Lawrence Berkeley National Laboratory
Recent Work

Title
ELASTIC SCATTERING OF 83-MeV NEUTRONS

Permalink
https://escholarship.org/uc/item/2379t5v8

Author
Hildebrana, Roger Henry.

Publication Date
1951-03-05
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ELASTIC SCATTERING OF 83-MeV NEUTRONS

Roger Henry Hildebrand
(Thesis)
March 5, 1951

Berkeley, California
Elastic Scattering of 83-Mev Neutrons

by

Roger Henry Hildebrand

A. B. (University of California) 1947

DISSERTATION
(Thesis)

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Physics

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA

Approved:

Committee in Charge

Deposited in the University Library

Date Librarian
TABLE OF CONTENTS

I. Introduction

II. General Features of the Experiment

III. Analysis and Description of the Experiment
 A. Angular distribution
 1. Analysis
 2. Apparatus and Experimental Procedure
 B. Attenuation Experiments
 1. Analysis
 2. Apparatus and Experimental Procedure

IV. Results

V. Sources of Error
 A. Angular Resolution
 B. Detection of Inelastically Scattered Neutrons
 C. Elastic Scattering into Wide Angles

VI. Analysis of Results
 A. Description of the Angular Distribution
 B. Effect of Neutron Energy Spread on Angular Distribution
 C. Comparison of Observations with Theory

VII. Acknowledgments

VIII. References

IX. Illustrations
 Figures 1-10
ELASTIC SCATTERING OF 83-Mev NEUTRONS

Roger H. Hildebrand
March 5, 1951

I. Introduction

Amaldi et al. have measured the angular distribution of 14-Mev neutrons scattered by Pb nuclei using apparatus with good angular definition. The neutrons, which were produced by the $D + Li$ reaction and detected by means of the $Cu^{63}(n,2n)Cu^{62}$ process, had a DeBroglie wave length of 7.5×10^{-13} cm and were thus convenient for the investigation of nuclear diffraction effects. The differential cross-section curve had the shape of a diffraction pattern showing, besides a very strong maximum in the forward direction, a second small maximum at about 40°. From this curve the size of the Pb nucleus was deduced using the formula for diffraction by an opaque spherical obstacle. It is of interest to determine whether such an opaque-sphere model of the nucleus is applicable at higher energies and whether the same model can be used for light and heavy nuclei.

In the present work a relatively high intensity beam of 90 Mev neutrons from the 184-inch cyclotron was used to explore the elastic scattering patterns of Be, C, Al, Cu, Ag and Pb. The measurements were extended to small enough angles to include a large part of the distribution. By measuring the ratio of the scattered neutron flux to the flux incident on the scattering nuclei it was possible to determine the absolute differential scattering cross sections. Total scattering cross sections were obtained by integration of the differential cross sections and also by good and poor geometry attenuation experiments with Al, Cu and Pb. Total collision cross sections obtained from the good geometry experiments were found to agree well with those obtained by Cook, McMillan, Peterson and Sewell. It is of interest to compare the scattering cross sections with the total collision cross sections.
since this comparison provides a test of nuclear models such as the "opaque" model and the "transparent" model of Fernbach, Serber and Taylor.

II. General Features of the Experiment

The neutrons used in this experiment were formed by stripping 4 of 190 Mev deuterons in a one-half inch thick beryllium target placed in the circulating deuteron beam of the 184-inch cyclotron. The stripping process may be described as an event in which the proton in the deuteron strikes the edge of a target nucleus and is stripped off while the neutron misses and continues on its way. This description is appropriate because the deuteron is a loosely-bound system, the proton and neutron actually spending most of their time outside the range of their mutual forces. At 190-Mev the collision time of the proton with a nuclear particle will be small compared to the period of relative motion of the neutron and proton within the deuteron. The proton is thus stripped off too fast for any reaction on the neutron which continues its flight with the momentum it had at the instant of collision. This momentum is the sum of the momenta attributable to the center of mass of the deuteron and that attributable to the motion of the neutron within the deuteron. The energy distribution of the neutrons calculated on the basis of this theory and corrected for the energy loss of the deuterons before stripping is shown in Fig. 1 curve A. Experiments made to check this calculated distribution have agreed with it very well above 80 Mev but have shown a relatively larger flux at lower energies due to contributions from other nuclear processes as shown in Fig. 1 curve A'.

The scattering experiment was performed in a narrow beam of neutrons defined by a circular hole in the 3 meter thick concrete shielding wall. (See Figure 2). The maximum beam intensity was about 10^6 neutrons per square centimeter per second and this flux density was essentially constant radially.
cut to 4 cm. from the axis of the beam and then decreased to less than 0.1 per-
cent at 5 cm.

For the measurements of differential scattering cross sections the dis-
position of scatterer and detector is shown in Figure 2A. Spherical scat-
terers were used to simplify the determination of the effective scattering
center and mean angle of scattering. The distance "r" was increased as θ
was decreased so that the detector would not be in the beam and it was ex-
perimentally established that the activation of the detector at a given angle
varied inversely as \(r^2 \) indicating freedom from unrecognized sources of de-
tector activation.

The relative intensity of incident to scattered neutrons was measured
by placing the detector in the position of the scatterer.

Two types of detection were employed in the course of the study. Most
of the work was done with carbon detectors employing the \((n, 2n)\) reaction,
but a coincidence recoil-proton counter was also used. Both receive dis-
cussion in subsequent sections.

The way in which the sensitivity of the carbon detectors varies with
the neutron energy has not been measured but a theoretical calculation has
been made by Heckrotte and Wolff and is shown in Fig. 1 curve B. Measure-
ments of the \(^{12}\text{C} \rightarrow (n, 2n)^{11}\text{C} \) cross sections averaged over the 45-Mev and the
90-Mev neutron energy distributions available from the cyclotron have shown
them to be approximately the same. Hence the peak in the theoretical curve
B is probably too large with respect to the higher energy part of the curve
whereas the arbitrary curve B' which has the same shape as B to the left of
the peak except for a scale factor, is probably too low in the 40 Mev region.

The neutron energy distribution curve A' (see above) has been multiplied by
curves B and B' to obtain curves C and C' respectively showing the extent
to which the expected energy distribution of the detected neutrons depends
since this comparison provides a test of nuclear models such as the "opaque" model and the "transparent" model of Fernbach, Serber and Taylor\cite{3}.

II. General Features of the Experiment

The neutrons used in this experiment were formed by stripping\cite{4} of 190 Mev deuterons in a one-half inch thick beryllium target placed in the circulating deuteron beam of the 184-inch cyclotron. The stripping process may be described as an event in which the proton in the deuteron strikes the edge of a target nucleus and is stripped off while the neutron misses and continues on its way. This description is appropriate because the deuteron is a loosely-bound system, the proton and neutron actually spending most of their time outside the range of their mutual forces. At 190-Mev the collision time of the proton with a nuclear particle will be small compared to the period of relative motion of the neutron and proton within the deuteron. The proton is thus stripped off too fast for any reaction on the neutron which continues its flight with the momentum it had at the instant of collision. This momentum is the sum of the momenta attributable to the center of mass of the deuteron and that attributable to the motion of the neutron within the deuteron. The energy distribution of the neutrons calculated on the basis of this theory and corrected for the energy loss of the deuterons before stripping is shown in Fig. 1 curve A. Experiments\cite{5} made to check this calculated distribution have agreed with it very well above 80 Mev but have shown a relatively larger flux at lower energies due to contributions from other nuclear processes as shown in Fig. 1 curve A'.

The scattering experiment was performed in a narrow beam of neutrons defined by a circular hole in the 3 meter thick concrete shielding wall. (See Figure 2). The maximum beam intensity was about 10^6 neutrons per square centimeter per second and this flux density was essentially constant radially
out to 4 cm. from the axis of the beam and then decreased to less than 0.1 percent at 5 cm.

For the measurements of differential scattering cross sections the disposition of scatterer and detector is shown in Figure 2A. Spherical scatterers were used to simplify the determination of the effective scattering center and mean angle of scattering. The distance "r" was increased as \(\theta \) was decreased so that the detector would not be in the beam and it was experimentally established that the activation of the detector at a given angle varied inversely as \(r^2 \), indicating freedom from unrecognized sources of detector activation.

The relative intensity of incident to scattered neutrons was measured by placing the detector in the position of the scatterer.

Two types of detection were employed in the course of the study. Most of the work was done with carbon detectors employing the \((n, 2n)\) reaction, but a coincidence recoil-proton counter was also used. Both receive discussion in subsequent sections.

The way in which the sensitivity of the carbon detectors varies with the neutron energy has not been measured but a theoretical calculation has been made by Heckrotte and Wolff\(^6\) and is shown in Fig. 1 curve B. Measurements of the \(^{12}\text{C}(n, 2n)^{11}\text{B} \) cross sections averaged over the 45-Mev and the 90-Mev neutron energy distributions available from the cyclotron have shown them to be approximately the same\(^7\). Hence the peak in the theoretical curve B is probably too large with respect to the higher energy part of the curve whereas the arbitrary curve \(B' \) which has the same shape as B to the left of the peak except for a scale factor, is probably too low in the 40 Mev region.

The neutron energy distribution curve \(A' \) (see above) has been multiplied by curves B and \(B' \) to obtain curves C and \(C' \) respectively showing the extent to which the expected energy distribution of the detected neutrons depends
on the excitation function assumed. The mean detection energies corresponding to C and C' are 81 and 85 Mev. Since B and B' are believed to be limiting curves the true energy distribution of detected neutrons is assumed to lie between C and C' with a mean energy of about 83 Mev. It should be pointed out however that the mean errors of the experimental points from which curve A' was drawn were large and thus the true detection function may lie outside the range given above.

The activity of the carbon detectors was compared to the activity of a carbon monitor placed in the beam between the target and the scatterer. The monitor for the recoil proton detectors was a BF$_3$ slow neutron counter placed in a hole in the concrete shielding wall (Position B, Figure 2). Its response in this location was proportional to the high energy neutron flux incident upon the shielding in the region of collimation.

The measurements of total cross sections and absorption cross sections were obtained simultaneously with the arrangement shown in Figure 3. The attenuation measured by this detector gives a cross section for removal of detectable neutron flux from a forward cone extending to the maximum angle, Θ_m, subtended by the absorber about the detector. This angle is chosen to be the same as the maximum angle at which differential scattering cross sections were measured, and it includes essentially all of the elastically scattered neutrons. The cross section obtained in this manner is thus approximately equal to the absorption cross section. A further discussion of this measurement will be found in Section III-B. A good geometry detector shielded from all but the central portion of the absorber was used to measure the total cross section simultaneously.
III. Analysis and Description of the Experiment

A. Angular Distribution

1. Analysis. - Neglecting absorption of the neutrons passing through the scatterer, the activation of a detector of area S placed at angle θ and distance r from the scatterer of volume V is given by

$$D(r, \theta) = I_0 \left(\frac{N_0 \rho V}{A} \right) \left(\sigma(\theta) \frac{S}{r^2} \right) \eta,$$

(1)

where

I_0 = incident intensity,

$\frac{N_0 \rho V}{A}$ = number of scattering nuclei,

$\sigma(\theta)$ = cross section for scattering into unit solid angle at θ,

$\frac{S}{r^2}$ = solid angle subtended by the detector, and

η = efficiency of the detector.

If the detector is placed in the neutron beam the activation is given by

$$D_0 = I_0 S \eta.$$

(2)

Thus from (1) and (2)

$$\sigma(\theta) = \frac{D(r, \theta)}{D_0} \frac{Ar^2}{N_0 \rho V}.$$

(3)

Taking absorption and multiply scattering into account a formula is obtained which is the same as (3) multiplied by a constant depending on the radius of the scattering sphere and the total and aborption cross sections.

The method employed in finding the complete expression may be outlined as follows.

A neutron which is not absorbed makes an average of (λ_{μ_S}) collisions in passing through a slab of thickness X where μ_S = attenuation constant for
elastic scattering, namely $N\sigma_s$. The probability of just n elastic collisions is given by the Poisson distribution $(X\mu_s)^n n! \exp(-X\mu_s)$. If this is multiplied by the probability that the neutron is not absorbed, $\exp(-X\mu_a)$, we obtain the probability of just n elastic collisions and no other collisions in passing through the slab, i.e.,

$$(X\mu_s)^n \frac{n!}{n!} \exp(-X(\mu_s + \mu_a)) = X\mu_s \exp(-X\mu_t)$$

where μ_a is the attenuation constant for inelastic collision and μ_t is the total attenuation constant. This assumes small angles, so that X is unique.

To obtain the probability that an n-times-scattered neutron goes in direction θ, we note that the central maximum of the scattering pattern may be approximated by a Gaussian distribution. Because transverse momenta comprise a "random walk" problem, the customary assumption can be made that the angular spread after n scatterings is \sqrt{n} times the spread from single scattering. This implies that the forward scattered intensity shall be correspondingly reduced by the factor $\frac{1}{n}$. Thus the flux per unit solid angle in direction θ of neutrons scattered by a slab of thickness X may be given by the expression

$$I(\theta) = 10 \sum_{n=1}^{\infty} \left[\frac{(X\mu_s)^n}{n!} \exp(-X\mu_t) \right] \left[\frac{1}{n\sigma_s} \sigma(\theta) \sqrt{n} \right]$$

When this type of analysis is applied to the scattering by the spheres used (such as, copper, 2.5 cm diam.), it is found that the coefficient multiplying $\sigma(\theta)$ is only 5 percent of the coefficient of $\frac{\sigma(\theta)}{\sqrt{12}}$. Hence the effect of multiple scattering upon the form of the angular distribution from such a sphere is not sufficiently serious to demand attention in treating data of the present accuracy; and it is necessary only to correct for the effects of absorption and multiple scattering in an integral manner. Thus we may obtain $\sigma(\theta)$ from the observed quantity $I(\theta)$ using a correction factor which is independent of the angle.

Having recognized this, it is found to be convenient to evaluate the
correction by the following type of analysis. In traversing a slab of thickness \(x \) a neutron will have a probability \(1 - \exp(-x\mu_a) \) of being elastically scattered, and a probability \(\exp(-x\mu_a) \) of emerging without an inelastic collision; where \(\mu_a \) is the attenuation constant for an inelastic or absorbing collision. Since \(\mu_a = \mu_a^t + \mu_a^s \) the product of these probabilities is
\[\exp(-x\mu_a^t) \cdot \exp(-x\mu_a^s). \]

Applying this to a spherical scatterer of radius \(a \), the expression for the activation of the detector at angle \(\theta \) and distance \(r \) becomes
\[D(r, \theta) = D_0 \frac{1}{\sigma_s} \cdot \frac{1}{r^2} \int_0^r \left[\exp(-x\mu_a^t) \cdot \exp(-x\mu_a^s) \right] ds, \]

where the integration is carried out over the cross sectional area of the scatterer. The variable \(x \) is the length of the chord which is used to approximate the neutron path through the sphere.

Evaluation of the integral, and series expansion results in the equation:
\[D(r, \theta) = D_0 \frac{1}{\sigma_s} \frac{2\rho V}{a^2} \frac{1}{r^2} K, \]

where
\[K = 1 - \frac{3}{4} a (\mu_a^t + \mu_a^s) + \frac{9}{8} a^2 (2\mu_a^t \mu_a^s + \mu_a^t + \mu_a^s) \]
\[-\frac{1}{6} a^3 (4\mu_a^t \mu_a^s + 2\mu_a^t \mu_a^s + 2\mu_a^s) + \ldots \]

Solving for \(\sigma(\theta) \) we have instead of (3):
\[\sigma(\theta) = D(r, \theta) \frac{Ar^2}{D_0} \frac{1}{N \rho V} \frac{1}{K} \quad (4) \]

2. Apparatus and Experimental Procedure. - The scatterers used were 2.54 cm diameter spheres of lead and copper and a 3.81 cm diameter sphere of aluminum. These were suspended in the beam by fine wires. The size of the scatterers was limited to keep the self-attenuation factor \(K \) from becoming less than 0.75.

The detectors were stacks of twelve cylindrical sectors of carbon 0.32 cm thick in a copper container (See Figure 4A). Two pairs of such stacks were placed symmetrically about the axis of the beam at distances,
depending upon the angles, of 18 to 125 cm (See Figure 5). The wall of the copper container which faces the scatterer was made 1 cm thick to prevent activation of the carbon pieces by scattered protons. When this thickness was doubled the activity was reduced by the fraction which one would expect if all the activity were due to neutrons. After a 15 minute bombardment at the maximum cyclotron beam intensity the carbon sectors were removed from the copper holders and arranged to surround a set of four thin-glass walled counting tubes (See Figure 4B).

The monitors were carbon discs of 4.29 cm diameter and 0.32 cm thickness. These were counted with a mica window, bell-jar type counter. All counts were made concurrently; that is, the detector and monitor activities were counted over the same time interval eliminating the necessity of corrections for decay.

In all the experiments described here the basic measurement is the ratio of the activity of the detector to that of the monitor. Calling this ratio A, when the scattering sphere is in place and the detector at (r,θ) (See Figure 2A); and B, the background ratio when the scatterer is removed but the detector is put in the same position; and C, the ratio when the detector is put in the primary beam in place of the scatterer, we have:

\[D(r,\theta) = (A-B)e \]

\[D_0 = 2Ce \]

where \(e \) is a relative counting tube efficiency factor to allow the results of different runs to be correlated, and \(D(r,\theta) \) and \(D_0 \) are the quantities to be used in eq. (4). The value of \(e \) is determined before each run by counting arbitrary fixed samples with the detector and monitor counters. The factor 2 in the second equation above is necessary because only one of the copper holders was placed in the beam.

A typical determination of A involved about 2500 net counts from the
detector in a period of 15 minutes. This is about four times the counter background for the set of four tubes used and about four times the net count in determining B. Since the monitor was exposed in the primary beam it gave a much higher count. The ratio \(D(r, \theta) / D_0 \) was of the order of 0.001.

The 20 Mev threshold of the \(^{12}\text{C}(n,2n)^{11}\text{B} \) reaction made it quite possible that a part of the scattered flux detected in this experiment was due to inelastically scattered neutrons with energies greater than the 20 Mev detection threshold. For this reason the angular distributions were also measured using a recoil proton detector with a \(\text{BF}_3 \) slow neutron counter as a monitor (See Section II). The detector consisted of a 3.8 cm diameter, 5 cm long paraffin cylinder behind which was placed a set of three cylindrical proportional counters each 5 cm in diameter and 5 cm long which were used in coincidence (See Figure 6). A copper absorber was placed between the second and third counter. Its thickness was such that only recoil protons from neutrons with energies greater than 60 Mev could be detected.

In addition to the higher threshold, the recoil proton detector had the advantage of a somewhat higher counting rate so that more angular distribution measurements were made with it. On the other hand this detector was not well suited to poor geometry attenuation measurements and the good geometry attenuation measurements made with it using the \(\text{BF}_3 \) chamber as a monitor indicated that it was less reliable than the carbon detectors for the measurement of the very small ratio \(D(r, \theta) / D_0 \) which is necessary to obtain absolute cross sections.

B. Attenuation Experiments

1. **Analysis.** - From the results of the angular distribution measurements one can determine by graphical integration the cross section \(\sigma_s \) for scattering of detectable neutron flux into a forward cone extending to the
widest angle measured θ_m:

$$\sigma_s' = \frac{2\pi}{\phi} \int_0^{\theta_m} \sin \theta \, d\theta$$

(5)

This cross section can also be measured in an attenuation experiment utilizing the "poor geometry" arrangement of Figure 7 in which the attenuating material forms the frustum of height x of a cone whose generating angle is θ_m.

For this arrangement the detectable neutron intensity at the detector when the attenuator thickness is x will be

$$I(x) = I_1(x) + 2\pi \int_0^{\theta_m} \sin \theta I(\theta, x) \, d\theta;$$

(6)

where $I_1(x)$ is the flux density of unscattered neutrons at a distance x from the base and $I(\theta, x)$ is the intensity at x of previously scattered neutrons moving in direction θ within unit solid angle.

Consider now the effect of increasing the thickness of the attenuating material by an amount dx. The intensity of detectable neutrons at the vertex of the cone will then be altered by an amount

$$dI(x) = -I_1(x)N\sigma_t dx - 2\pi N\sigma_t dx \int_0^{\theta_m} \sin \theta I(\theta, x) \, d\theta$$

$$+2\pi I_1(x)N dx \int_0^{\theta_m} \tan \theta \sigma(\theta) \, d\theta$$

$$+2\pi N dx \int_0^{\theta_m} \tan \theta \, d\theta \int_0^{\alpha} \sigma(\alpha) 2\pi \sin \alpha I(\alpha, x) \, d\alpha,$$

(7)

where N is the number of nuclei per cm3 in the attenuator, and σ_t is the total cross section of each nucleus.

The physical meanings of the successive terms on the right-hand side of this equation are as follows:

1. Decrease due to attenuation in dx of hitherto unscattered neutrons whose flux density is $I_1(x)$.

2. Decrease due to attenuation in dx of neutrons previously elastically
scattered into the direction of the detector,

3. Increase due to elastic scattering in dx, into the direction of the detector, of hitherto undeviated neutrons.

4. Increase due to elastic scattering in dx of neutrons previously elastically scattered. The angle θ defines the scattering angle necessary to deflect these incident neutrons into the direction of the detector.

The angle α_m is to be large enough to include essentially all the elastically scattered flux incident upon dx.

Since $\sigma(\theta)$ and $I(\theta)$ are both strongly peaked at $\theta=0$ the integrals in (7) are not greatly affected by replacing $\tan \theta$ by $\sin \theta$. (In the worst case the difference is only 2.5 percent). Also for the same reason it can be shown that the angle β may be replaced by θ with an error sufficiently small to be allowable in this experiment. These two approximations are, in fact, partially compensating in their effects.

In view of Equations (6) and (5), these approximations permit (7) to be reduced to

$$dI(x) = I(x)N(\sigma_t-\sigma_s)\,dx;$$

so that an attenuation experiment with this arrangement will measure the difference of cross sections

$$\sigma_t-\sigma_s = \frac{1}{N} \frac{l_0}{\ln \frac{l_0}{l(x)}}. \tag{8}$$

The absorption cross section for the nuclei of the attenuating material is related to (8) by

$$\sigma_a = \sigma_t-\sigma_s-\sigma_1+\sigma_2, \tag{9}$$

where σ_1 accounts for elastic scattering into angles greater than α_m, and σ_2 is the cross section for inelastic scattering of neutrons into angles less than α_m with sufficient energy to be detected.

Subtraction of the measured quantity $(\sigma_t-\sigma_s)$ from the measured value
of \(\sigma_t \) yields an evaluation of \(\sigma_s' \)

\[
\sigma_s' = \sigma_t - (\sigma_t' - \sigma_s')
\]

which may be compared for experimental consistancy with that obtained by Eq (5).

If as is shown in Section V the quantities \(\sigma_1 \) and \(\sigma_2 \) are small, then \(\sigma_s' \) is approximately equal to the elastic scattering cross section \(\sigma_s = \sigma_t - \sigma_a \)

2. **Apparatus and experimental Procedure.** The arrangement for the attenuation experiment just discussed is shown in Fig. 3.

The angle \(\theta_m \) was 27° for dural and copper, and 21° for lead. The maximum attenuator thicknesses were as follows: dural and copper, six 5.08 cm discs; lead, six 2.54 cm discs. In every case a 4 cm lead shield was put just ahead of the poor geometry detector to avoid activation of the carbon by recoil protons from the attenuating material. The uniformity of the incident beam was checked in a preliminary experiment by putting carbon detectors at various points on the base of the absorbing cone. This was also checked by verifying that a single disc at the base of the cone gave the same attenuation as a disc of the same thickness near the vertex. Absorption and total cross sections for aluminum were obtained from the dural measurements making allowance for the other metals in the alloy.

IV. **RESULTS**

The results are summarized in Tables I, II and III and in Figures 8 and 9.

Table I. Total cross sections and the cross sections \(\sigma_s' \) (See Section III Bl) in units of \(10^{-24} \text{cm}^2 \). The third row of the Table gives scattering cross sections obtained from the total and absorption cross sections using Eq. (10). The last row gives the scattering cross section obtained by integration of the differential cross sections as in Eq. (5).
Table I

<table>
<thead>
<tr>
<th>Element</th>
<th>Al</th>
<th>Cu</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cross sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cook et al.</td>
<td>1.12 ± 0.02</td>
<td>2.22 ± 0.04</td>
<td>4.53 ± 0.09</td>
</tr>
<tr>
<td>This measurement</td>
<td>1.14 ± 0.03</td>
<td>2.15 ± 0.04</td>
<td>4.47 ± 0.11</td>
</tr>
<tr>
<td>σ_s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>By attenuation</td>
<td>0.65 ± 0.04</td>
<td>1.32 ± 0.03</td>
<td>2.64 ± 0.08</td>
</tr>
<tr>
<td>By integration</td>
<td>0.71 ± 0.04</td>
<td>1.37 ± 0.07</td>
<td>2.79 ± 0.14</td>
</tr>
<tr>
<td>Maximum angle θ_m</td>
<td>27°</td>
<td>27°</td>
<td>21°</td>
</tr>
</tbody>
</table>

Table II. Carbon Detector Measurements of differential cross sections in units of 10^{-24}cm^2 per steradian. The errors shown apply to the relative magnitudes and do not include a possible 3 percent error in assigning absolute magnitudes.

Table II

<table>
<thead>
<tr>
<th>Angle in Degrees</th>
<th>Al</th>
<th>Cu</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1/2</td>
<td>5.0 ± 0.4</td>
<td>13.8 ± 0.9</td>
<td>$59. \pm 4.$</td>
</tr>
<tr>
<td>3</td>
<td>14.8 ± 1.2</td>
<td>$54. \pm 6.$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.64 ± 0.18</td>
<td>14.2 ± 0.7</td>
<td>$53. \pm 5.$</td>
</tr>
<tr>
<td>5</td>
<td>4.36 ± 0.23</td>
<td>10.3 ± 0.3</td>
<td>$34. \pm 7.$</td>
</tr>
<tr>
<td>6</td>
<td>4.3 ± 0.3</td>
<td>10.6 ± 0.3</td>
<td>25.6 ± 1.0</td>
</tr>
<tr>
<td>7 1/2</td>
<td>3.30 ± 0.15</td>
<td>7.34 ± 0.22</td>
<td>11.3 ± 1.1</td>
</tr>
<tr>
<td>10</td>
<td>2.24 ± 0.15</td>
<td>4.66 ± 0.07</td>
<td>4.3 ± 0.6</td>
</tr>
<tr>
<td>12 1/2</td>
<td>1.54 ± 0.13</td>
<td>2.61 ± 0.05</td>
<td>2.1 ± 0.3</td>
</tr>
<tr>
<td>15</td>
<td>1.08 ± 0.04</td>
<td>1.30 ± 0.02</td>
<td>1.46 ± 0.14</td>
</tr>
<tr>
<td>17 1/2</td>
<td>0.66 ± 0.07</td>
<td>0.53 ± 0.03</td>
<td>1.58 ± 0.11</td>
</tr>
<tr>
<td>20</td>
<td>0.38 ± 0.02</td>
<td>0.40 ± 0.03</td>
<td>1.02 ± 0.10</td>
</tr>
<tr>
<td>22 1/2</td>
<td>0.17 ± 0.02</td>
<td>0.31 ± 0.05</td>
<td>0.59 ± 0.13</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table III Recoil proton detector measurements of differential cross sections in units of 10^{-24}cm^2 per steradian. The errors shown apply to the relative magnitudes and do not include a possible 5 percent error in assigning absolute magnitudes

<table>
<thead>
<tr>
<th>Angle in Degrees</th>
<th>Be</th>
<th>C</th>
<th>Al</th>
<th>Cu</th>
<th>Ag</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4.7 ± 0.7</td>
<td>135 ± 0.08</td>
<td>15.3 ± 1.3</td>
<td>28.3 ± 3.0</td>
<td>55.0 ± 4.3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.8 ± 0.3</td>
<td>12.9 ± 0.8</td>
<td>27.2 ± 1.9</td>
<td>55.0 ± 2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 1/2</td>
<td>3.90 ± 0.13</td>
<td>11.1 ± 0.3</td>
<td>18.2 ± 0.9</td>
<td>30.3 ± 0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.86 ± 0.04</td>
<td>1.35 ± 0.08</td>
<td>3.90 ± 0.13</td>
<td>11.1 ± 0.3</td>
<td>18.2 ± 0.9</td>
<td>30.3 ± 0.8</td>
</tr>
<tr>
<td>8</td>
<td>3.39 ± 0.17</td>
<td>8.6 ± 0.4</td>
<td>10.4 ± 1.4</td>
<td>40.0 ± 4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.700 ± 0.026</td>
<td>0.99 ± 0.06</td>
<td>2.34 ± 0.08</td>
<td>5.30 ± 0.23</td>
<td>5.7 ± 0.4</td>
<td>5.3 ± 0.5</td>
</tr>
<tr>
<td>14</td>
<td>1.22 ± 0.20</td>
<td>1.5 ± 0.4</td>
<td>1.07 ± 0.08</td>
<td>0.79 ± 0.07</td>
<td>1.36 ± 0.18</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.369 ± 0.016</td>
<td>0.505 ± 0.022</td>
<td>0.91 ± 0.05</td>
<td>1.07 ± 0.08</td>
<td>0.79 ± 0.07</td>
<td>1.36 ± 0.18</td>
</tr>
<tr>
<td>18</td>
<td>0.47 ± 0.13</td>
<td>0.17 ± 0.23</td>
<td>0.17 ± 0.23</td>
<td>0.67 ± 0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 1/2</td>
<td>0.105 ± 0.008</td>
<td>0.142 ± 0.012</td>
<td>0.191 ± 0.20</td>
<td>0.34 ± 0.05</td>
<td>0.40 ± 0.06</td>
<td>0.44 ± 0.13</td>
</tr>
<tr>
<td>30</td>
<td>0.033 ± 0.020</td>
<td>0.04 ± 0.04</td>
<td>0.10 ± 0.05</td>
<td>0.22 ± 0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0.004 ± 0.010</td>
<td>0.01 ± 0.02</td>
<td>0.06 ± 0.03</td>
<td>0.02 ± 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td>0.03 ± 0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>0.00 ± 0.02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
V. SOURCES OF ERROR

A. Angular Resolution

Because of the finite size of the scatterer and detector a measurement made at a given nominal angle actually corresponds to detection over a fairly wide range of angles as is shown in Figure 10. A detailed analysis has shown that the errors of the angles and cross sections due to this effect are negligible considering the accuracy of the experiment. This effect alone would not prevent the detection of a minimum of the type theoretically predicted for diffraction by an opaque nucleus but the wide spread in energy of the detected neutrons would prevent the detection of such a minimum.

B. Detection of Inelastically Scattered Neutrons

The contribution of inelastic scattering in the energy range between the thresholds of the carbon and recoil proton detectors (20 and 60-Mev respectively—cf. section III A 2) is not large enough to be apparent in comparing the results of the two methods. (See Fig. 8)

An estimate of the inelastic contribution can, however, be obtained from the measurements of Hadley and York\(^3\) on the differential cross sections of several elements for production of high energy secondary protons by 90 Mev neutrons. At these energies the incident neutron wavelength is sufficiently small to allow the effects of neutron-nucleon collisions to be observed, where the collision event involves primarily only the incident neutron and a neutron or proton of a target nucleus. By this process nucleons may be knocked out of nuclei with energies and angular distributions corresponding to those of n-p or n-n collisions in which the target nucleon possesses an initial momentum characteristic of the motions of particles in nuclei.

Hadley and York have measured differential cross sections for such emission of protons of over 20 Mev energy from C, Cu, and Pb. We shall
assume that the neutrons emerging from n-p collisions within the nucleus are described by the same differential cross section as these protons.

There will also be a contribution of high-energy neutrons due to n-n collisions. We assume that these events are similar to p-p collisions with respect to cross section and angular distribution. Recent experiments indicate that even at these energies the p-p collisions yield spherical symmetry in the center-of-mass system, and that the collision cross sections at these energies is roughly one-half the n-p collision cross section.

Using these assumptions, and taking account of the relative numbers of neutrons to protons in the nucleus in question, cross sections σ_2 of the target nuclei for delivering detectable neutrons by these "knock-on" processes into the angular range detected have been calculated and are shown in Table IV.

DeJuren and Knable have measured total cross sections and the cross sections for scattering of detectable flux into angles less than θ_m using the same absorbers as those described in this paper. In place of carbon detectors they used bismuth fission chambers for which the neutron counting threshold is about 50 Mev, and the mean detection energy for these neutrons is about 95 Mev. Because of the higher threshold of this detector it is to be expected that the cross sections σ_s' as measured by DeJuren and Knable include smaller contributions from inelastic scattering than the corresponding cross sections measured with carbon detectors. The ratios σ_s'/σ_t and $(\sigma_s'-\sigma_2)/\sigma_t$ from the carbon detector measurements and the ratio σ_s'/σ_t from bismuth fission detector measurements are shown in Table IV. Considering this comparison, and the similarity of the angular distributions observed using proportional counters with the 60 Mev threshold with those observed with carbon detectors, it appears likely that these cross sections
for inelastic processes yielding detectable neutrons are not underestimated.

In order to estimate the true scattering cross sections \(\sigma_s \) one must add the effect of the cross section \(\sigma_1 \) for elastic scattering into wide angles which will be discussed in the next section.

Thus \(\sigma_s' = \sigma_s' - \sigma_2 + \sigma_1 \)

Hence the values \(\sigma_s' - \sigma_2 \) of Table IV represent lower limits for \(\sigma_s' \).

Table IV. Observed scattering cross sections \(\sigma_s' \), calculated cross sections \(\sigma_2 \) for producing detectable neutrons by inelastic collisions, and comparisons of ratios of cross sections measured at two energies. (cross sections in units of \(10^{-24} \text{cm}^2 \))

<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>Cu</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed scattering cross sections (\sigma_s')</td>
<td>0.71</td>
<td>1.37</td>
<td>2.79</td>
</tr>
<tr>
<td>Calculated values of (\sigma_2)</td>
<td>0.07</td>
<td>0.13</td>
<td>0.17</td>
</tr>
<tr>
<td>(\sigma_s' - \sigma_2)</td>
<td>0.64</td>
<td>1.24</td>
<td>2.62</td>
</tr>
<tr>
<td>(\sigma_s'/\sigma_t)</td>
<td>0.62</td>
<td>0.64</td>
<td>0.62</td>
</tr>
<tr>
<td>(\sigma_s' - \sigma_2)/\sigma_t)</td>
<td>0.56</td>
<td>0.58</td>
<td>0.59</td>
</tr>
<tr>
<td>(\sigma_s'/\sigma_t), measured with Bi fission counters ((\sim 95\text{-MeV}))</td>
<td>0.58</td>
<td>0.61</td>
<td>0.60</td>
</tr>
</tbody>
</table>

C. Elastic Scattering into Wide Angles

The neutron flux per unit solid angle becomes so small at angles greater than \(\theta_m \) that measurements of the intensity become very inaccurate. However, because of the sine factor which enters into the calculation of the scattering cross sections (See Equation (5)) the total flux in wide angles may not be negligible. An indication of the order of magnitude of this effect can be obtained from wide angle differential cross section measurements made with the recoil proton detector. (See Table III). On the basis of these measurements it has been estimated that the wide angle scattering effect may
be of the order of 5 percent for Al but is less than this for Cu and Pb and is thus somewhat smaller than the inelastic scattering effect. As can be seen from equation (9) the two effects tend to cancel each other in the evaluation of the difference between σ''_e and the true elastic scattering cross section σ''_0.

It should be noticed that these effects are common to both methods of measuring σ''_0, hence the attenuation method serves principally as a check on other systematic errors in the differential cross section measurements.

VI. Analysis of Results

A. Description of the Angular Distribution

In the present experiment the deBroglie wave-length of the neutrons is smaller than nuclear dimensions, and it is sensible to speak of a neutron colliding within the area of cross section presented by the nucleus. This implies that neutrons with rather large values of angular momentum will be involved in nuclear collisions.

The quantized values of angular momentum will extend up to $pR = l\hbar$ or $l = kr$; where $k = 1/\lambda = p/\hbar$, and l is an angular momentum quantum number. R is the largest value of impact parameter for which observable effects of collision occur, and it may be defined as the nuclear radius.

For 83-Mev neutrons $\lambda = 0.49 \times 10^{-12}$cm, and for a heavy nucleus R is nearly 10^{-12}cm. Thus values of l will in some cases extend nearly as high as 20.

Since at the degree of excitation which such neutrons could impart to nuclei the nuclear levels will be numerous and overlapping, it is to be expected that such collisions would lead to inelastic events or absorption. Inelastically scattered neutrons or secondary neutrons from such events are almost entirely of energies below the detection threshold as indicated in Section V. Thus it is possible as a first approximation to conceive of the
nucleus, for the purpose of this experiment, as an opaque, spherical obstacle absorbing and diffracting the neutron wave.

If a description of the scattering process is represented in partial waves, and the expression for the scattered wave obtained by subtracting the expression for the unperturbed plane wave from that for the wave field with scattering nucleus present, the asymptotic result at a large distance r from the scattering center, and at angle θ from the direction of the incident beam is:

$$\Psi_{\text{scatt}} \sim \frac{e^{ikr}}{2ikr} \sum_{l=0}^{\infty} \frac{(2l+1)(e^{2i\delta_l} - 1) P_l(\cos\theta)}{(2l+1)}.$$

When no absorption in the scattering nucleus occurs, δ_l is a real number which measures the phase difference between the lth partial wave and the diverging components of the actual wave field and the corresponding wave in the unperturbed field. But when the scattering nucleus also absorbs neutrons the effect is described by a complex value for δ_l,

$$\delta_l = \xi_l + i\eta_l,$$

where η_l then functions as an absorption exponent affecting the magnitude of the diverging lth wave.

If now the scattering nucleus is considered to be a perfectly absorbing sphere of radius R, the value of η_l for $0 \leq l \leq kR$ will be infinite. Also if neutrons passing with $l > kR$ are to be unaffected the value of δ_l will be zero for $l > kR$.

For this approximate model, then, the scattered wave (11) reduces to:

$$\Psi_{\text{scatt}} \sim \frac{e^{ikr}}{2ikr} \sum_{l=0}^{kr} \frac{(2l+1) P_l(\cos\theta)}{(2l+1)}.$$

The result (12) can be directly obtained by noting that the effect of the nucleus is to remove from the diverging components of the unperturbed
wave those partial waves with values of \(l \) up to \(l = kR \). This removal is mathematically described by superimposing upon the unperturbed wave a set of partial waves with amplitudes equal to corresponding amplitudes of the unperturbed wave field, with values of \(l \) up to \(l = kR \), and with each phase shifted by one-half cycle. This superimposed set represents the scattered neutrons and its expression is just (12). This is simply an application of Babinet’s principle from physical optics.

From (12) the differential scattering cross section is seen to be

\[
\sigma(\theta) = \frac{1}{4k^2} \sum_{l=0}^{l=kR} (2l+1)P_l(\cos \theta)^2 \tag{13}
\]

For forward scattering, \(\theta = 0 \), (13) yields

\[
\sigma(0^0) = \frac{1}{4} k^2 (R + 1/k)^4 \tag{14}
\]

It is to be expected that the opaque nucleus model should give a distribution of elastically scattered neutrons similar to the Fraunhofer diffraction pattern for a plane wave diffracted by an opaque circular disk. It can be shown that for small angles expression (13) can be written in the approximate form \(^{16, 17}\)

\[
\sigma(\theta) = \frac{1}{4} k^2 (R')^4 \left[\frac{J_1(2kR' \sin(\theta/2))}{kR' \sin(\theta/2)} \right]^2, \tag{15}
\]

where \(J_1 \) indicates a first-order Bessel function, and \(R' = R + 1/k \). This is the expression for intensity in the Fraunhofer pattern produced by a disk of radius \(R' \) diffracting plane waves with \(\lambda = 1/k \).

B. Effect of Neutron Energy Spread Upon Angular Distribution

The energy dependence of the differential cross section occurs through the quantity \(k = (1/\lambda) = p/h \). In order to compare the theoretical distribution (13) with one observed it is necessary to calculate from (13) or (15)
a predicted value of \(\sigma(\theta) \) by averaging over the energy spectrum of incident neutrons \(G(E) \) modified by the energy dependence of the detection efficiency \(e(E) \).

Thus

\[
(\sigma(\theta) \text{ pred}) = \frac{\int_{E_{\text{min}}}^{E_{\text{max}}} \sigma(\theta,E)G(E)e(E)dE}{\int_{E_{\text{min}}}^{E_{\text{max}}} G(E)e(E)dE}
\]

It is not necessary to account for any change in energy of the neutrons upon being scattered, for the lightest nucleus employed is \(\text{Al} \), (excluding recoil proton detector measurements) and the scattering is confined to small angles. The averaging is accomplished by graphical integration using information on the neutron energy spectrum previously mentioned, and some approximate experimental data, supplemented by theory,\(^6,7\) on the \(\text{C}^{12}(n,2n)\text{C}^{11} \) cross section and its variation with energy.

The functions (13) and (15) are indistinguishable within the limits of accuracy needed in this comparison, so (15) has been employed. The principal effect of the averaging process just described is to increase the contribution in the vicinity of the first root of the Bessel function above that obtained from a pure spectrum of \(84\)-MeV neutrons.

C. Comparison of Observations with Theory

By integration of the differential scattering cross section as given by (13) the elastic scattering cross section is obtained:

\[
\sigma_s = 2\pi \int_0^\pi \frac{1}{4k^2} \left[\sum_{l=0}^{l=kR} (2l + 1)P_l(\cos\theta) \right]^2 \sin\theta d\theta
\]

\[
= \pi(R + 1/k)^2 = \pi R^2 f^2.
\]
An experimental value for σ_s will, by use of (16), allow determination of R', which, in turn, may be used in (15) to construct angular distribution curves appropriate to the opaque model for comparison with the shapes of the experimental distributions.

This comparison is shown in Fig. 8. The dashed curves are the result of determining R' from the values of σ_S' displayed in Table IV; and the dotted curves result from using $(\sigma_S' - \sigma_2)$ from determining R'. In each case the distribution given by (15) has been modified as in the preceding Section B to account for the energy spread of the neutrons.

In view of Sections V, B and C, and Eq. (16), we should actually determine R' from $\sigma_S = \sigma_S' - \sigma_2 + \sigma_1 = n(R')^2$. The value of σ_1 is very small in the cases of Cu and Pb, but may be comparable with σ_2 in the case of Al as shown in the experimental results of Table III. These facts are consistent with the agreement of the dotted curves with datum points for Pb and Cu, while for Al the points are closer to the dashed curve computed from σ_S'.

To be consistent, one should subtract from the datum point ordinates the values of the differential cross sections for inelastic collisions delivering detectable neutrons, estimated in the manner described in Section V-B. But this does not significantly alter the positions of the points except at very wide angles where the datum point accuracy does not warrant such correction.

A calculation of the angular distribution has also been made on the basis of the "transparent" model of Fernbach, Serber, and Taylor. This model assumes for nuclear matter an absorption coefficient and an index of refraction. The radius of an individual nucleus according to this scheme can be represented by α / σ. In the case previously described, based on the total cross-section measurements of Cook, McMillan, Peterson, and Sewell, the radius of the nucleus is given by 1.37×10^{-13} cm where K (the absorp-
tion coefficient) is chosen as $2.2 \times 10^{12} \text{ cm}^{-1}$ and k_1 (the increase of the propagation constant of the neutron wave upon entering the nucleus) as $3.3 \times 10^{12} \text{ cm}^{-1}$.

The angular distributions determined with these constants yield the curves shown in Fig. 11. The theoretical curves are noticeably lower than the experimental values in the forward direction, but fit comparatively well at other angles. The Bessel function obtained from the opaque model on the other hand fits better in the forward direction but not as well at larger angles.

Figure 12 shows the theoretical curve for σ_a/σ_t as a function of nuclear radius. The experimental points are taken from the attenuation data obtained from the poor geometry experiment.

Curve A is calculated with the above mentioned constants, curve B with constants that fit this attenuation data better. Neither the angular distribution nor the total cross sections are very sensitive to changes in the value of the absorption constant, whereas the absorption cross section is a function of KR only. Hence a poor geometry attenuation experiment can be used to make a more critical determination of K. In this case $K=3.0 \times 10^{12} \text{ cm}^{-1}$ shows better agreement with the experimental results. It should be mentioned that with this value of K, the value of r_0 necessary to give the best fit for the total cross sections is $1.39 \times 10^{-13} \text{ cm}$.

In Fig. 12 the experimental values have not been corrected for the scattering beyond the maximum angle used. The only appreciable scattering beyond θ_{\max} seems to be that for aluminum. Such correction would reduce the ratio σ_a/σ_t and bring the experimental point closer to the theoretical curve.

VII. Acknowledgments

The author wishes to express his appreciation to Professor E. O. Lawrence for his interest in this work. The problem was originally suggested
by Professor E. M. McMillan who further aided the experiments by many helpful discussions. Mr. S. Fernbach contributed greatly by discussions of the nuclear models referred to in this paper. Thanks are also due to Messrs. A. Bratenahl and C. E. Leith for their great assistance in conducting the experiments. Finally the author wishes to express his gratitude to Dr. E. J. Moyer for his guidance and assistance throughout the work.

VIII. References

4. R. Serber, Phys. Rev. 72, 1007 (1947)
6. W. Heckrotte and Peter Wolff, Phys. Rev. 73, 265 (1948)
7. R. L. Mather and H. F. York, Private Communication
Fig. 1. Neutron Energy Distribution.

Curve A shows the energy distribution of neutrons in the beam as calculated from stripping theory.

Curve A' shows the measured distribution.

Curves B and B' are the limiting carbon excitation functions.

Curves C and C' are the corresponding distributions of detected neutrons. (see Section II)
Fig. 2. Plan view of experimental arrangement.
Fig. 3. Schematic drawing of apparatus for attenuation experiments.
Fig. 4. Detector and detector counting arrangement.
FIG. 5

SCATTERING SPHERE AND TWO PAIRS OF DETECTORS ARRANGED AS IN EXPERIMENT.
Fig. 6. Recoil Proton Detector
A, B Lead shields
C Paraffin for production of recoil protons
D, E, F Proportional counters in coincidence
G 0.010 inch copper window
H Copper absorber to provide proton detection threshold
I Kovar-glass insulator
Fig. 7. Geometry of attenuation experiment.
Fig. 8. Differential scattering cross sections in units of 10^{-24} cm2 per steradian. The dashed and dotted curves show expected patterns from opaque nucleus with cross sections σ' and $(\sigma_s' - \sigma_2')$ respectively. (see section VI-C)
Fig. 9. Small angle differential cross sections in units of 10^{-24}cm^2 from recoil proton detector measurements. The curves have the form of opaque nucleus diffraction patterns. The Pb curve is adjusted to give the best fit to the lead points and the other curves have the relative ordinates expected on the basis of the total cross section measurements of Cook et al 2, i.e., the zero degree differential cross sections are expected to
Fig. 10. Angular resolution. The solid bell-shaped curves show the detection distribution for two typical detector positions in the measurement of the angular distribution from the lead scatterer (5° at 65 cm and 10° at 34 cm). When these are multiplied by the dotted curve which has the form of the angular distribution for lead we obtain the effective detection distribution shown as dashed curves.
Fig. 11: Comparison of experimental differential cross sections with those calculated from transparent model theory. (Units same as in Fig. 5)
The experimental points determined from attenuation data.

Theoretical curves for σ_o / σ_1 vs. $R (R = 1.37 A^{1/3} \times 10^{-13} \text{ cm})$

- **A**: $K = 2.2 \times 10^{12} \text{ cm}^{-1}$, $K_1 = 3.3 \times 10^{12} \text{ cm}^{-1}$
- **B**: $K = 3.0 \times 10^{12} \text{ cm}^{-1}$, $K_1 = 3.3 \times 10^{12} \text{ cm}^{-1}$

Fig. 12. Theoretical curves for σ_o / σ_1 vs. $R (R = 1.37 A^{1/3} \times 10^{-13} \text{ cm})$

- **A**: $K = 2.2 \times 10^{12} \text{ cm}^{-1}$, $K_1 = 3.3 \times 10^{12} \text{ cm}^{-1}$
- **B**: $K = 3.0 \times 10^{12} \text{ cm}^{-1}$, $K_1 = 3.3 \times 10^{12} \text{ cm}^{-1}$