Title
Improving nitrite analysis in soils: Drawbacks of the conventional 2 M KCl extraction

Permalink
https://escholarship.org/uc/item/23j0k29h

Journal
Soil Science Society of America Journal, 79(4)

ISSN
0361-5995

Authors
Homyak, PM
Vasquez, KT
Sickman, JO
et al.

Publication Date
2015

DOI
10.2136/sssaj2015.02.0061n

Peer reviewed
Soil nitrite \((\text{NO}_2^-)\) is an important intermediate in nitrification and denitrification (Robertson and Groffman, 2007) and also participates in abiotic reactions (Nelson and Bremner, 1970a, b, or ab; Venterea et al., 2005; Venterea, 2007). In soils, biologically produced \(\text{NO}_2^-\) can react chemically to produce gaseous N-oxides such as nitrous acid (HONO), nitric oxide (NO), and nitrogen dioxide (NO\(_2\)) (Nelson and Bremner, 1970a, b, or ab; Medinets et al., 2015), which all contribute to the oxidative capacity of the lower atmosphere (Oswald et al., 2013). Despite the importance of soil \(\text{NO}_2^-\) to atmospheric chemistry (Su et al., 2011; Oswald et al., 2013) \(\text{NO}_2^-\) is rarely detected in soils, limiting our ability to observe linkages between soil N-cycling processes and atmospheric chemistry.

In spite of the fast reactivity of \(\text{NO}_2^-\) in soils, however, it accumulates under at least two conditions: (i) when high soil ammonium \((\text{NH}_4^+\) concentrations and pH adversely affect the microbes consuming \(\text{NO}_2^-\) (Chapman and Liebig, 1952; Van Cleemput and Abdullahi, 1996), and (ii) in drying soils where solutes concentrate in hydrologically disconnected microsites (Davidson et al., 1991; Xie et al., 2001; Nejidat, 2005; Gelfand and Yakir, 2008; Parker and Schimel, 2011).
Nitrite is typically measured by extracting soil with 2 M KCl, yielding clear, colorless extracts that facilitate colorimetric analyses, while simultaneously allowing determination of NO$_3^-$ and NH$_4^+$ (Keeney and Nelson, 1982; Maynard et al., 2007). Several improvements to the colorimetric technique have targeted interferences caused by Fe, either by chelating Fe (Colman, 2010), or by removing Fe from the extract (Yang et al., 2012). However, soil extracts in 2 M KCl can significantly underestimate NO$_2^-$ concentrations (Stevens and Laughlin, 1995) because concentrated salt solutions release exchangeable acidity (Ponette et al., 1996), and acid destroys NO$_2^-$ (Nelson and Bremner, 1969; Islam et al., 2008). Despite these shortcomings, concentrated salts are still recommended in soil analysis manuals (Keeney and Nelson, 1982; Mulvaney, 1996; Pansu and Gautheyrou, 2006; Maynard et al., 2007) and are routinely used for NO$_2^-$ analysis.

To improve the recovery of NO$_2^-$ in KCl extracts, Stevens and Laughlin (1995) recommended adjusting the pH of 2 M KCl extracts to 8 with 2 M KOH, and discussed the option of using DIW as an extractant. However, their approach uses a substantial amount of soil (200 g) in a 1:1 soil/extractant ratio, and deviating from these recommendations may introduce the risk of pH-induced dispersal of silt and clay particles and/or dissolve organic matter (release humic and fulvic acids; Fujitake et al., 1998), producing yellow- or brown-colored extracts, that may interfere with colorimetric analyses (e.g., Banderis et al., 1976). Similarly, DIW extractions may not yield colorless extracts, potentially influencing absorbance measurements during NO$_2^-$ analysis. Here, we tested a series of soil extractions to: (i) validate that unbuffered concentrated salts interfere with NO$_2^-$ analyses and should not be used for analyzing NO$_2^-$ in soils; and (ii) develop recommendations for analyzing small soil samples (~4 g) in DIW and buffered KCl extractions.

MATERIALS AND METHODS

We measured NO$_2^-$ concentrations in soils from three sites encompassing a gradient in soil pH (5.4–8.2) to assess whether pH interacts with the extractant (DIW vs. KCl) and analysis approach (colorimetry vs. chromatography) when analyzing NO$_2^-$ in soils. All soils were collected in late September (end of dry season; gravimetric water content ≤ 5%) from the upper 10 cm (A horizons; n = 4 replicates per site). Acidic (pH 5.4) soil (Entic Cryumbrepts) was obtained from a sub-alpine meadow in the Emerald Lake catchment, located along the western slope of the Sierra Nevada Mountain Range, California, within Sequoia and Kings Canyon National Park. Neutral (pH 6.9) soil (Pachic Argixerolls) was obtained from an annual grassland in the University of California Sedgwick Reserve near Santa Barbara, CA, and alkaline (pH 8.2) soil (Lithic Torriorthents) from Joshua Tree National Park within the Mojave desert, CA (see further descriptions in supplementary materials available online).

We first compared NO$_2^-$ concentrations in neutral soils extracted in unbuffered 2 M KCl (extra pure KCl; Aceros Organics, Fisher Scientific, Pittsburgh, PA) analyzed colorimetrically, with soils extracted in DIW and analyzed by both colorimetry and ion chromatography (Dionex ICS-900 ion chromatograph; Bannockburn, IL; method detection limit = 0.02 mg NO$_2^-$–N L$^{-1}$). Extra pure KCl was used to avoid introducing significant NO$_2^-$ contamination typically found in reagent-grade KCl. Air-dried soils (4 g; n = 4; sieved to 2 mm) were extracted in 30 mL of 2 M KCl or DIW, shaken for 30 min, centrifuged (15 min at 1600 × g), and filtered through 2.5 μm Whatman 42 filter paper (Keeney and Nelson, 1982; Maynard et al., 2007). Because DIW extractions yielded turbid extracts, even after filtration (2.5 μm), we also measured NO$_2^-$ in DIW extracts passed through 0.45-μm filters (Millex glass fiber with 0.45-μm hydrophilic PTFE membrane; denoted in figures as DIW+filtration). The recovery of NO$_2^-$ was assessed in NO$_2^-$–spiked extracting solutions (0.05 mg NO$_2^-$–N L$^{-1}$; solution made in DIW or 2 M KCl spiked with NO$_2^-$). Colorimetric analyses were performed on a discrete analyzer (SEAL AQUA; Mequon, WI) by NO$_2^-$ reaction with sulphanilamide and N-(1-naphthyl)-ethylenediamine dihydrochloride (NED; λ = 520 nm; SEAL method EPA-137-A; method detection limit = 0.0006 mg NO$_2^-$–N L$^{-1}$), and by substituting (1:1) ethylenediaminetetraacetic acid (EDTA) with diethylenetriaminopentacetic acid (DTPA; Colman, 2010). Only DIW extracts were analyzed by ion chromatography because Cl$^-$ (from KCl) interferes with NO$_3^-$ peaks. During analytical runs, we evaluated accuracy and precision by measuring a sample replicate and a 0.1 mg NO$_2^-$–N L$^{-1}$ check standard every 10 samples.

The effect of soil pH on NO$_2^-$ analysis was assessed by extracting acidic, neutral, and alkaline soils (4 g; n = 4) in unbuffered 2 M KCl and DIW (filtered through 0.45 μm). Soils were extracted as described above, except that NO$_2^-$ recovery was assessed with 0.1 mg NO$_2^-$–N L$^{-1}$ extracting solutions. Nitrite was measured colorimetrically. Soil pH was measured in DIW and 2 M KCl using a pH electrode (Hendershot et al., 2008). To understand potential mechanisms for NO$_2^-$ loss, we measured NO in the headspace (25 mL) of the polyethylene centrifuge tubes by injecting a 1-mL sample into a line carrying high purity air to a LMA-3 chemiluminescent NO$_2$ analyzer (Scinirex; ON, Canada).

We quantified interferences caused by suspended solids on NO$_2^-$ analysis in neutral soils. Soils (3 g, n = 4) were extracted in 20 mL of unbuffered KCl solutions varying in concentration (2 to 2 × 10$^{-5}$ M; with DIW control). We assessed interference by measuring color development in an analysis with NED omitted to avoid developing an actual NO$_2^-$–based colored product. To quantify the size of suspended particles interfering with NO$_2^-$ analysis, we passed DIW extracts through 1- and 0.2-μm filter paper, as well as through 100- (~7 nm) and 200- (~0.01 nm) thousand molecular weight cut off membranes. Suspended solids were also separated from the supernatant by centrifugation (20 min at 30,000 × g). The efficiency of DIW as an extractant for NO$_2^-$ analysis was further assessed by evaluating the absorbance spectrum (400 to 700 nm measured on a Cary UV-Vis spectrophotometer; 1 cm pathway cell) of soils (~g) extracted in 30 mL of 2 M KCl (filtered through 2.5 μm) and DIW (filtered through 2.5 and 0.45 μm), a 0.1- and 0.2-mg NO$_2^-$–N L$^{-1}$ standard made
in DIW, a 0.1 \(\text{NO}_2^– \text{N} \text{ L}^{-1} \) spike added to DIW-extracted soil (filtered through 0.45 \(\mu \text{m} \)), and a DIW blank. We used the DIW blank and \(\text{NO}_2^– \) standards as reference absorbance spectra to which soil extracts were compared. We expected that soil DIW extracts filtered through 0.45-\(\mu \text{m} \) filters would develop absorbance peaks similar to those of standards, and for the strength of the absorbance signal to increase in proportion to the added \(\text{NO}_2^– \) spike. We used the 2.5-\(\mu \text{m} \) filtered DIW extract to understand how suspended solids influenced absorbance spectra and whether changes in absorbance were due to the development of a specific chromophore.

Lastly, we compared \(\text{NO}_2^– \) concentrations in acidic soils (4 g, \(n = 4 \)) extracted in 30 mL of DIW and pH-8-adjusted 2 M KCl (Stevens and Laughlin, 1995) to assess whether raising the pH of 2 M KCl extracts could interfere with the analysis of \(\text{NO}_2^– \). Because we deviated from the recommended 1:1 soil/extractant ratio used by Stevens and Laughlin (1995), a higher pH could cause dispersion of clays and/or organic matter dissolution (release of humic and fulvic acids) causing interferences during colorimetric analyses.

We used one-way analysis of variance with Tukey post-hoc tests (SAS software, SAS Institute, Cary, NC) on each of the three studied soils to distinguish significant differences (\(\alpha = 0.05 \)) in \(\text{NO}_2^– \) among extracts and among headspace NO (DIW vs. KCl). When necessary, data were log-transformed to meet the assumption of normality.

RESULTS AND DISCUSSION

Unbuffered KCl significantly undermeasured soil \(\text{NO}_2^– \) concentrations when compared with DIW, and undermeasured the native soil \(\text{NO}_2^– \) pool in \(\text{NO}_2^– \)-spiked soils analyzed by colorimetry (Fig. 1). In DIW extracts, the recovery of the \(\text{NO}_2^– \) spike was 96% for colorimetry and 99% for ion chromatography (Fig. 1). Because 2 M KCl solutions lower soil pH by as much as a full unit (Table 1), likely due to proton release from adsorption of K\(^+\), increasing ionic strength, and hydrolysis of extractable Al (Ponette et al., 1996), these acidic conditions favor \(\text{NO}_2^– \) destruction (Stevens and Laughlin, 1995; Van Cleemput and Abdullahi, 1995).

When we compared soils, those with lower pH had higher concentrations of \(\text{NO}_2^– \) in DIW extracts but lower concentrations in unbuffered 2 M KCl extracts (Fig. 2A), further suggesting acidity is driving the under-measurement of \(\text{NO}_2^– \). Potassium chloride did not undermeasure \(\text{NO}_2^– \) relative to DIW in alkaline soils, but did in neutral and acidic soils (\(p < 0.003 \); Fig. 2A), reinforcing the conclusion that acidic conditions in the extraction destroyed \(\text{NO}_2^– \) (Stevens and Laughlin, 1995, Islam et al.,

![Fig. 1. Comparison of \(\text{NO}_2^– \) concentrations in Sedgwick soils (pH 6.9) extracted in deionized water (DIW) and 2 M KCl. Soils analyzed by ion chromatography were extracted in DIW. Filtered samples were passed through 0.45-\(\mu \text{m} \) filters. Spiked soils were extracted in a 0.05 mg \(\text{NO}_2^– \text{N} \text{ L}^{-1} \) solution. Percent spike recovery in DIW extractions was 96% for colorimetry and 99% for ion chromatography. Error bars denote standard errors (\(n = 4 \)). Lowercase letters denote significant differences (\(\alpha = 0.05 \)).](image1)

![Fig. 2. (A) Comparison of \(\text{NO}_2^– \) concentrations and (B) headspace nitric oxide among soils extracted in deionized water (DIW) and 2 M KCl in acidic, neutral, and alkaline soils. Soil DIW extracts were passed through 0.45-\(\mu \text{m} \) filters. Spiked soils were extracted in a 0.1-mg \(\text{NO}_2^– \text{N} \text{ L}^{-1} \) solution. Error bars denote standard errors (\(n = 4 \)). Lowercase letters denote significant differences (\(\alpha = 0.05 \)).](image2)

![Table 1. Soil pH measured in deionized water (DIW) and 2 M KCl. Soil \(\text{NO}_2^– \) and \(\text{NO}_3^– \) concentrations were determined by extraction in DIW followed by filtration (0.45 \(\mu \text{m} \)).](table1)
The recovery of added NO$_2^-$ spikes in neutral soils was not affected by 2 M KCl, while in acid soils, spike recovery was reduced to about 40% of the expected value. Although other salts have been used for inorganic N analyses (Li et al., 2006), destruction of NO$_2^-$ also occurred when we extracted soils with other salts of equal ionic strength (0.67 M MgCl$_2$ or Na$_2$SO$_4$; data not shown). Under acidic conditions, NO$_2^-$ protonates to HNO$_2$ (pK$_a$ = 3.3 at 25°C), which can break down to gaseous N products (e.g., HONO, NO, NO$_2$; Medinets et al., 2015), and explain the loss of NO$_2^-$ in acidic soils (Smith and Chalk, 1980; Van Cleemput and Abdullahi, 1996; Ventera et al., 2005). Indeed, we measured elevated headspace NO in NO$_2^-$–spiked KCl-extracted soils (Fig. 2B) representing up to 3% of the NO$_2^-$ measured in acidic soils, which over the length of the extraction and analysis time, can represent an important pathway for NO$_2^-$ loss. Low recovery of NO$_2^-$ in unbuffered 2 M KCl extracts may have also resulted from lower pH and by stimulating NO$_2^-$ adsorption by SOM (Islam et al., 2008; Isobe et al., 2012), via reactions with metal oxides (Nelson and Bremner, 1970a,b, or ab; Bartlett, 1981; Van Cleemput and Abdullahi, 1995), or by stimulating transformation to NO$_3^-$ (Nelson and Bremner, 1969; Nelson and Bremner, 1970a,b, or ab??; Smith and Chalk, 1980; Bartlett, 1981; Stevens and Laughlin, 1995; Isobe et al., 2012). Irrespective of the mechanism, it is clear that unbuffered 2 M KCl significantly underestimated NO$_2^-$ concentrations in neutral to acidic soils (Fig. 1, Fig. 2).

Dilute salt solutions as well as DIW have been used to maximize the recovery of NO$_2^-$ and to measure other inorganic soil N pools (Nejidat, 2005; Li et al., 2006; Islam et al., 2008; Darrouzet-Nardi and Weintraub, 2014). However, doing so can produce turbid soil extracts that can interfere with colorimetric analyses; extractants below an ionic strength of 2 × 10$^{-3}$ M KCl can produce noticeably turbid extracts (see supplemental Fig. S2). In DIW soil extracts analyzed colorimetrically, NO$_2^-$ was apparently 35% higher than when measured by ion chromatography (Fig. 1). This pattern occurred even with NO$_2^-$–spiked DIW extracts (0.05 mg NO$_2^-$–N L$^{-1}$, Fig. 1), but not following 0.45-μm filtration (Fig. 1). Traditionally used 2.5-μm filter paper did not remove suspended particles; in fact, the color reagent actually flocculated along with suspended solids (see supplemental Fig. S1), elevating absorbance readings, and further overpredicting NO$_2^-$ concentrations. In contrast, 0.45-μm filtration yielded NO$_2^-$ concentrations consistent with ion chromatography and with the full recovery of the native soil NO$_2^-$ and the added NO$_2^-$ spike (Fig. 1).

To quantify the effect of suspended solids on NO$_3^-$ analysis, we measured absorbance in extracts without the NED to react and develop color. Dilute KCl and DIW extracts produced high absorbance readings that were interpreted as NO$_2^-$ (Fig. 3A); the interference was caused by suspended particles >0.8 μm (Fig. 3B). Although these high absorbances occurred within the measuring wavelength of the azo dye (Fig. 4), they were not due to a specific chromophore—a distinct peak in absorption was not observed. In contrast, filtered (0.45 μm) DIW extractions produced sharp absorbance peaks that increased proportionally with the amount of NO$_2^-$ spike added (Fig. 4). We note that interferences caused by suspended solids, by default, also occur when measuring NO$_3^-$ in DIW, suggesting that proper filter-
ing is essential for analyzing either NO_2^- or NO_3^-. As a precaution, we suggest removing suspended solids larger than 0.45 μm. Because filtering to 0.45 μm can be slow, we suggest using the standard Whatman 42 filter paper (2.5 μm) (Keeney and Nelson, 1982; Maynard et al., 2007) before filtering to 0.45 μm. To ease filtering, we modified a ratchet-driven caulking gun to increase pressure (see supplemental Fig. S3). This system allows samples to be filtered rapidly and efficiently.

To maximize the recovery of NO_2^-, several researchers have adjusted the pH of the extracting solution with KOH (Stevens and Laughlin, 1995), Ca(OH)$_2$ (Reuss and Smith, 1965), or CaCO$_3$ (Nelson and Bremner, 1969). In our case, because Fe can catalyze NO$_2^-$ transformations to <15% of values measured in 0.45-μm-filtered DIW (Fig. 5); correcting for it reduced estimated NO$_2^-$ released by KCl may have contributed to NO$_2^-$ concentrations to N gases (Hu et al., 2001), and Fe pools in the acidic soil are substantial (total Fe ~8.5 mg g$^{-1}$; Homyak et al., 2014), a reactive intermediate during nitrification (Liu et al., 2014), a reactive intermediate during nitrification (Islam et al., 2008). Assuming that NO$_2^-$ is consistently 21% of the NO$_3^-$ measured in our acidic soil, unbuffered 2 M KCl extractions can underestimate nitrification rates by ~17%. Similarly, accurately measuring NO$_2^-$ is important when determining other soil N pools such as hydroxylamine (Liu et al., 2014), a reactive intermediate during nitrification linked with abiotic mechanisms for gaseous N production (Heil et al., 2015).

Because even low soil NO$_2^-$ concentrations (0.001–0.01 μg g$^{-1}$) can lead to substantial N losses via emission of HONO (Su et al., 2011), improved estimates of soil NO$_2^-$ concentrations may help refine global soil reactive N emission models, while furthering understanding of interactions between soil biogeochemistry and atmospheric chemistry (Venterea et al., 2003). For example, in the sub-alpine acidic soil tested (pH 5.4, 0.3 μg g$^{-1}$ NO$_2^-$-N), HONO emissions may range anywhere from 100 to 1000 ng m$^{-2}$ s$^{-1}$ (Su et al., 2011), suggesting that gaseous N loss from these high-elevation ecosystems may be substantial. In contrast, predicting N emissions using unbuffered 2 M KCl extractions would have suggested that these ecosystems are a negligible source of HONO to the atmosphere.

CONCLUSIONS

We compared the efficacy of 2 M KCl and DIW as extractants for determining NO$_2^-$ in acidic soils. Using 2 M KCl has counterbalancing effects that must be considered in analyzing NO$_2^-$-N. In its favor, KCl flocculates suspended solids that can otherwise interfere with colorimetric NO$_2^-$ analysis. However, KCl releases exchangeable acidity that destroys NO$_3^-$, particularly in acidic soils if the samples are not buffered with KOH (Stevens and Laughlin, 1995). While interferences caused by suspended solids in DIW extracts can be significant, they can be removed by proper filtration, leading to better recovery of NO$_3^-$ in acidic soils. In contrast, it is more difficult to address interferences that result from NO$_2^-$ transformations induced by the release of exchangeable acidity in unbuffered KCl extracts. It is equally difficult to address interferences likely caused by the dissolution of organic matter in soils that may be sensitive to pH 8 adjustment. Extractions in DIW offer an alternative for measuring NO$_2^-$ in soils when use of large soil amounts (200 g) is impractical, but proper filtering is essential to avoid significant interferences.
Supplementary Material

We include site descriptions and figures illustrating issues associated with suspended solids and dissolution of organic matter, the filtering set-up used to facilitate extract filtration, and an extraction protocol for analyzing NO$_2^-$ with DIW.

ACKNOWLEDGMENTS

We are grateful to Sara Gedo, Edward Dominguez, David Lyons, and Delores Lucero for help during laboratory analyses, as well as Dr. Samira Daroub and two anonymous reviewers for their insightful comments. We thank the staff at the National Park Service and Sedgwick Reserve for facilitating access to soil sites. This research was funded by the National Science Foundation (DBI-1202894, DEB-1145875, and DEB-1242626).

REFERENCES

Author queries:
1. Please denote the in-text citations and reference entries of Nelson and Bremner, 1970 with a or b (or both for the citations).
2. In Fig. 3 and 5 caption, please advise the location of section 2.4.