrence Berkeley Laboratory
and Department of Materials Science and Engineering,
College of Engineering; University of California,
Berkeley, California 94720

The diffusion of gases in glasses has been studied extensively over
the past half century. The diffusion process is expressed by Fick's
Second Law

\[ \frac{dC}{dt} = DV^2C \] (1)

where \( C \) is the concentration of gas molecules in the glass. The satura-
tion concentration of gas in glass can be expressed by

\[ C = SP_e \] (2)

where \( S \) = solubility, \( C \) = concentration, \( P_e \) = external pressure. The
solution to Fick's Second Law for finite solids of thickness \( d \) and
pressure differential \( \Delta P \) is \(^1\)

\[ \frac{dP}{dt} = \frac{ADS}{Vd} \Delta P \left[ 1 + \sum_{m=1}^{\infty} 2 \cos m \exp \left( -m^2 \pi^2 Dt/d^2 \right) \right] \] (3)

where \( P \) = pressure at the low pressure side of the membrane, \( A \) = membrane
area, \( S \) = solubility, \( V \) = volume, \( D \) = diffusivity. Rogers et al.\(^1\) have
discussed the application of a transformation formula to the right side
of the above equation which results in

\[ \frac{dP}{dt} = \frac{2AS\Delta P}{V} \left( \frac{D}{\pi t} \right)^{1/2} \sum_{m=0}^{\infty} \exp\left[-\left(\frac{d^2}{4Dt}\right)(2m+1)^2\right]. \] (4)

The inverted placement of t causes the exponential to converge rapidly for small values of t. At small values of t all but the first term in the series can be neglected and Eq. (4) can alternatively be expressed by multiplying by \( t^{1/2} \) and taking the natural logarithm of both sides

\[ \ln \left( t^{1/2} \frac{dP}{dt} \right) = \ln \left[ \left( \frac{2AS\Delta P}{V} \right)^{1/2} \left( \frac{D}{\pi} \right)^{1/2} \right] - \frac{d^2}{4Dt} \] (5)

By plotting the quantity on the left hand side versus \( 1/t \) a straight line is obtained for small values of t, thus enabling the calculation of D, the diffusion coefficient. In methods where a mass spectrometer is used instead of monitoring the pressure change with time, Eq. (5) can be modified to

\[ \ln \left( t^{1/2} \frac{dQ}{dt} \right) = \ln \left[ 2AS\Delta P \left( \frac{D}{\pi} \right)^{1/2} \right] - \frac{d^2}{4Dt} \] (6)

since

\[ \frac{dQ}{dt} = V \left( \frac{dP}{dt} \right), \text{ where } \frac{dQ}{dt} = \text{flow rate}. \] (7)

For this type of analysis it will be necessary to characterize the "relative time-frame" in which the short time solution produces reliable results with respect to the diffusion coefficient.
Let

\[ \frac{d^2}{4\,dt} = x \]  

(8)

then Eq. (4) can be expressed as

\[ \frac{dP}{dt} = \frac{2ASAP}{V} \left( \frac{D}{\pi t} \right)^{1/2} \left( e^{-x} + e^{-9x} + e^{-25x} + e^{-49x} \ldots \right). \]

The problem is to find the point in time, \( t \), where the second term in the series contribution is small (<1%) compared to that of the first term to the total flow. The limit of 1% as the tolerance where the short time solution would produce a straight line was chosen arbitrarily. This figure of 1% was considered as a reasonable limit because it is well below the level of experimental error and limit of resolution of most equipment in these types of experiments. In other words it would be considered legitimate to truncate the series if the contribution of the 2nd through \( \infty \) terms in the series was less than 1% that of the first.

Assume that the contribution of those terms after the 2nd is negligible (this will be shown valid, later), thus

\[ e^{-9x} < .01e^{-x} \]  

(10)

for less than 1% contribution by the \( 2 \rightarrow \infty \) terms in the series. Then

\[ x > .575 \]  

(11)
substituting into Eq. (8)

\[ \frac{d^2}{4Dt} > .575 \]  

(12)

When

\[ t < \frac{d^2}{2.3D} \]  

(13)

(time interval of experiment = t, d = sample thickness, D = diffusivity)

the contribution of the second term in the series will be less than 1% that of the first. A check back on the assumption that the rest of the terms in the series are negligible shows (using the same type of analysis) that when the second term is 1% of the first, the third is .0001% of the first. In diffusion experiments of this type, one can now determine the range of validity of the short time approximation.

In applying this analysis to diffusion coefficient determinations, one must know, D, in order to determine the valid time range of the analysis. Since D and t in Eq. (13) are both unknowns, an iterative method has been devised in order to apply the analysis in determining D's. If one obtains a plot (at constant temperature) for "long times," the contribution of the second through \( \infty \) terms becomes noticeable and the linear plot required by Eq.(6) becomes curved, Fig. 1. To find which data points are in the "short-time" range, one can fit all the data points to a least squares line and determine D, then obtain t by using Eq. (13). All data points which are greater than t are discarded and the
remaining are fit to another least squares line. This process is repeated until all data points are less than \( t \) when fitted with that least squares line to obtain \( D \). This will then indicate that the proper \( D \) has been obtained for a particular temperature. It must be emphasized that, for a given sample (diffusion membrane), the maximum time limit for the validity of short time analysis, decreases with increasing temperature, \( D \approx T \) (temperature):

\[
t \approx \frac{1}{T}.
\]

This analysis has been applied to the diffusion of He in SiO\(_2\) (Fictive Temp. 1200°C, Water (OH) Content = zero, \( T = 158\)°C. Flow rate measured as a function of time.

1st Iteration 25 data points, 9 secs to 249 secs (Fig. 2) \( D = 2.32 \times 10^{-7} \) cm\(^2\)/sec, \( t = 94 \) secs

2nd Iteration 14 data points (exclude those above 94 secs), 9 secs to 84 secs (Fig. 3) \( D = 2.97 \times 10^{-7} \) cm\(^2\)/sec, \( t = 73 \) secs

3rd Iteration 13 data points from 9 secs to 69 secs (Fig. 4) \( D = 3.08 \times 10^{-7} \) cm\(^2\)/sec, \( t = 71 \) secs

The \( D \) from the 3rd iteration is the correct value because \( t > t_{\text{experiment}} \) (69 secs).

Thus it can be seen that care must be taken in applying the "short time" analysis because erroneous values for diffusivities are obtained if experimental data beyond the range of validity are included.
REFERENCES


ACKNOWLEDGMENT

This work was done under the auspices of the United States Atomic Energy Commission.
FIGURE CAPTIONS

Fig. 1. Plot of the $\ln \left( t^{1/2} \frac{dQ}{dt} \right)$ vs $\frac{1}{t}$ for long times where $t =$ time and $\frac{dQ}{dt}$ is the flow rate in atoms/sec.

Fig. 2. Plot of $\log \left( t^{1/2} \frac{dQ}{dt} \right)$ vs $\frac{1}{t}$ for He in SiO$_2$ at 158°C, first iteration.

Fig. 3. Plot of $\log \left( t^{1/2} \frac{dQ}{dt} \right)$ vs $\frac{1}{t}$ for He in SiO$_2$ at 158°C, second iteration.

Fig. 4. Plot of $\log \left( t^{1/2} \frac{dQ}{dt} \right)$ vs $\frac{1}{t}$ for He in SiO$_2$ at 158°C, third iteration.
Fig. 1
Fig. 2
Fig. 3
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.