Lawrence Berkeley National Laboratory
Recent Work

Title
THE AZIMUTHAL COUPLING IMPEDANCE OF A RING BEAM SITUATED MIDWAY BETWEEN INFINITE PARALLEL CONDUCTING PLANES

Permalink
https://escholarship.org/uc/item/23j4j40g

Authors
Brady, Victor
Faltens, Andris
Laslett, L. Jackson.

Publication Date
1981-12-01
THE AZIMUTHAL COUPLING IMPEDANCE OF A RING BEAM
SITUATED MIDWAY BETWEEN INFINITE PARALLEL
CONDUCTING PLANES

Victor Brady, Andris Faltens, and L. Jackson Laslett

December 1981

For Reference

Not to be taken from this room

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
LEGAL NOTICE

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Lawrence Berkeley Laboratory is an equal opportunity employer.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE AZIMUTHAL COUPLING IMPEDANCE OF A RING BEAM
SITUATED MIDWAY BETWEEN INFINITE PARALLEL CONDUCTING PLANES*

Victor Brady, Andris Faltens, and L. Jackson Laslett

December 1981

Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

*Sponsored by Defense Advance Research Projects Agency (DoD)
ARPA Order No. 3718, Amend. 37
Monitored by NSWC under Contract No. N60921-81-LT-W0031
The Azimuthal Coupling Impedance of a Ring Beam Situated Midway between Infinite Parallel Conducting Planes

The azimuthal coupling impedance, which pertains to the longitudinal stability of intense particle beams in circular accelerators, is calculated for a ring beam situated midway between infinite, parallel, conducting planes as a function of frequency. The peak value is consistent with the approximation $Z_{th}/n = 300 \ h/R$.

KEY WORDS
- azimuthal coupling impedance
- circular accelerators
- cyclotrons
- betatron
- longitudinal stability

ABSTRACT

The azimuthal coupling impedance, which pertains to the longitudinal stability of intense particle beams in circular accelerators, is calculated for a ring beam situated midway between infinite, parallel, conducting planes as a function of frequency. The peak value is consistent with the approximation $Z_{th}/n = 300 \ h/R$.

SUPPLEMENTARY NOTES
The azimuthal or longitudinal coupling impedance, \(Z_n \), usually enters into the analysis of the stability of intense particle beams in circular machines as

\[
\frac{Z_n}{n} = -\frac{2\pi RE_n}{nI_n},
\]

where \(R \) is the beam major radius, \(E_n \) is the ac electric field amplitude, and \(I_n \) is the ac current at the \(n^{th} \) harmonic of the beam revolution frequency. In a few machine types such as cyclotrons, betatrons, and the electron ring compressors, the beam-surrounding geometry is well approximated by conducting sideplates. The effect of the sideplates, or other similar conductors, is to suppress the electromagnetic radiation of the ring at the lowest few harmonics, that otherwise would be the major contributor to the coupling impedance of a relativistic ring, as well as to modify the self-field distribution and its minor contribution to the impedance.

The subject of coupling impedance is closely related to electromagnetic radiation by a charge moving in a circular orbit.\(^1,2\) Starting with Eq. 7 of Nodvick and Saxon,\(^2\) converted to MKSA units, the power \(P_n \) radiated at

the nth harmonic is,

\[p_n(\omega) = \frac{1}{4\pi e_0} \frac{ne^2}{R} \frac{4\pi R}{2h} \Re \left\{ \sum_{j=1}^{\infty} -H_n^{(1)} J_n + \frac{\beta^2}{2} \left(H_{n-1}^{(1)} J_{n-1} + H_{n+1}^{(1)} J_{n+1} \right) \right\} \] \hspace{1cm} (1)

where the argument of the Bessel functions is

\[\gamma_{nj}^R = \left[(n\theta)^2 - \left(\frac{j\pi R}{2h} \right)^2 \right]^{1/2} \]

the plate separation is 2h, the charge of the particle is e, and the radian frequency is \(\omega \). The power may be related to an impedance \(Z_n \) as

\[p_n(\omega) = \frac{1}{2} \Re \left\{ I_n^2 Z_n \right\}. \] \hspace{1cm} (2)

For a δ-function charge, \(I_n = 2I_0 =\omega e/\pi \); therefore

\[\Re \left\{ \frac{Z_n}{n} \right\} = 2\pi \sqrt{\frac{R}{\varepsilon_0} \left(\frac{R}{2h} \right)} \Re \left\{ \sum_{j=1}^{\infty} -H_n^{(1)} J_n + \frac{\beta^2}{2} \left(H_{n-1}^{(1)} J_{n-1} + H_{n+1}^{(1)} J_{n+1} \right) \right\} \] \hspace{1cm} (3)

The results of evaluating this expression for \(\beta = 1 \) and several values of the ratio of beam radius to plate separation are shown in Fig. 1. Also shown is the free-space radiation asymptote, and the values predicted from the approximate formula for the peak of the impedance function,

\[\left(\frac{Z_n}{n} \right)_{\text{max}} = 300 \frac{h}{R} \text{ ohms}, \] \hspace{1cm} (4)
obtained in Ref. 3, for a beam situated between coaxial conducting cylinders. The close agreement of the approximate formula to the computed values is not surprising for the present geometry in view of the results of Ref. 3, where the same approximation held for the essentially resonant geometry of a beam within a conducting cylinder as well as the nonresonant geometry of a beam outside of a conducting cylinder.

The impedance values shown in Fig. 1 are for a beam of vanishingly small minor dimensions and \(a = 1 \). The effect of \(a \) approaching 1 is to increase the cutoff of the synchrotron radiation spectrum to higher harmonics \((n_{\text{crit}} \approx \gamma^3)\), but, because \(Z_n/n \) decreases with \(n \) at high harmonics, the detailed behavior there is not important for stability analyses. The effects of finite beam size, such as caused by the transverse and longitudinal emittances, are favorable for both the self-field and the radiation contributions to the impedance. The self-fields give a reactive term of the form

\[
\frac{Z_n}{n} = \frac{i \sqrt{\frac{\mu_0}{\varepsilon_0}}}{\beta r^2} \left(\frac{1}{4} + \frac{\gamma n}{a} \right),
\]

(5)

at low harmonics, where \(a \) is the beam minor radius. The radiation from the ring near the maximum of the \(Z_n/n \) function for typical geometries of interest is largely due to the lowest axial harmonic, \(j = 1 \), and the peak occurs far enough above the cutoff for the radial wavelength to be comparable to the free-space wavelength. For an extended beam with a spatial current density \(\mathbf{J} \) a factor

\[
F = \int_{\mathbf{J}_{\text{beam}}} \mathbf{E}_{\text{mode}} \cdot \mathbf{dA}
\]

(6)
enters in the way the beam drives a given mode and in the way a mode drives the beam (which is completely analogous to the transit time factor in accelerating gaps), therefore the results of the impedance for a line beam should be multiplied by

\[F_n^2 = \left(\frac{\sin \frac{\pi a}{2h}}{\frac{2\pi h}{\lambda_n}} \right)^2 \left(\frac{\sin \frac{2\pi b}{\lambda_n}}{\frac{2\pi h}{\lambda_n}} \right)^2 \]

where \(a \) and \(b \) are the axial and radial minor radii of the beam. For an example of current interest, let \(a = b = 5 \text{ cm}, h = 17.5 \text{ cm}, R = 2 \text{ m}, n_{\text{max}} = 60 \), and \(\lambda_n = \frac{2\pi R}{n} = 21 \text{ cm} \), these factors give 0.41, or approximately a halving of the effective coupling impedance. In addition to these extended beam effects, the formulation of the stability criteria for such beams will be re-examined by members of the theory group.

To make the infinite plane results applicable to a finite ring geometry, it is necessary to provide an rf absorber at the outer radius of the vacuum chamber. In the ERA compressor this consisted of a few centimeter deep layer of loosely woven absorptive cloth cut from 100 \(\Omega/\square \) material. With such an absorber, the wave impedance does not differ greatly from the free space value and there are no abrupt geometric discontinuities, resulting in very broad band absorption of propagating waves. A termination other than an absorptive outer wall will lead to undesirable reflections of radiation, and higher peaks in the impedance curve.
References

3. A. Faltens and L. J. Laslett, Particle Accelerators 4, 151 (1973) and ERAN 195.
APPENDIX

The program PINIF calculates the sum

\[S = \sum_{j=1,3,\ldots}^{n} \left[-H_n^{(1)} J_n + \frac{1}{2} \beta^2 \left(H_{n-1}^{(1)} J_{n-1} + H_{n+1}^{(1)} J_{n+1} \right) \right] \]

where \(H_n^{(1)} \) is the Hankel function

\[H_n^{(1)} = J_n + i Y_n. \]

The argument of the Bessel functions is

\[\left[(n\beta)^2 - (j\pi R/H)^2 \right]^{1/2} \]

and the summation is carried out for all odd \(j \) such that

\[j \leq n\beta H/\pi R. \]

The program is set to calculate the sum for \(n = 1,2,\ldots,400 \) but seldom reaches \(n = 400 \) due to overflow in \(Y_n \). The output consists of the argument value for the largest \(j \), the real part of \(S \), the imaginary part of \(S \), and the magnitude of \(S \). This output is printed for each value of \(n \).

The program is stored as subset PINIF in PSS library COILS and may be accessed by the command
LIBCOPY,COILS,PINIF,PINIF.

The values of the parameters $BETA$, R, and H may be changed, and the program may then be submitted to the 7600 computer. The output is disposed to the printer with the hold-out option, and it may then be claimed from a terminal. A listing of the program follows.
THIS PROGRAM CALCULATES THE PART OF FORMULA 7 CONTAINED IN CURY BRACKETS FROM THE PAPER "SUPPRESSION OF COHERENT RADIATION BY ELECTRONS IN A SYNCHROTRON" BY JOHN S. NOVICK AND DAVID S. SAXON PUBLISHED IN PHYSICAL REVIEW VOLUME 95, NUMBER 1. IN THIS PROGRAM THE DISTANCE OF SEPARATION IS CALLED H INSTEAD OF A. THE CALCULATION IS DONE FOR N = 1,...,40.

DIMENSION Y(1)
REAL JAY(3)
COMPLEX S,HAN(3)
CALL DATE(1) WRITE(1,120) L
PI=2.*ACOS(0.)
H=.35
R=2.
BETA=1.
BETSO=BETA**2
A1=PI*R/H
A3=BETA/A1
WRITE(1,110) BETA,R,H
DO 9 N=1,40
JMAX=A3*FLOAT(N)
IF(2.*(JMAX/2.) .EQ. JMAX) JMAX=JMAX-1
IF(JMAX.GT.0) GO TO 10
WRITE(1,111) N
GO TO 40
10 S=CMPLX(0.,0.)
DO 31 J=1,JMAX,2
ARG=SORT(3*ETA*FLOAT(N))**2-(A1*FLOAT(J))**2
NOR=N-1
CALL BESYN(ARG,NORD,3,Y)
ALPHA=FLOAT(NORD)
CALL BESJ(ARG(ALPHA,3,JAY,NZ)
DO 20 I=1,3
HAN(I)=CMPLX(JAY(I),Y(I))
A2=.5*BETSO
IF(I.EQ.2) A2=-1.
S=S+A2*JAY(I)*HAN(I)
20 CONTINUE
30 CONTINUE
P=REAL(S)
AIS=AIMAG(S)
SMAG=SORT(P**2+AIS**2)
WRITE(1,111) N,ARG,P,AIS,SMAG,JMAX
40 CONTINUE
STOP
100 FORMAT(*3ET3=F6.3/* R=F6.3/* H=F6.3/*
 3X,1HN,4X,3H2G(JMIX),3X,4HREAL,8X,4H1AG,3X,3HHAG,6X,4HJMAX/
110 FORMAT(I5,1P=12.4,3E12.4,15)
120 FORMAT(28X,A10/*)
END
**3KY740*C 16 APR 92 14:55:11.

$ 0.76; 4 PAGES: 134 PRINT LINES: PRINTER 12, EO
B I L L ' 3 O A R D WRITEUPS SUBSET SKYNEWS WAS LAST CHANGED DEC 14
DOCUMENTATION WAS LAST CHANGED OCTOBER 26 - SEE
THE HANDBOOK SUBSET CHANGES FOR DETAILS.

APR 16
RENT-A-TERMINALS
ONE VISTAR SATELLITE CRT AND ONE TI 745 (SPECIAL PAPER). EO BOYUM (X6219)

APR 14
NEW VAX CLASS
AN 3 HOUR VAX USER CLASS WILL BE GIVEN DURING THE SECOND HALF OF APRIL.
STARTING ON APRIL 20. TO REGISTER, CALL LISA LONG, X 5947

TO CALL A CONSULTANT CALL X. 5981, (415) 486 5981, OR FTS 451 5981
Longitudinal Coupling Impedance,

\[Z = \frac{300h \pi}{R} \]

Approximation for a relatively lean between parallel plates

\[\Re\left(\frac{Z}{\omega}\right) = \frac{2h}{\pi} - \frac{R}{\pi} \]
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.