Title
Reactions of the Bioregulatory Agent Nitric Oxide in Oxygenated Aqueous Media: Determination of the Kinetics for Oxidation and Nitrosation by Intermediates Generated in the NO/O2Reaction

Permalink
https://escholarship.org/uc/item/23s466t6

Journal
Chemical Research in Toxicology, 6(1)

ISSN
0893-228X

Authors
Wink, DA
Darbyshire, JF
Nims, RW
et al.

Publication Date
1993

DOI
10.1021/tx00031a003

Peer reviewed
Reactions of the Bioregulatory Agent Nitric Oxide in Oxygenated Aqueous Media: Determination of the Kinetics for Oxidation and Nitrosation by Intermediates Generated in the NO/O\textsubscript{2} Reaction

David A. Wink,*† John F. Darbyshire,‡ Raymond W. Nims,∥ Joseph E. Saavedra,* and Peter C. Ford§

Chemistry Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, Maryland 21702, Laboratory of Chemical Pharmacology, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892, and Department of Chemistry, University of California, Santa Barbara, California 93106

Received September 28, 1992

The reaction kinetics of nitric oxide autoxidation in aerobic solutions were investigated by direct observation of the nitrite ion product and by trapping the strongly oxidizing and nitrosating intermediates formed in this reaction. The rate behavior observed for nitrite formation [rate \(= k_2[\text{O}_2][\text{NO}]^2 \), \(k_2 = (6 \pm 1.5) \times 10^6 \text{ M}^{-2} \text{s}^{-1} \) at 22 °C] was the same as found for oxidation of \(\text{Fe(CN)}_6^{3-} \) and of 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and as for the nitrosation of sulfanilamide. There was a slight decrease in \(k_3 \) to \((3.5 \pm 0.7) \times 10^6 \text{ M}^{-2} \text{s}^{-1} \) at 37 °C. The second-order dependency for NO was observed at NO concentrations as low as 3 \(\mu \text{M} \). The results of the competitive kinetics studies suggest that the key oxidizing intermediates, species which are both strong oxidants and nitrosating agents, are not one of those commonly proposed (NO\textsubscript{2}, N\textsubscript{2}O\textsubscript{3}, NO+, or O\textsubscript{2}NO-) but are one or more as yet uncharacterized NO\textsubscript{2} species.

Introduction

A recent discovery in mammalian biology has been the important physiological role that nitric oxide plays in blood pressure regulation, neurotransmission, macrophage-induced cytostasis and cytotoxicity, and inhibition of platelet aggregation, etc. (1, 2). Furthermore, it has been shown that intermediates derived from aerobic solutions of NO cause mutations in bacterial and mammalian cells, suggesting a possible involvement of endogenously formed NO in a genotoxic mechanism (3-6). However, despite evidence that NO has a short half-life in aerobic aqueous systems (1, 7-11), the chemical intermediates and kinetics involved in the aerobic oxidation of this critically important species have not been completely elucidated. Clearly, the quantitative characterization of the reaction between NO and O\textsubscript{2} under biologically relevant conditions is essential to understanding the roles of this bioregulatory agent in living systems. Described here are kinetics studies of this reaction, which demonstrate that there are fundamental differences between the intermediates generated during the oxidation of NO in the gas phase and those generated in the same reaction occurring in aqueous solution.

Materials and Methods

Sodium azide, sulfanilamide, N-(1-naphthy1)ethylenediamine dihydrochloride (NEDD), potassium superoxide, and nitrosou- nium tetrafluoroborate were obtained from Aldrich Chemical Co. (Milwaukee, WI). Potassium ferrocyanide was purchased from Fisher Scientific Co. (Pipawaun, NJ), and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was obtained from Sigma Chemical Co. (St. Louis, MO). The above-named reagents were used without further purification. Nitric oxide gas was purchased from Potomac AirGas (Frederick, MD) and passed through a 10 N KOH solution to remove other NO\textsubscript{2} species. Nitric oxide solutions were made by degassing aqueous buffer solutions, followed by introduction of nitric oxide, as described previously (12). Nitric oxide concentrations were determined with a dissolved oxygen electrode (Orion Research Inc., Boston, MA). No appreciable effect was observed between aqueous buffers treated or untreated with Chelex 100 (Bio-Rad, Richmond, CA).

The kinetics of nitrosation by the NO/O\textsubscript{2} reaction were measured via diazotization of sulfanilamide and subsequent coupling with NEDD to form the azo dye (14). Sulfanilamide (25 mM) and NEDD (2.5 mM) were dissolved in 100 mM phosphate buffer (pH 7.4) by stirring for 10 min. The resulting solutions were filtered with a Nylon-66 syringe filter (Rainin, Woburn, MA) to remove any small particulates. Introduction of 10-100 \(\mu \text{M} \) NO in this aerobic solution yielded an absorbance band at 496 nm which increased with [NO] such that \(\epsilon_{496} = 950 \pm 130 \text{ M}^{-1} \text{cm}^{-1} \). Addition of acid to the solution resulted in an absorption band at 546 nm indicative of the corresponding azo dye (lit. 545 nm (14)). The absorption at 496 nm was not generated in the presence of as much as 100 mM NaNO\textsubscript{2} at pH 7.4.

Peroxy nitrite anion was made as follows: a 25-mL basic solution (0.1 M KOH) was degassed, and the solution was transferred to a septum vial containing 53 mg of KO\textsubscript{2} followed by degassing on ice. Nitric oxide was then bubbled through the solution, and after 1 min on ice, the headspace was evacuated to remove excess nitric oxide, which was replaced with argon. The resulting solution gave a broad band at 500 nm in basic solution characteristic of peroxy nitrite anion (OONO-) (15).

Kinetic modeling simulations were performed with Stella 2.1 software from High Performance Systems (Hanover, NH).
reagent (NO) carried out similarly, but with was (6.3
was observed, and a plot of the resulting
formation of nitrite (Figure 1A). A plot of (Abs,
rate constant a second-order rate dependence on the limiting reagent,
crease at 216 nm (k216
We have investigated the reaction of NO (100 pM) plus
plots of l/(A-
slopes of the regression lines are 6.23
where \[[ABTS]\]
(SF-51MX
Scientific Multi-Mixing stopped-flow spectrophotometer, Model
SF-51MX
(16), with IS 1.0 Rapid Kinetics Software Suite (Hi-
was linear with a slope of \(k_b = (4.8 \pm 1.0) \times 10^6 \text{M}^{-2} \text{s}^{-1}\)
(Figure 2), effectively within experimental uncertainty of the value of \(k_b/[O_2] = (6.3 \pm 1.2) \times 10^6 \text{M}^{-2} \text{s}^{-1}\) derived from the experiment above. Thus, formation of nitrite ion in this system is governed by a third-order rate law:

\[
d[NO_2^-]/dt = k_b[O_2][NO]^2
\]

These data confirm the results of earlier studies conducted at millimolar concentrations of NO and \(O_2\) in water (8.8 \(\times 10^6 \text{M}^{-2} \text{s}^{-1}\); 18) and in CC14 (\(k_{NO2} = 2.8 \times 10^6 \text{M}^{-2} \text{s}^{-1}\),
d\[NO_2^-]/dt = k_{NO2}[O_2][NO]O_2^2\); 19).

The reaction of NO and \(O_2\) under these conditions generates an intermediate that rapidly oxidizes \(Fe(CN)_6^{3-}\) and ABTS to \(Fe(CN)_6^{4-}\) and ABTS\(^+\), respectively. These reactions can be monitored at 420 nm \((\Delta_{216} = 1000 \text{ M}^{-1} \text{ cm}^{-1})\), Figure 1B,F) and 600 nm \((\Delta_{400} = 6600 \text{ M}^{-1} \text{ cm}^{-1})\), Figure 1C,G), respectively. Under limiting \([NO]\), these reactions display second-order kinetics with \(k_b\) values of \((7.2 \pm 1.4) \times 10^3\) and \((6.5 \pm 1.2) \times 10^3 \text{M}^{-1} \text{s}^{-1}\), respectively, the latter values being within experimental uncertainty of those observed above for nitrite formation. Similarly, when these reactions are carried out under limiting \([O_2]\), the \(k_{obs}\) values again prove to be dependent on \([NO]^2\), with the respective \(k_b\) values, \((5.1 \pm 1.0) \times 10^6\) and \((5.2 \pm 1.0) \times 10^6 \text{M}^{-2} \text{s}^{-1}\) (Figure 2), again being equivalent to the values for nitrite formation. Since the trapping agents are not oxidized by \(O_2\), NO\(^+\), or anaerobic NO, the rate data clearly imply that \(Fe(CN)_6^{4-}\) and ABTS are both being oxidized by intermediate species formed subsequent to the rate-limiting step in the sequence leading to NO oxidation by \(O_2\) in aqueous media.

\[4NO + O_2 + 2H_2O \rightarrow 4H^+ + 4NO_2^-\]

We have investigated the reaction of NO (100 \(\mu\)M) plus \(O_2\) (1.0 mM) in pH 7.4 aqueous solution with a stopped-flow spectrophotometer by monitoring absorbance increases at 216 nm \((\Delta_{216} = 1000 \text{ M}^{-1} \text{ cm}^{-1})\) due to the formation of nitrite (Figure 1A). A plot of (Abs\(_i\) - Abs\(_f\)) vs time proved to be linear (Figure 1B), consistent with a second-order rate dependence on the limiting reagent, NO. The rate constant \(k_2\) \((\text{slope} \times \Delta \text{e})\) so determined was \((6.3 \pm 1.2) \times 10^6 \text{ M}^{-1} \text{s}^{-1}\). When the reaction was carried out similarly, but with \(O_2\) (40 \(\mu\)M) as the limiting reagent \(([NO] = 0.17-1.7 \text{ mM})\), first-order behavior was observed, and a plot of the resulting \(k_{obs}\) values vs \([NO]^2\)]

![Figure 1](image1.png)

Figure 1. (A) Absorbance changes at 216 nm with time as detected with stopped-flow techniques for a 1.0 mM phosphate buffer (pH 7.4) containing 0.1 mM NO and 1 mM \(O_2\) at 22 °C. (B) Absorbance changes at 420 nm [representing the appearance of \(Fe(CN)_6^{4-}\)], where the [\(Fe(CN)_6^{4-}\)] = 50 mM in 100 mM phosphate buffer (pH 7.4), [NO] = 0.1 mM, and \([O_2] = 1.0 \text{ mM}\). (C) Absorbance changes at 600 nm for the appearance of ABTS\(^+\), where [ABTS] = 50 mM. (D) Absorbance changes at 500 nm for the appearance of the diazotization product, where sulfinamide was 25 mM and NEDD was 2.5 mM in 100 mM phosphate buffer (pH 7.4). [NO] = 0.1 mM, and \([O_2] = 0.9 \text{ mM}\). Panels E-H are plots of 1/(Abs\(_i\) - Abs\(_f\)) vs time for each absorbance change. The slopes of the regression lines are 6.23 s\(^{-1}\) [linear correlation (lc) = 0.918] for panel E, 7.59 s\(^{-1}\) (lc = 0.998) for panel F, 0.99 s\(^{-1}\) (lc = 0.998) for panel G, and 5.7 s\(^{-1}\) (lc = 0.998) for panel H.

Stopped-flow experiments were carried out with a Hi-Tech Scientific Multi-Mixing stopped-flow spectrophotometer, Model SF-51MX
(18), with IS 1.0 Rapid Kinetics Software Suite (Hi-

Results and Discussion

Nitrite is the product of NO oxidation in aerobic aqueous solution (9, 17, 18).

\[4NO + O_2 + 2H_2O \rightarrow 4H^+ + 4NO_2^-\]

These data confirm the results of earlier studies conducted at millimolar concentrations of NO and \(O_2\) in water (8.8 \(\times 10^6 \text{M}^{-2} \text{s}^{-1}\); 18) and in CC14 (\(k_{NO2} = 2.8 \times 10^6 \text{M}^{-2} \text{s}^{-1}\),
d\[NO_2^-]/dt = k_{NO2}[O_2][NO]O_2^2\); 19).

The reaction of NO and \(O_2\) under these conditions generates an intermediate that rapidly oxidizes \(Fe(CN)_6^{3-}\) and ABTS to \(Fe(CN)_6^{4-}\) and ABTS\(^+\), respectively. These reactions can be monitored at 420 nm \((\Delta_{216} = 1000 \text{ M}^{-1} \text{ cm}^{-1})\), Figure 1B,F) and 600 nm \((\Delta_{400} = 6600 \text{ M}^{-1} \text{ cm}^{-1})\), Figure 1C,G), respectively. Under limiting \([NO]\), these reactions display second-order kinetics with \(k_b\) values of \((7.2 \pm 1.4) \times 10^3\) and \((6.5 \pm 1.2) \times 10^3 \text{M}^{-1} \text{s}^{-1}\), respectively, the latter values being within experimental uncertainty of those observed above for nitrite formation. Similarly, when these reactions are carried out under limiting \([O_2]\), the \(k_{obs}\) values again prove to be dependent on \([NO]^2\), with the respective \(k_b\) values, \((5.1 \pm 1.0) \times 10^6\) and \((5.2 \pm 1.0) \times 10^6 \text{M}^{-2} \text{s}^{-1}\) (Figure 2), again being equivalent to the values for nitrite formation. Since the trapping agents are not oxidized by \(O_2\), NO\(^+\), or anaerobic NO, the rate data clearly imply that \(Fe(CN)_6^{4-}\) and ABTS are both being oxidized by intermediate species formed subsequent to the rate-limiting step in the sequence leading to NO oxidation by \(O_2\) in aqueous media.

![Figure 2](image2.png)
As noted above, the NO/O₃ system has been shown to
deminate nucleosides (3, 4) and, therefore, has the
potential to cause genotoxicity. This activity has been
attributed to nitrosation of the exocyclic amino groups of
the nucleosides. In this context, the components of the
Greiss reaction [a colorimetric assay for nitrite which
involves the nitrosation under acidic conditions of sulf-
anilamide by NO⁺ donors followed by diazotization and
coupling with NEDD to form an azo dye (14)] were used
to examine the kinetics of nitrosation by intermediate(s)
formed during the NO/O₃ reaction in aqueous solution
at physiological pH. Addition of 100 µM NO to a 0.9 mM
O₂/100 mM phosphate solution (pH 7.4) containing 25
mM sulfanilamide and 2.5 mM NEDD generated an
absorption at λₘₐₓ = 496 nm, indicative of the characteristic
azo product resulting from nitrosation (Figure 1D).

Preliminary stopped-flow studies under limiting [NO]
show an increase in absorption at 500 nm similar to that
of the formation of nitrite and oxidation of Fe(CN)₆³⁻ and
ABTS observed above in Figure 1. A plot of (Aₛ - Aᵣ)⁻¹
versus time was linear (Figure 1H, ΔΝΟ = 950 ± 150),
giving a kₛ = (6.0 ± 0.7) × 10⁷ M⁻¹ s⁻¹. As shown in Figure
2 inset, an [O₂] dependence was observed such that kₛ =
(5.3 ± 0.5) × 10⁷ M⁻² s⁻¹. Thus, it appears that this
nitrosation, which may serve as a model for the deami-
nation of nucleic acids by NO, also proceeds via the
formation of the same intermediate(s) as the oxidation
reactions described above.

It is worthwhile to consider the implications of the
present observations vis-à-vis the expected reactivities of
NO under physiologically relevant conditions, where
maximal concentrations of NO in the cellular microen-
vironment are estimated to be in the range of 0.45–10 μM
(18–22). The mechanistic requirement that NO oxidation
be second-order in [NO] allows one to predict half-lives
of 1–500 s in air-saturated aqueous solution (102–10⁻³ M).

The first half-life under these conditions ranged from
10 to 333 s. At 37 °C, similar second-order behavior
was observed, although the resulting kₛ was slightly smaller,
(3.5 ± 0.5) × 10⁸ M⁻² s⁻¹, identical to the above.

It has been widely speculated, in analogy with the better
characterized gas-phase mechanism, that NO₂ is a key
reactive intermediate formed in the oxygenation of NO
in aqueous media or in vivo (4, 7, 24, 25) and, furthermore,
that NO₂ is a species responsible for oxidative damage by
such systems (26). The role of NO₂ in the aqueous
oxidation may be tested by carrying out competition
kinetics, since the second-order rate constants for the
reactions of NO₂ with NO (1.1 × 10⁹ M⁻¹ s⁻¹) and Fe(CN)₆⁴⁻
(3 × 10⁹ M⁻¹ s⁻¹) have been determined under analogous
conditions (17, 27). A series of experiments was carried

\[\frac{1}{[NO]} \text{(mM)} \]

\[\frac{1}{[O₂]} \text{(mM)} \]

\[\frac{1}{[Fe(CN)]} \text{(mM)} \]

\[\frac{1}{[N₃⁻]} \text{(mM)} \]

The conditions were 10 mM phosphate buffer (pH 7.4), with
[NO] = 1.2 mM and [O₂] = 0.04 mM (20) and when [NO] = 0.12 mM and
[O₂] = 1 mM (21) with a 1/Xₐₙₜ = 0.48 M. (B) The reciprocal of the change in absorbance at 420 nm (appearance of ferricyanide)
with varying azide concentration, with an x intercept of 0.437 M.
The conditions were 10 mM phosphate buffer (pH 7.4), with
[NO] = 0.17 mM and [O₂] = 1 mM.

From a biological perspective, the most important
feature of the NO/O₂ reaction is that the reactive inter-
mediates generated are capable of both oxidation and
nitrosation. To examine the relationship between these
pathways, a known NO⁺ acceptor (28, 29), sodium azide,
was used to quench the oxidation of Fe(CN)₆⁴⁻ in a
competition study. When the azide concentration varied from 0.1 to 10 mM, with [Fe(CN)₆⁴⁻] = 20 mM,
[NO] = 0.12 mM, and [O₂] = 1 mM, a decrease in the
amount of Fe(CN)₆⁵⁻-formed was observed. A plot of 1/Abs
vs [N₃⁻] is linear, with Xᵣ = 0.43 ± 0.05 mM (Figure 3B). These
results allow one to evaluate the relative selectivity
between different reaction pathways. Since the slopes of
the plot in Figure 3A are independent of [NO], it can be
surmised that the competing pathway is unimolecular (e.g.,

\[^{2}\text{While somewhat surprising, the small negative } E_a \text{ parallels similar behavior in the gas-phase kinetics which is not yet fully explained. In a multiphase mechanism, a negative } E_a \text{ often results from a reversible equilibrium, with a negative } \Delta H^\circ \text{ occurring prior to the rate-limiting step.}\]
involving protonation or hydrolysis). From the X_τ (Figure 3A) and X_i (Figure 3B) values, the relative rate constants $k_{\text{oxide}}/k_F/k_F(H_2O)$ can be calculated as $(2 \times 10^9):500:1$.

This relative selectivity can be used to test other possible intermediates. One possible candidate would be N_2O_3 derived from rapid trapping of NO by N_2O_3 via the mechanism described in the following equations:

$$\text{NO} + O_2 \rightarrow ^*O_2\text{NO} \rightarrow 2\text{NO}_2$$

(3)

$$\text{NO}_2 + \text{NO} \rightarrow N_2\text{O}_3 \rightarrow 2\text{NO}_2^- + 2H^+$$

(4)

The published rate constant for the reaction of azide with N_2O_3 is $2 \times 10^9 M^{-1} s^{-1}$ (28) and that for the hydrolysis of N_2O_3 is $10^9 s^{-1}$ (17), a ratio of $2 \times 10^6 M^{-1}$. This ratio is 100-fold larger than one observed for the trapping of the NO/O$_2$-reactive intermediate in the experiments described above. This argues against the intermediate being N_2O_3 and reinforces a similar conclusion drawn from results of the deamination of nucleosides by aerobic NO, for which it was noted that addition of nitrite for the purpose of generating N_2O_3 dramatically increased the extent of deamination (3). Kinetic modeling of the experiment described in Figure 3B, assuming the intermediacy of NO$_2$ and N_2O_3 (formed by rapid reaction of NO and O$_2$) and using published rate constants (17, 27), predicted that at 10 mM [N$_3^-$] only 40% of the observed Fe(CN)$_5$NO$^-$ formation should be quenched. Instead, complete quenching was observed, a discrepancy which appears to preclude the mechanism described by eqs 3 and 4.

Other possible intermediates are the ONO$^-$ and the nitrosyl cation (NO$^+$). Preliminary studies of the reaction of Fe(CN)$_5$NO$^-$ with ONO$^-$ show that the oxidation of Fe(CN)$_5$NO$^-$ to Fe(CN)$_5$NO$^+$ is not appreciably quenched in the presence of 15 mM azide. Thus, the peroxynitrite anion does not behave in the manner seen for the key oxidant in the NO/O$_2$ reaction, which was intercepted by N$_5^-$. The nitrosyl cation (NO$^+$) might be a more likely candidate as a nitrosating agent. This species would also be expected to undergo hydrolysis to nitrite, and to nitrosate amines or azide and to oxidize Fe(CN)$_5$NO$^-$ in aqueous solution. The possible role of NO$^+$ was examined by competition studies in which solid BF$_3$NO was dissolved in pH 7.4 aqueous solutions containing varying amounts of Fe(CN)$_5$NO$^-$ and N$_3^-$, and the relative rates of Fe oxidation and hydrolysis to NO$_2$ as quenched by N$_3^-$ were compared. From these data, the relative rate constants $k_{\text{oxide}}/k_F/k_F(H_2O) = 15:25:1$ were obtained. Although the comparisons clearly suffer from some potential problems, owing to surface catalysis during dissolution of the BF$_3$NO, the marked differences in the k_{oxide}/k_F ratio from that seen above for the NO/O$_2$ reaction system argue strongly against NO$^+$ being the key intermediate.

The above experiments provide evidence against NO$_2$, N_2O_3, ONO$^-$, or NO$^+$ being the key intermediate responsible for the strongly oxidizing and nitrosating properties of the intermediate generated in the reaction of NO with O$_2$. We are thus left with a mechanism involving novel N_2O_4 intermediate which differ from those intermediates proposed for the gas-phase NO/O$_2$ reaction mechanism. Correlation between the gas-phase and solution rate constants (18, 19) suggests that the intermediates in the rate-limiting steps are common between the two systems. Guillory and Johnston reported strong evidence for the intermediacy of the peroxynitrite radical in the gas-phase reaction (30), while others have suggested that the key intermediate is the NO dimer (19, 31). However, it appears that either intermediate would further react to produce a novel reactive intermediate(s).

The chemical reactivity of NO and O$_2$ provides insight into the bioregulatory functions of NO, as well as its cytotoxic and genotoxic effects. Similarities between the observed rate expressions for prootic (this work and ref 18) versus nonprootic (19) solutions suggest that, regardless of the hydrophilicity or lipophilicity of the biological media, these kinetics will govern the half-life of NO. The second-order (NO) dependency of this reaction dictates that the half-life of NO be inversely proportional to its concentration, and the total amount of reactive intermediates produced in NO autoxidation be proportional to the square of its concentration. In the course of various bioregulatory activities (such as blood pressure lowering, neurotransmission, and inhibition of platelet aggregation) relatively low levels of NO are generated; thus even in the presence of high concentrations of O$_2$, there should be sufficient time for NO to reach target sites such as guanylate cyclase without being consumed by oxygen. However, stimulated macrophages are estimated to generate as much as 1000 times higher concentrations of NO (25, 32), under which conditions a large flux of reactive intermediates must be generated, resulting in cytotoxicity or cytostasis (1). As NO diffuses from these sites, the flux of the reactive intermediates would be expected to decrease and the half-life of NO would be expected to increase. This increased half-life would allow detoxication of this radical species by other pathways, possibly via the reaction of NO with oxyhemoglobin or other oxyhemoproteins to yield nitrate, a product not otherwise formed in the NO/O$_2$ reaction in aqueous solution.

Acknowledgment. P.C.F. acknowledges support by the National Science Foundation (Grant CHE-9024845). We thank Dr. Yoichi Osawa for assistance with the ABTS work, Dr. David Stanbury for helpful conversations, and Drs. Christopher Micheja, James R. Gillette, Steven Tannenbaum, and Larry Keefer for assistance and comments on the manuscript.

References

Communications

