Title
THE SYMMETRICAL DEFORMATION FREQUENCIES OF METHYL SILYL AND GERMYL GROUPS

Permalink
https://escholarship.org/uc/item/23w6475v

Author
Jolly, William L.

Publication Date
1963-03-01
THE SYMMETRICAL DEFORMATION
FREQUENCIES OF METHYL SILYL AND GERMYL GROUPS

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE SYMMETRICAL DEFORMATION FREQUENCIES OF METHYL, SILYL AND GERMYL GROUPS

William L. Jolly
March 1963
The symmetrical deformation frequencies of the MH_3 groups in compounds of the type $\text{H}_3\text{M}-\text{X}$ (where $\text{M} = \text{Si}$ or Ge, and where X may be bound to other atoms) increase with increasing electronegativity of the atom X. These correlations and the similar correlation for methyl groups may be explained in terms of the repulsions between the M-H bonding electrons and the M-X bonding electrons.
Introduction

It has been pointed out¹,² that the symmetrical deformation frequency of a \(\text{CH}_3-X \) group may be correlated with the electronegativity of the atom \(X \) (which may be bound to other atoms). A plot of the symmetrical deformation frequency against the electronegativity of \(X \) yields a series of parallel straight lines, each line corresponding to \(X \) atoms from a particular horizontal row of the periodic table.¹ In order to test the generality of this type of correlation and to aid in the identification of substituted silanes and germanes, we have examined the existing infrared spectral data on silyl and germyl compounds.

Correlations with Electronegativity

The symmetrical deformation frequencies for silyl compounds and germyl compounds are presented in Tables I and II, respectively. Most of the frequency assignments are taken from the literature; those few cases in which we have made the assignments are marked in the tables. In making assignments, we have been aided by the fact that the absorption band attributable to a symmetrical deformation is generally very strong. The frequencies in Tables I and II have been plotted in Figure 1 against the

Pauling electronegativities\(^3\) of the atoms to which the silicon and germanium atoms are bound. It will be noted that the points roughly form two straight lines, one corresponding to the silyl compounds and the other corresponding to the germyl compounds. The slope of the silyl compound line is 48 cm\(^{-1}\) per electronegativity unit, and the slope of the germyl compound line is 30 cm\(^{-1}\) per electronegativity unit. These slopes may be compared with that for methyl compounds, approximately 65 cm\(^{-1}\) per electronegativity unit.\(^1, 4\)

\(^4\) A single line drawn through all the methyl compound points, without regard for the periodic table grouping, would have a slope around 110 cm\(^{-1}\) per electronegativity unit.

It is interesting that if one plots the symmetrical deformation frequencies for either methyl, silyl or germyl groups against the single-bond covalent radius of \(X\), one obtains a series of straight lines, each line corresponding to \(X\) atoms from a particular horizontal row of the periodic table. Because the covalent radius of an atom is closely related to its electronegativity, and because there seemed no advantage in breaking up each of the lines of Figure 1 into a family of lines, we have not presented these plots.
Table I. Symmetrical Deformation Frequencies of Silyl Groups.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Frequency (cm⁻¹)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiH₃F</td>
<td>990</td>
<td>a</td>
</tr>
<tr>
<td>SiH₃OCH₃</td>
<td>975</td>
<td>b</td>
</tr>
<tr>
<td>SiH₃OSiH₃</td>
<td>957</td>
<td>c</td>
</tr>
<tr>
<td>SiH₂Cl</td>
<td>949</td>
<td>a</td>
</tr>
<tr>
<td>(SiH₃)₃N</td>
<td>944</td>
<td>d</td>
</tr>
<tr>
<td>SiH₃Br</td>
<td>929</td>
<td>a</td>
</tr>
<tr>
<td>SiH₃SSiH₃</td>
<td>956</td>
<td>e</td>
</tr>
<tr>
<td>SiH₃CH₃</td>
<td>940</td>
<td>f</td>
</tr>
<tr>
<td>SiH₃CN</td>
<td>920</td>
<td>g</td>
</tr>
<tr>
<td>SiH₂I</td>
<td>903</td>
<td>e</td>
</tr>
<tr>
<td>SiH₃SeSiH₃</td>
<td>932</td>
<td>h</td>
</tr>
<tr>
<td>SiH₃PH₂</td>
<td>904</td>
<td>i</td>
</tr>
<tr>
<td>SiH₃AsH₂</td>
<td>890</td>
<td>j</td>
</tr>
<tr>
<td>SiH₃SiH₃</td>
<td>876</td>
<td>k</td>
</tr>
<tr>
<td>SiH₃SiH₂SiH₃</td>
<td>880</td>
<td>l</td>
</tr>
<tr>
<td>SiH₃GeH₃</td>
<td>895</td>
<td>m</td>
</tr>
</tbody>
</table>

a Ref. (6).
Table I. References continued:

f S. Kaye and S. Tannenbaum, J. Org. Chem., 18, 1750 (1953);
 I. F. Kovalev, Optika i Spektroskopiya, 8, 315 (1960).

h Ref. (7).

 We have taken the average of the in-phase and out-of-phase deformation
 frequencies, ν_2 and ν_6.

 Assignment by the author.

 Assignment by the author.
Table II. Symmetrical Deformation Frequencies of Germyl Groups.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Frequency (cm$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeH$_3$F</td>
<td>859</td>
<td>a</td>
</tr>
<tr>
<td>GeH$_3$Cl</td>
<td>843</td>
<td>b</td>
</tr>
<tr>
<td>GeH$_3$Br</td>
<td>832</td>
<td>a</td>
</tr>
<tr>
<td>GeH$_3$CH$_3$</td>
<td>842</td>
<td>c</td>
</tr>
<tr>
<td>GeH$_3$CN</td>
<td>832</td>
<td>d</td>
</tr>
<tr>
<td>GeH$_3$PH$_2$</td>
<td>816</td>
<td>e</td>
</tr>
<tr>
<td>GeH$_3$AsH$_2$</td>
<td>806</td>
<td>e</td>
</tr>
<tr>
<td>GeH$_3$SiH$_3$</td>
<td>788</td>
<td>f</td>
</tr>
<tr>
<td>GeH$_3$GeH$_3$</td>
<td>795</td>
<td>g</td>
</tr>
</tbody>
</table>

c J. E. Griffiths, private communication.

Discussion

Bellamy and Williams\(^2\) explain the frequency shift on going from CH\(_3\)I to CH\(_3\)F in terms of a change in the hybridization of the carbon bonding orbitals; they assert that, in ascending this series, the C-H bonds gain p character (and hence increase in directional character) and the C-X bonds gain s character. Actually one finds very little evidence for any appreciable change in hybridization in the equilibrium configurations of either these compounds or the silyl halides, when one uses changes in bond angles as a measure of rehybridization. On going from CH\(_3\)I to CH\(_3\)Cl, the H-C-H bond angle decreases from 111.4\(^\circ\) to 110.5\(^\circ\), a difference which is barely outside of the probable experimental error.\(^5\) For SiH\(_3\)Br, SiH\(_3\)Cl, and SiH\(_3\)F, the X-Si-H bond angles are the same within experimental error: 108.5\(^\circ\), 108.9\(^\circ\), and 108.7\(^\circ\), respectively.\(^6\) Further evidence that only minor changes in hybridization occur in these compounds is to be found in the relative constancy of the M-H symmetrical stretching frequency, v_1. In the CH\(_3\)I-CH\(_3\)F series, v_1 decreases by only 5 cm\(^{-1}\), and even after correcting for Fermi resonance, the decrease is only 12 cm\(^{-1}\) from CH\(_3\)I to CH\(_3\)Cl.\(^2\) In the SiH\(_3\)I-SiH\(_3\)F series,\(^6\),\(^7\) which has no Fermi resonance, v_1 increases by 14 cm\(^{-1}\).

Any rehybridization which occurs in these series of compounds would most likely be just the opposite of that claimed by Bellamy and Williams. A large body of data indicates that, as the electronegativity of X increases,

the carbon orbital in the C-X bond gains p character, not s character.

We believe that the electrostatic repulsion between electrons in adjacent bonds, only briefly discussed as a possible explanation by Bellamy and Williams, satisfactorily accounts for the frequency-electronegativity trends. As the electronegativity of the atom X in the H,M-X group increases, the electron density in the M-X bond increases. This occurs because, as X becomes more electronegative, its bonding orbital becomes much more compact. A semi-quantitative idea of the change in bonding electron density as X becomes more electronegative can be gotten from Figure 2. It can be seen that as X becomes more electronegative, the repulsion between these bonding electrons and the M-H bonding electrons increases, even through the polarity of the M-X bond changes in the direction to make X relatively more negative. The more repulsion there is between the M-X and M-H bonding electrons, the more resistance is offered to the widening of the H-M-H bond angles. Consequently the potential well for the symmetrical deformation becomes steeper on one side, and the energy levels become more widely spaced.

In compounds of the first-row elements C, N, and O, the bonding electrons in adjacent bonds repel one another strongly, whereas in compounds of the second- and third-row elements (Si, P, S, etc.), these repulsions are much weaker. Thus one can explain the fact that the symmetrical deformation

(9) This explains why the bond angles in compounds such as NH₃ and H₂O are
Reference 9 continued:

large compared to those in compounds such as PH₃ and H₂S. It may also explain the slight trend in bond angles on going from CH₃I to CH₃Cl, and the absence of a trend on going from SiH₃Br to SiH₃F.

frequencies for methyl groups are quite high (1150-1475 cm⁻¹), whereas the corresponding frequencies for silyl and germyn groups are relatively low (870-990 cm⁻¹ and 780-860 cm⁻¹, respectively). As the M atom in the group H₃M-X becomes larger, and the interaction between the M-X and M-H electrons becomes weaker, it is also to be expected that changes in the nature of the X atom will have a smaller effect on the bending frequencies of the molecule. Thus we find an explanation for the decrease in the slope of the frequency-electronegativity plot on going from methyl compounds to germyn compounds.

Acknowledgements

The author has been greatly aided in this work by discussions with Professor G. C. Pimentel. This research was supported in part by the U.S. Atomic Energy Commission.
Figure Captions

Figure 1. Symmetrical deformation frequencies for silyl compounds and germyl compounds versus electronegativities of the attached atoms.

Figure 2. Orbital overlap and resulting electron density in M-X bonds, for X of high electronegativity and for X of low electronegativity.
Electronegativity of atom X

Fig. 1

Symmetrical deformation frequency, cm\(^{-1}\)

- **SiH\(_3^-\)** cpds.
- **GeH\(_3^-\)** cpds.
Electron density

\(M \) \(X \) (High electronegativity)

Distance

Electron density

\(M \) \(X \) (Low electronegativity)

Distance

Fig. 2
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.