Title
CAPABILITIES OF e+e- COLLISIONS FOR PRODUCING VERY HEAVY HIGGS BOSONS

Permalink
https://escholarship.org/uc/item/23s7c37s

Authors
Dawson, S.
Rosner, J.L.

Publication Date
1984-06-01
CAPABILITIES OF e⁺e⁻ COLLISIONS FOR PRODUCING
VERY HEAVY HIGGS BOSONS

S. Dawson and J.L. Rosner

June 1984

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
The SU(2) × U(1) theory of electroweak interactions remains incomplete as long as the symmetry-breaking interaction is not fully understood. This problem may be postponed to center of mass energies of about 1 TeV, but not much beyond. Both hadron-hadron and e+e− collisions have been advocated as a means of attaining this center of mass energy. Possibilities which have some hope for realization in this century include:

\[
\text{pp collisions at } \sqrt{s} = 10-40 \text{ TeV}^2; \\
\text{e}^+\text{e}^- \text{ collisions at } \sqrt{s} = 1 \text{ TeV}.
\]

A detailed evaluation of the utility of hadron-hadron collisions at multi-TeV energies for the study of electroweak symmetry breaking has been presented recently. It was concluded that one of the benchmarks of this program, the Higgs boson, H, can be observed in such collisions at \(\sqrt{s} = 40 \text{ TeV} \), luminosity \(L = 10^{33} \text{ cm}^{-2} \text{s}^{-1} \), if \(m_H < 0.7 \text{ TeV}^2 \). Since the major Higgs partial widths are expected to be,

\[
\Gamma(H \rightarrow W^+ W^-) = 2\Gamma(H \rightarrow ZZ) = G_F M_H^3 / 8\pi \approx 40 \text{ GeV}(M_H/500 \text{ GeV})^3,
\]

a Higgs boson heavier than about 0.7 TeV/c² will be hard to separate from nonresonant W+W− production, and q̅q jets will provide an important background to any broad signal. However, more optimistic estimates of how easily quark jets can be separated from W jets have recently been made, and it may be possible to extend the detectable
Higgs boson mass range to 1 TeV/c^2 in hadron-hadron collisions with the parameters just mentioned.

In principle e^+e^- collisions can provide a source of heavy Higgs bosons somewhat more free of hadronic background than hadron interactions. The major mechanisms which dominate for Higgs masses above about 0.4 TeV/c^2 are

\[\text{(2a)} \quad e^+e^- \rightarrow \nu\bar{\nu}H, \]
\[\text{(2b)} \quad e^+e^- \rightarrow e^+e^-H, \]

where H is produced by W^+W^- or ZZ fusion in process (2). The process

\[\text{(3)} \quad e^+e^- \rightarrow \nu\bar{\nu}H, \]

useful for production of Higgs bosons below 0.4 TeV/c^2, has too small a cross section to be of use above this mass. In the present note we point out that while cross sections for the process (2) remain appreciable up to quite high Higgs masses, backgrounds from processes such as

\[\text{(4)} \quad e^+e^- \rightarrow t\bar{t}, \]
\[\text{(5)} \quad e^+e^- \rightarrow W^+W^-, \]

and, most importantly,

\[\text{(6)} \quad e^+e^- \rightarrow (\text{soft photons}) W^+W^-, \]

limit detectable Higgs masses to (0.4, 0.6, 0.9) TeV/c^2 for s = (1, 2, 4) TeV^2.

We calculate the cross section for reaction (2) exactly. The cross section for (2b) we estimate to be only a few percent of that for (2a), and we shall henceforth neglect it. The relevant Feynman diagram for (2) is shown in Fig. 1. The lepton 4-momenta are p_1, p_2 (initial), and p'_1, p'_2 (final). The neutrino energies are E'_1, E'_2. The final neutrino three-momenta p'_1 and p'_2 (in the e^+e^- center of mass) define an angle \(\theta = \cos^{-1}(-\hat{p}_1 \cdot \hat{p}_2) \). The vector bosons coalescing to form the Higgs boson carry 4-momenta \(q_i = p_i - p'_i (i = 1, 2) \). Then the cross section is

\[\sigma(e^+e^- \rightarrow \nu\bar{\nu}H) = \left(\frac{a_{EM}/x}{\beta}\right)^3 M_w^2/8\pi \int dE'_1 dE'_2 \sin \beta \, d\theta \, d\alpha \times (1 + \cos \theta)/d_1^2 d_2^2, \]

where \(a_{EM} = 1/128 \) is the electromagnetic fine structure constant at \(M_w^2 \), \(x = \sin^2 \theta_w \), \(\beta \) and \(\alpha \) are polar and azimuthal Euler angles specifying the orientation of the three-body final state, and \(d_1^2 + d_2^2 = M_w^2 - q_i^2 \). (Further details may be found in Ref. 9.) The integrals in (7) are evaluated exactly using the program VEGAS.12

The resulting cross sections are shown in Fig. 2 for \(s = 1, 2, 4 \) TeV^2. At \(\mathcal{L} = 10^{32} \text{ cm}^{-2} \text{ s}^{-1} \), a cross section of \(10^{-5} \text{ nb} \) is needed to see 10 events in \(10^7 \) s. This limits \(M_H \) to less than (0.6, 0.9, 1.2) TeV/c^2 for \(s = (1, 2, 4) \) TeV^2 if we look for the Higgs by the WW fusion process of Eq. (2).

Also shown in Fig. 2 is the cross section for \(e^+e^- \rightarrow ZH \), given by the expression\(^{13}\)

\[\sigma(e^+e^- \rightarrow ZH) = \pi a_{EM}^2 [2K(K^2 + 3M_z^2)(1 - 4x + 8x^2)]/ \]
\[[24 \sqrt{3}(s - M_z^2)^2 x^2(1 - x^2)], \]

(8)
where \(K \) is the c.m. three-momentum of either final particle,

\[
K = \left[(s - (M_Z - M_H)^2) \right] \left[s - (M_Z + M_H)^2 \right] / 4s.
\]

While this process is important for Higgs production at lower energies, we see that it does not provide large enough cross sections for production of Higgs bosons of masses in the several hundred GeV range. The cross sections (8) attain their maxima for given \(M_H \) at somewhat below 2\(M_H \), as shown in Table 1. Higgs bosons up to 400 GeV/c^2 may be detected via this process if we demand \(\sigma \geq 10^{-5} \text{nb} \).

Three sources of background have been found which further reduce the highest accessible Higgs mass from WW fusion. These are the processes (4)-(6), which we discuss in turn.

The process \(e^+e^- \rightarrow t\bar{t} \) accounts for a cross section \(\sigma = (1.2, 0.6, 0.3) \times 10^{-37} \text{cm}^2 \) at \(s = (1, 2, 4) \text{TeV}^2 \). Each top quark is likely to be degraded 10\% of the time to an average of about 0.7 of its energy by primary semileptonic decays \(t \rightarrow b \ell^+ \nu_\ell \). Thus 20\% of the \(t\bar{t} \) pairs in \(e^+e^- \rightarrow t\bar{t} \) should have observed effective mass \(m_{t\bar{t}} \approx 0.7 \text{TeV} / c^2 \) if \(\sqrt{s} = 1 \text{TeV} \). This corresponds to a signal of \(2.3 \times 10^{-38} \text{cm}^2 \). The background at 0.6 TeV/c^2 is likely still to be appreciable, affecting the observation of \(H \rightarrow W^+W^- \), \(H \rightarrow ZZ \). (It is probably possible to distinguish jets coming from lower-mass quarks from those due to W's or Z's.\(^6\)) The \(t\bar{t} \) background is unlikely to affect the highest observable Higgs mass at \(s = (2, 4) \text{TeV}^2 \).

More important is the process \(e^+e^- \rightarrow W^+W^- \), where the W loses energy by decays to \(\ell\bar{\ell} \) or \(\ell b \), followed by primary semileptonic decays of \(c, b \), or \(t \). We use simplified forms, valid for \(s >> M_W^2, M_Z^2 \), based on expressions given in Refs. 3, 14, and 15, to evaluate the cross sections

\[
\sigma(e^+e^- \rightarrow W^+W^-) = \pi a^2/(4sx) \left(z_0(1 - z_0/3)^2 \right. \\
\left. \frac{1}{s} \left[(3/4 - (1 - 2x)/(4 - 4x) + (1 - 4x + 8x^2)/(16(1 - x)^2) \right] \right.
\]

\[
- 2z_0 + \ln[(1 + \beta_w z_0 - \epsilon_{w^2}/2)/(1 - \beta_w z_0 - \epsilon_{w^2}/2)] \\
\left. \right) \times \{1 + (4x - 1)^4 + 6(4x - 1)^2\}.
\]

Here \(z_0 \) is the cosine of the minimum c.m. angle \(\theta_{\text{min}} \) observable in the detector, \(z_0 \equiv \cos \theta_{\text{min}} \);

\[
\epsilon_{w,z} = 4M_{w,z}^2/s, \\
\beta_{w,z} = \sqrt{1 - \epsilon_{w,z}}.
\]

The WW and ZZ cross sections and their sum are plotted in Fig. 3 for \(s = 1 \text{TeV}^2 \). For reasonably large values of \(\theta_{\text{min}} \), the logarithms in (10) and (11) vary very slowly with \(s \), and the cross sections scale very nearly as \(1/s \). As a result of the neutrino and electron poles, these cross sections are dominated by small angles of W or Z with respect to the beam direction. An angular cut \(\theta_{\text{min}} = 15^\circ \) reduces the cross section for process (10) to \((1, 1, 1, 1) \times 10^{-3} \text{nb} \) at \(s = (1, 2, 4) \text{TeV}^2 \). At the same time
this cut has very little effect on the process (2) for large Higgs mass, since the Higgs particle is moving slowly and decays isotropically.

We estimate the energy degradation of W's by assuming

$$
B(W \to \bar{u}d) = 0.3
$$

$$
B(W \to \bar{c}s) = 0.3
$$

$$
B(W \to \bar{t}b) = 0.1
$$

$$
B(W \to e\bar{\nu}) = 0.1
$$

$$
B(W \to \mu\bar{\nu}) = 0.1
$$

$$
B(W \to \tau\bar{\nu}) = 0.1,
$$

presupposing an appreciable kinematic suppression of the tb final state. We imagine each semileptonic decay of a c, b, or t to degrade the energy of the corresponding quark to $2/3$ of its previous value, and to occur with a 10% probability. (We consider only primary semileptonic decays.) Then we estimate roughly 5% of each W to be degraded to $5/6$ of its full energy. Thus 10% of the W pairs in $e^+e^- \to W^+W^-$ will have observed effective mass $0.8\sqrt{s}$, and we might expect that a fraction of such pairs would have observed effective mass $0.6\sqrt{s}$. For the Higgs masses in question, these backgrounds appear manageable, though a more detailed calculation of W energy degradation in decays would be desirable. (The same remark applies to heavy quarks.)

Most important of all is initial electron Bremsstrahlung in $e^+e^- \to W^+W^-$. The probability that a photon of energy between ϵ and $\epsilon + d\epsilon$ is radiated by e^+ or e^- is

$$
\lambda(\epsilon) d\epsilon = \alpha A(\sqrt{E_{WW}})^{1\alpha}(1 + 13/12 \alpha A + \alpha/\tau (\pi^2/3 - 17/18)) \frac{d\epsilon}{\epsilon},
$$

where E_{WW} is the total c.m. energy of the WW subsystem, $\epsilon = \sqrt{s} - E_{WW}$, and

$$
\alpha A = 2\alpha/\tau [2 \ln E_{WW}/m_\epsilon - 1].
$$

The expression (15) is the result of summing over multiple soft photons. The resulting cross section $d\sigma/dE_{WW}$ per GeV of photon energy is obtained by multiplying (15) by (10) (with s in (10) replaced by E_{WW}^2). We take $\theta_{\text{min}} = 15^\circ$. The results are shown in Fig. 4. The cross sections rise with decreasing E_{WW} at low E_{WW} because of the behavior of $\sigma(e^+e^- \to W^+W^-)$, and with increasing E_{WW} at high E_{WW} because of the usual $d\sigma/d\epsilon$ behavior of the Bremsstrahlung spectrum (15).

The values of $d\sigma/dE_{WW}$ must be multiplied by the energy spread ΔE_{WW} in E_{WW} to obtain a background cross section σ_B which can be compared with that for the process (2). A minimum estimate of this spread is $\Delta E_{WW} \sim \Gamma_H$; we neglect additional effects due to instrumental resolution. The cross sections for signal and background are compared in Table 2.

In Table 2 we have underlined those cross sections corresponding to the maximum Higgs masses for each s for which the signal from $e^+e^- \to \nu\bar{\nu}H$ exceeds the Bremsstrahlung background by at least 5 standard deviations. The maximum observable Higgs masses are approximately $M_H = (0.4, 0.6, 0.9)$ TeV/c² for $s = (1, 2, 4)$ TeV². At these masses we expect the backgrounds from $e^+e^- \to t\bar{t}$ and $e^+e^- \to W^+W^-$ to be manageable.

Conclusion: we have considered Higgs production through both $e^+e^- \to ZH$ and $e^+e^- \to \nu\bar{\nu}H$ and find that the latter process is the
appropriate way to study Higgs bosons heavier than 0.4 TeV/c². However, an e⁺e⁻ accelerator in excess of 1 TeV per beam is needed to probe Higgs masses up to the TeV range unless some means can be found to defeat the Bremsstrahlung background.

Acknowledgments

We wish to thank J. Ellis, K. Lane and C. Quigg for helpful discussions. K. Lane kindly supplied us without cost a FORTRAN program for calculating e⁺e⁻ → W⁺W⁻. This work was supported in part by the U.S. Department of Energy under Contract DE-AC02-82ER-40073 (University of Chicago) and the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098. J. L. R. wishes to thank the Theory Group of Lawrence Berkeley Laboratory for their hospitality during a workshop on electroweak symmetry breaking and the CERN theory group for their hospitality during completion of the manuscript.
References

 S. Weinberg, *Phys. Lett.* **19**, 1764 (1967);
 A. Salam, in Proc. 8th Nobel Symposium, edited by N. Svartholm

 JETP Lett. **23**, 64 (1976)];

4. Summary report of the Workshop on the Feasibility of Hadron
 Colliders in the LEP Tunnel, CERN and Lausanne, 1984.

5. J. Ellis, Invited talk at XIV Int. Symposium on Multiparticle
 Dynamics at High Energies, Lake Tahoe, June 22-27, 1983,
 SLAC-PUB-3127, to be published.

6. M. Shochet, in PP options for the Supercollider, proceedings of a
 workshop at the University of Chicago, Feb. 13-17, 1984, edited by
 J. E. Pilcher and A. R. White, Argonne National Laboratory,
 1984, p. 222.

7. F. Sciulli, in Report of the discussion group on Physics at the
 Superconducting Super Collider, Fermi National Accelerator

10. M. Chanowitz and M. K. Gaillard, LBL report LBL-17496, March,

13. Lee, Quigg, and Thacker, Ref. 2.

15. K. Lane, private communication.

<table>
<thead>
<tr>
<th>M_H (GeV/c2)</th>
<th>E_{cm} (GeV) at σ^{max}</th>
<th>$\sigma^{\text{max}}(e^+e^- \to ZH)$ (units of 10^{-39} cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>510</td>
<td>21</td>
</tr>
<tr>
<td>400</td>
<td>710</td>
<td>9.7</td>
</tr>
<tr>
<td>500</td>
<td>920</td>
<td>5.7</td>
</tr>
<tr>
<td>600</td>
<td>1130</td>
<td>3.8</td>
</tr>
<tr>
<td>700</td>
<td>1340</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Table 1 Maximum cross sections for production of Higgs bosons via $e^+e^- \to ZH$.

<table>
<thead>
<tr>
<th>M_H (TeV/c²)</th>
<th>Γ_H (GeV)</th>
<th>$s = 1 \text{ TeV}^2$</th>
<th>2 TeV^2</th>
<th>4 TeV^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ_s</td>
<td>$d\sigma_B/dE_{WW}$</td>
<td>σ_B</td>
<td>σ_B</td>
</tr>
<tr>
<td>0.4</td>
<td>31</td>
<td>52</td>
<td>1.5</td>
<td>46</td>
</tr>
<tr>
<td>0.5</td>
<td>60</td>
<td>26</td>
<td>1.2</td>
<td>70</td>
</tr>
<tr>
<td>0.6</td>
<td>104</td>
<td>12</td>
<td>1.0</td>
<td>102</td>
</tr>
<tr>
<td>0.7</td>
<td>165</td>
<td>4</td>
<td>0.9</td>
<td>151</td>
</tr>
<tr>
<td>0.8</td>
<td>246</td>
<td>1</td>
<td>1.0</td>
<td>246</td>
</tr>
<tr>
<td>0.9</td>
<td>350</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Table 2. Comparison of signal (σ_s) and Bremsstrahlung background cross sections (σ_B) in Higgs production by $e^+e^- \rightarrow \nu\nu H$. Cross sections are in fb $= 10^{-39}$cm² or fb/GeV. Underlined entries correspond to maximum observable Higgs mass for a given s.
FIGURE 1

FIGURE 2
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.