Title
Improved layered mixed transition metal oxides for Li-ion batteries

Permalink
https://escholarship.org/uc/item/2382q374

Author
Doeff, Marca M.

Publication Date
2010-06-01

Peer reviewed
Improved layered mixed transition metal oxides for Li-ion batteries

Marca M. Doe, Thomas Conry, and James Wilcox
Materials Sciences Division
Lawrence Berkeley National Laboratory
University of California
Berkeley, CA 94720

ABSTRACT

Recent work in our laboratory has been directed towards development of mixed layered transition metal oxides with general composition \(\text{Li}[\text{Ni}, \text{Co}, \text{M}, \text{Mn}]\text{O}_2 \) (M=Al, Ti) for Li ion battery cathodes. Compounds such as \(\text{Li}[\text{Ni}_{1/3}\text{Co}_{1/3}\text{Mn}_{1/3}]\text{O}_2 \) (often called NMCs) are currently being commercialized for use in consumer electronic batteries, but the high cobalt content makes them too expensive for vehicular applications such as electric vehicles (EV), plug-in hybrid electric vehicles (PHEVs), or hybrid electric vehicles (HEVs). To reduce materials costs, we have explored partial or full substitution of Co with Al, Ti, and Fe. Fe substitution generally decreases capacity and results in poorer rate and cycling behavior. Interestingly, low levels of substitution with Al or Ti improve aspects of performance with minimal impact on energy densities, for some formulations. High levels of Al substitution compromise specific capacity, however, so further improvements require that the Ni and Mn content be increased and Co correspondingly decreased. Low levels of Al or Ti substitution can then be used offset negative effects induced by the higher Ni content. The structural and electrochemical characterization of substituted NMCs is presented in this paper.

Keywords: Cathodes, metal oxides, Li ion batteries, Al-substitution, Ti-substitution

1. INTRODUCTION

Layered mixed transition metal oxides with the general formula \(\text{Li}[\text{Ni},\text{Co},\text{M}]\text{O}_2 \) (NMCs) are currently being developed for use as cathodes in Li ion batteries. An idealized structure is shown in Figure 1. For most formulations, \(x=y=z \) in these compounds, and only Ni and Co are electroactive, whereas Mn has the nominal oxidation state of +4 and is electrochemically inert. In principle the composition (i.e., \(x, y, \) and \(z \)) can be varied, but a number of trade-offs exist. An increase in the Ni and Mn contents lowers raw materials costs, but can result in poorer rate capability and thermal tolerance at high states of charge. Co improves rate capability but is expensive compared to Ni and Mn. Cost is a particularly important consideration for vehicular applications (plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs)), so reduction of Co content is a paramount concern. \(\text{Li}[\text{Ni}_{1/3}\text{Co}_{1/3}\text{Mn}_{1/3}]\text{O}_2 \) is perhaps the most well-known of the NMCs and shows excellent performance. For example, it can deliver 150 mAh/g between 2.5 and 4.2 V vs lithium and close to 200 mAh/g when the charge is increased to 4.6 V. The power capability exceeds the high-power pulse requirement for hybrid vehicle applications, and the material shows increased thermal abuse tolerance compared to \(\text{LiNi}_{0.8}\text{Co}_{0.15}\text{Al}_{0.05}\text{O}_2 \). The relatively high Co content in this material and its associated cost has led researchers towards exploring different formulations such as \(\text{Li}[\text{Ni}_{0.4}\text{Co}_{0.2}\text{Mn}_{0.4}]\text{O}_2 \) and \(\text{Li}[\text{Ni}_{0.45}\text{Co}_{0.05}\text{Mn}_{0.45}]\text{O}_2 \). In the NMCs, Co is used to suppress migration of Ni into the Li sites, which adversely affects rate capability. In general, as the cobalt content is decreased, the degree of anti-site mixing increases. For example, in the parent, \(\text{LiNi}_{0.2}\text{Mn}_{0.8}\text{O}_2 \), the amount of exchange can be as high as 12%, leading to low rate capability for this material. Moreover, materials with increased Ni content may exhibit lower thermal stability at high states of charge. These observations led us towards the exploration of partial or full substitution of Co with Al, Ti, or Fe in NMCs. In some cases, substitution with these metals actually led to improvements in electrochemical behavior, suggesting that it may be possible to reduce Co in these compositions without compromising performance. An overview and summary of the work on substituted NMCs from our laboratory is presented in this paper.

\footnote{mmdoeff@lbl.gov, phone 1-510-486-5821}
2. EXPERIMENTAL

Positive electrode materials were synthesized by the glycine-nitrate combustion procedure,16 as described previously.14,15 Powder X-ray diffraction (XRD) patterns was used to confirm the structures of the calcined powders and were obtained on a Phillips X'Pert diffractometer equipped with an X'Celerator detector using Cu Kα radiation. Rietveld refinements were carried out using using the General StructureAnalysis System (GSAS/EXPGUI) software package or the WINPLOTR/FullProf suite. Chemical analyses were carried out by Desert Analytics Laboratory (Tucson, AZ) to confirm nominal compositions. Pressed pellets for conductivity studies were made as described previously.15 AC impedance spectra were obtained using a Solartron Instruments 1260 impedance/gain-phase analyzer. Conductivities were derived from the intercept of the capacitative arc with the Z' axis in the Nyquist plots.

Laminate composite electrodes comprised of 84 wt % active material, 8 wt % polyvinylidene fluoride (PvdF, Kureha Chemical Ind. Co. Limited), 4 wt % Denka compressed acetylene black, and 4 wt % SFG-6 synthetic flake graphite (Timcal Ltd., Graphites and Technologies) were prepared by applying slurries in 1-methyl-2-pyrrolidinone onto carbon-coated current collectors (Intelicote Technologies) by automated doctor blade. After drying in air and in vacuum for at least 24 h, 1.8 cm2 electrodes having an average loading of 7–10 mg/cm2 of active material were punched out. Coin cells (2032 size) containing these electrodes were assembled in a helium-filled glove box with lithium metal anodes and 1 M LiPF\textsubscript{6} in 1:2 ethylene carbonate/dimethyl carbonate electrolyte solution (Ferro). Galvanostatic cycling was carried out on an Arbin BT/HSP-2043 cycler between limits of 2.0 and 4.3–4.7 V or a VMP3 potentiostat/galvanostat (BioLogic). In situ X-ray diffraction patterns were obtained on Li cells containing composite electrodes at the Stanford Synchrotron Radiation Lightsource on beamline 11-3.
3. RESULTS AND DISCUSSION

The theoretical capacities of most NMCs are about 270 mAh/g. EXAFS studies have shown that electrochemical processes below about 4.3V vs. Li are dominated by the redox chemistry of Ni$^{2+} \leftrightarrow $ Ni$^{3+}$, while Co is oxidized primarily at higher voltages.17, 18, 19 The charge potential is generally limited to about 4.3V vs. Li in practical cells to prolong cycle life. Thus, even if the substituent is electrochemically inactive, replacement of Co should have little impact on practical energy density, provided no other changes occur. Figure 2 shows the effect of substitution of Al, Ti, and Fe on the theoretical capacities of several series of NMCs, as well as capacities obtained in lithium cells discharged at 0.1 mA/cm2 between 4.3 and 2.0V.

For the unsubstituted NMCs, raising the Ni and Mn contents and lowering the Co contents in cathode materials decreases the discharge capacity obtained in lithium cells somewhat (compare Figures 2a, 2b, and 2c). In the case of Li[Li$_{0.15}$Co$_{0.75}$Mn$_{0.15}$]O$_2$, the obtained discharge capacity nearly matches what is predicted based on the Ni content, but the discrepancy widens for Li[Ni$_{0.4}$Co$_{0.2}$Mn$_{0.4}$]O$_2$ and even more so for Li[Ni$_{0.45}$Co$_{0.1}$Mn$_{0.45}$]O$_2$. This most likely reflects increases in ion-mixing (i.e., Ni in 3a sites) as the Co content is decreased. For all three series, Al substitution lowers the practical discharge capacity obtained during discharge in lithium cells, but the effect is most severe for the Li[Ni$_{0.15}$Co$_{0.75}$Al$_{0.15}$Mn$_{0.15}$]O$_2$ materials. A 15% drop is observed for Li[Ni$_{0.15}$Co$_{0.15}$Al$_{0.15}$Mn$_{0.15}$]O$_2$ over the parent compound, compared to 7% for Li[Ni$_{0.4}$Co$_{0.2}$Al$_{0.1}$Mn$_{0.4}$]O$_2$ and Li[Ni$_{0.45}$Al$_{0.1}$Mn$_{0.45}$]O$_2$ over the unsubstituted analogs. The larger than expected drop in discharge capacity is primarily caused by a rise in the average voltage potential upon charge induced by the Al substitution, which decreases the amount of Li that can be extracted below 4.3V. A similar increase in the discharge potential is also observed, indicating that the cause is thermodynamic, rather than kinetic.

Low levels of Fe substitution also results in a severe drop in discharge capacity, especially for Li[Ni$_{0.15}$Co$_{0.75}$Fe$_{0.15}$Mn$_{0.15}$]O$_2$ (see Figures 2d and 2f), while the effect of Ti substitution has very little impact on utilization. Interestingly, Fe substitution does not have a big effect on the overall theoretical capacity, assuming that the Fe$^{3+}$/Fe$^{4+}$ redox couple is active. Although Ti most likely substitutes in as electrochemically inert Ti$^{4+}$, some Mn$^{4+}$ must be converted to electroactive Mn$^{3+}$ for charge compensation (there is no evidence of Li deficiency in the Li[Ni$_{0.15}$Co$_{0.15}$Ti$_{0.15}$Mn$_{0.15}$]O$_2$ material); thus the overall theoretical capacity is also nearly unaffected.

The nature of the substituent and the overall composition of the materials affect other aspects of the electrochemical performance in lithium cells. Iron substitution not only results in decreases in capacity but also has deleterious effects on rate capability and appears to increase capacity fading upon cycling.14, 15 In contrast, Ti and Al substitution appear, at least for some cases, to improve both rate capability and cycling stability. A comparison of the cycling behaviors of Li/Li[Ni$_{0.4}$Co$_{0.2}$Mn$_{0.4}$]O$_2$ and Li/Li[Ni$_{0.4}$Co$_{0.15}$Al$_{0.05}$Mn$_{0.45}$]O$_2$ cells are shown in Figure 3. Although substitution with Al decreases the capacity somewhat, this disadvantage is erased by about the 25th cycle due to the improved cycling. The wide variation in behavior observed upon substitution with different metals is somewhat surprising and bears further investigation.

Both Al and Fe substitution in the Li[Ni$_{0.4}$Co$_{0.2}$Mn$_{0.4}$]O$_2$ series cause a decrease in the conductivity (Figure 4). Al is an sp-type metal, with no d-electrons available near the Fermi state, so a decrease in electronic conductivity is expected. The result for Fe is particularly dramatic and more difficult to explain, but may be caused by disruption of the cobalt bonding network induced by the substitution. Materials with poor conductivity can sometimes perform extremely well in electrochemical cells, (e.g., LiFePO$_4$ with $\sigma_{Fe}=10^9$ S/cm2). In fact, Li[Ni$_{0.4}$Co$_{0.15}$Al$_{0.05}$Mn$_{0.45}$]O$_2$, which has an equally low conductivity as Li[Ni$_{0.4}$Co$_{0.15}$Fe$_{0.05}$Mn$_{0.45}$]O$_2$, has much better discharge characteristics. Thus, alternative explanations must be sought for the latter's poor electrochemical behavior.

Structural changes induced by partial or full substitution of Co in the NMCs may be responsible for some of the differences in electrochemical behavior.14, 15 It has already been noted that high concentrations of anti-site defects in NMCs impede lithium diffusion and result in poor rate capability. Such defects decrease the layered character of the structures. The c/3a ratio (where a and c are unit cell parameters) has often been taken as a qualitative measure of lamellarity.10, 21 These values can range from 1.793 for an ideal layered structure (i.e., LiTiS$_2$) to 1.633 for cubic close-packed structures (e.g., complete disorder). Layered materials containing defects will fall somewhere in between these values. The c/3a ratios for baseline materials and substituted NMCs are summarized in Figure 5.
Figure 2. Effect of substitution for cobalt on the theoretical capacities of Li[Ni\textsubscript{1-y}Co\textsubscript{y}M\textsubscript{1-y}Mn\textsubscript{y}]O\textsubscript{2} (M=Al, Fe, or Ti) materials: (a) Li[Ni\textsubscript{0.9}Co\textsubscript{0.1}Al\textsubscript{0.9}]O\textsubscript{2}, (b) Li[Ni\textsubscript{0.6}Co\textsubscript{0.4}Al\textsubscript{0.6}]O\textsubscript{2}, (c) Li[Ni\textsubscript{0.45}Co\textsubscript{0.55}Al\textsubscript{0.45}Mn\textsubscript{0.55}]O\textsubscript{2}, (d) Li[Ni\textsubscript{0.9}Co\textsubscript{0.1}Fe\textsubscript{0.9}]O\textsubscript{2}, (e) Li[Ni\textsubscript{0.9}Co\textsubscript{0.1}Ti\textsubscript{0.9}]O\textsubscript{2}, and (f) Li[Ni\textsubscript{0.6}Co\textsubscript{0.4}Fe\textsubscript{0.6}Mn\textsubscript{0.4}]O\textsubscript{2}. The capacities obtained in Li cells discharged at 0.1 mA/cm2 between 4.3 and 2.0V are also shown.
Figure 3. Discharge capacity as a function of cycle number for Li/Li[Ni_{0.4}Co_{0.2}Mn_{0.4}]O_2 and Li/Li[Ni_{0.4}Co_{0.15}Al_{0.05}Mn_{0.4}]O_2 cells cycled at 0.1 mA/cm² between 4.3 and 2.0V.

Figure 4. Conductivities of Li[Ni_{0.4}Co_{0.2-y}M_yMn_{0.4}]O_2 (M=Al, Fe) pressed pellets at 75°C.
Figure 5. c/3a ratios, obtained from Rietveld refinements of XRD power patterns of substituted NMCs. In the legend, 424-Al and 424-Fe refer to the Li[Ni_{0.4}Co_{0.2}Mn_{0.4}]O_{2} (M=Al or Fe) series while 333-Al, 333-Fe, and 333-Ti refer to the Li[Ni_{0.7}Co_{0.3}.
M_{1/3}Mn_{1/3}]O_{2} (M=Al, Fe, or Ti) respectively.

The lower c/3a ratio of the baseline Li[Ni_{0.4}Co_{0.2}Mn_{0.4}]O_{2} compound compared to the baseline Li[Ni_{0.7}Co_{0.3}Mn_{1/3}]O_{2} (left side of Figure 5) is consistent with the electrochemical results and previous observations of increased ion mixing as Co content is decreased. Refinements of combined powder neutron and XRD patterns on Li[Ni_{0.4}Co_{0.2}Mn_{0.4}]O_{2} show that approximately 6.6% of the Ni is located on Li sites. Figure 5 also shows that Al or Ti substitution improves the layered character, whereas Fe substitution has the opposite effect. In Li[Ni_{0.4}Co_{0.15}Fe_{0.05}Mn_{0.4}]O_{2}, the concentration of anti-site defects increases to 7.2%. Thus, the poor electrochemical behavior of this compound may be attributable to the increased ion mixing and effect this has on lithium diffusion. However, Al substitution in this series also appears to increase the amount of Ni on Li sites marginally, seemingly contrary to the qualitative results shown in Figure 5. The better lamellarity of these materials appears to be caused mainly by an opening up of the Li slab spacing (Li_{0.2}), which is associated with faster lithium diffusion (Figure 6). This phenomenon is associated with changes in the overall bond covalencies upon substitution. The average M-O bond lengths decrease with higher Al content, causing the transition metal slab thickness to decrease and the Li-O bonds to lengthen. Interestingly, these effects are more apparent in the Li[Ni_{1/3}Co_{0.7}A_{0.3}Mn_{1/3}]O_{2} series than in the Li[Ni_{0.4}Co_{0.2}.
M_{1/3}Mn_{1/3}]O_{2} system. While it is likely that the increase in the lithium slab spacing can compensate for the negative effects on lithium diffusion rates of a minor increase in anti-site mixing, the smaller change seen in the Li[Ni_{0.4}Co_{0.2}.
M_{1/3}Mn_{1/3}]O_{2} series runs contrary to the observation that Al substitution actually has more beneficial effects than in the Li[Ni_{0.7}Co_{0.3}A_{0.3}Mn_{1/3}]O_{2} materials, especially on rate capability. However, Figures 5 and 6 show values only for the fully lithiated materials and no information on how c/3a and Li_{0.2} slab spacings vary as a function of state-of-charge.

GITT experiments carried out on cells containing Li[Ni_{0.4}Co_{0.2}A_{0.3}Mn_{0.4}]O_{2} electrodes show that Li diffusion coefficients vary by as much as an order of magnitude as a function of lithium content. For all materials, regardless of degree of Al substitution, values reach maxima at compositions of about x=0.5-0.6 and then fall off precipitously as lithium is further extracted. This roughly corresponds to the behavior of the c lattice parameter upon delithiation of NMCs. For example, Figure 7 shows the variation in the d_{003} spacing of Li[Ni_{0.45}Co_{0.05}A_{0.5}Mn_{0.45}]O_{2} as x is varied in by discharging a lithium battery in situ at the Stanford Synchrotron Radiation Lightsource. The d_{003} spacing is 1/3 of the value of the c lattice parameter, which is influenced by both the size of the Li_{0.2} slab and the MO_{2} transition metal slab thickness. Further analysis of these data should allow these values to be extracted as a function of Li content and composition of the NMCs, allowing a more complete picture to be obtained of how substitution influences structure and electrochemical behavior of these cathode materials.
Figure 6. Variation of the LiO$_2$ slab spacing for Li[Ni$_{0.4}$Co$_{0.2}$Al$_{1}$Mn$_{0.4}$]O$_2$ and Li[Ni$_{0.05}$Co$_{0.2}$Al$_{0.05}$Mn$_{0.45}$]O$_2$ materials.

Figure 7. The change in the d$_{003}$ spacing of Li$_x$[Ni$_{0.45}$Co$_{0.05}$Al$_{0.05}$Mn$_{0.45}$]O$_2$ as x is varied by charging a lithium cell containing this material in situ.
4. CONCLUSIONS

The purpose of this work has been to investigate the feasibility of replacing all or part of the expensive cobalt in the layered mixed transition metal compounds known informally as NMCs, with lower cost metals. The effect of these substitutions upon the electrochemical behavior varies widely depending upon the composition, amount, and nature of the substituent in ways that are not always expected. For example, iron substitution has particularly deleterious effects on electrochemical performance, even though it is expected to be electroactive and does not decrease the theoretical capacity. The substitution of Fe for Co in the NMCs decreases the layered character by increasing the amount of Ni on the Li sites, which adversely affects Li diffusion. In contrast, both Al and Ti substitution, which are not electroactive, have some beneficial effects, although practical capacities are decreased in the case of the former. Both of these metals improve lamellarity, although Al does so mainly by increasing the LiO_2 slab spacing, rather than decreasing disorder. The degree of the effect of Al on the structures of the as-made materials differs depending upon the overall composition, however, and does not necessarily track the relative improvements in electrochemical performances. A possible explanation is that LiO_2 slab spacings change in different ways as a function of state-of-charge for different series. Further work will be directed towards understanding and exploring these possibilities.

ACKNOWLEDGMENTS

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Part of this work was carried out at the Stanford Synchrotron Radiation Lightsource (SSRL). We would like to acknowledge the assistance of Dr. Jordi Cabana-Jimenez of Lawrence Berkeley National Laboratory and Dr. Apurva Mehta for the work done at SSRL.

REFERENCES

[18] Tsai, Y. W., Hwang, B. J., Ceder, G., Sheu, H. S., Liu, D. G. and Lee, J. F., “In-Situ X-ray absorption spectroscopic study on variation of electronic transitions and local structure of LiNi0.10Co0.90Mn0.00O2 cathode material during electrochemical cycling,” Chem. Mater. 17(12), 3191-3199 (2005).